proxmark3/armsrc/lfops.c
iceman1001 b8f705e73e ADD: added some changes from Marshmellow
CHG: minor change to the help text for "LF HITAG WRITE"
2015-04-01 17:58:35 +02:00

2011 lines
56 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency tag operations.
// Tags supported here so far are Texas Instruments (TI), HID
// Also routines for raw mode reading/simulating of LF waveform
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "hitag2.h"
#include "crc16.h"
#include "string.h"
#include "lfdemod.h"
#include "lfsampling.h"
#include "usb_cdc.h"
/**
* Function to do a modulation and then get samples.
* @param delay_off
* @param period_0
* @param period_1
* @param command
*/
void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
{
int divisor_used = 95; // 125 KHz
// see if 'h' was specified
if (command[strlen((char *) command) - 1] == 'h')
divisor_used = 88; // 134.8 KHz
sample_config sc = { 0,0,1, divisor_used, 0};
setSamplingConfig(&sc);
/* Make sure the tag is reset */
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(2500);
LFSetupFPGAForADC(sc.divisor, 1);
// And a little more time for the tag to fully power up
SpinDelay(2000);
// now modulate the reader field
while(*command != '\0' && *command != ' ') {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
LED_D_ON();
if(*(command++) == '0')
SpinDelayUs(period_0);
else
SpinDelayUs(period_1);
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
SpinDelayUs(delay_off);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// now do the read
DoAcquisition_config(false);
}
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
0011010010100001
01111111
101010101010101[0]000...
[5555fe852c5555555555555555fe0000]
*/
void ReadTItag(void)
{
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
#define FSAMPLE 2000000
#define FREQLO 123200
#define FREQHI 134200
signed char *dest = (signed char *)BigBuf_get_addr();
uint16_t n = BigBuf_max_traceLen();
// 128 bit shift register [shift3:shift2:shift1:shift0]
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
int i, cycles=0, samples=0;
// how many sample points fit in 16 cycles of each frequency
uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
// when to tell if we're close enough to one freq or another
uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
for (i=0; i<n-1; i++) {
// count cycles by looking for lo to hi zero crossings
if ( (dest[i]<0) && (dest[i+1]>0) ) {
cycles++;
// after 16 cycles, measure the frequency
if (cycles>15) {
cycles=0;
samples=i-samples; // number of samples in these 16 cycles
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
shift0 = (shift0>>1) | (shift1 << 31);
shift1 = (shift1>>1) | (shift2 << 31);
shift2 = (shift2>>1) | (shift3 << 31);
shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
// low frequency represents a 1
shift3 |= (1<<31);
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
// high frequency represents a 0
} else {
// probably detected a gay waveform or noise
// use this as gaydar or discard shift register and start again
shift3 = shift2 = shift1 = shift0 = 0;
}
samples = i;
// for each bit we receive, test if we've detected a valid tag
// if we see 17 zeroes followed by 6 ones, we might have a tag
// remember the bits are backwards
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
// if start and end bytes match, we have a tag so break out of the loop
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
cycles = 0xF0B; //use this as a flag (ugly but whatever)
break;
}
}
}
}
}
// if flag is set we have a tag
if (cycles!=0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
// put 64 bit data into shift1 and shift0
shift0 = (shift0>>24) | (shift1 << 8);
shift1 = (shift1>>24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
if (shift3 & (1<<15) ) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
}
} else {
DbpString("Info: TI tag is readonly");
}
// WARNING the order of the bytes in which we calc crc below needs checking
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
// bytes in reverse or something
// calculate CRC
uint32_t crc=0;
crc = update_crc16(crc, (shift0)&0xff);
crc = update_crc16(crc, (shift0>>8)&0xff);
crc = update_crc16(crc, (shift0>>16)&0xff);
crc = update_crc16(crc, (shift0>>24)&0xff);
crc = update_crc16(crc, (shift1)&0xff);
crc = update_crc16(crc, (shift1>>8)&0xff);
crc = update_crc16(crc, (shift1>>16)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
Dbprintf("Info: Tag data: %x%08x, crc=%x",
(unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
if (crc != (shift2&0xffff)) {
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
} else {
DbpString("Info: CRC is good");
}
}
}
void WriteTIbyte(uint8_t b)
{
int i = 0;
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
if (b&(1<<i)) {
// stop modulating antenna
LOW(GPIO_SSC_DOUT);
SpinDelayUs(1000);
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1000);
} else {
// stop modulating antenna
LOW(GPIO_SSC_DOUT);
SpinDelayUs(300);
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelayUs(1700);
}
}
}
void AcquireTiType(void)
{
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
#define TIBUFLEN 1250
// clear buffer
uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr();
memset(BigBuf,0,BigBuf_max_traceLen()/sizeof(uint32_t));
// Set up the synchronous serial port
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
// 48/2 = 24 MHz clock must be divided by 12
AT91C_BASE_SSC->SSC_CMR = 12;
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
AT91C_BASE_SSC->SSC_TCMR = 0;
AT91C_BASE_SSC->SSC_TFMR = 0;
LED_D_ON();
// modulate antenna
HIGH(GPIO_SSC_DOUT);
// Charge TI tag for 50ms.
SpinDelay(50);
// stop modulating antenna and listen
LOW(GPIO_SSC_DOUT);
LED_D_OFF();
i = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
i++; if(i >= TIBUFLEN) break;
}
WDT_HIT();
}
// return stolen pin to SSP
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
char *dest = (char *)BigBuf_get_addr();
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
for (j=0; j<32; j++) {
if(BigBuf[i] & (1 << j)) {
dest[--n] = 1;
} else {
dest[--n] = -1;
}
}
}
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if(crc == 0) {
crc = update_crc16(crc, (idlo)&0xff);
crc = update_crc16(crc, (idlo>>8)&0xff);
crc = update_crc16(crc, (idlo>>16)&0xff);
crc = update_crc16(crc, (idlo>>24)&0xff);
crc = update_crc16(crc, (idhi)&0xff);
crc = update_crc16(crc, (idhi>>8)&0xff);
crc = update_crc16(crc, (idhi>>16)&0xff);
crc = update_crc16(crc, (idhi>>24)&0xff);
}
Dbprintf("Writing to tag: %x%08x, crc=%x",
(unsigned int) idhi, (unsigned int) idlo, crc);
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
LED_A_ON();
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
// writing algorithm:
// a high bit consists of a field off for 1ms and field on for 1ms
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
// initiate a charge time of 50ms (field on) then immediately start writing bits
// start by writing 0xBB (keyword) and 0xEB (password)
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
// finally end with 0x0300 (write frame)
// all data is sent lsb firts
// finish with 15ms programming time
// modulate antenna
HIGH(GPIO_SSC_DOUT);
SpinDelay(50); // charge time
WriteTIbyte(0xbb); // keyword
WriteTIbyte(0xeb); // password
WriteTIbyte( (idlo )&0xff );
WriteTIbyte( (idlo>>8 )&0xff );
WriteTIbyte( (idlo>>16)&0xff );
WriteTIbyte( (idlo>>24)&0xff );
WriteTIbyte( (idhi )&0xff );
WriteTIbyte( (idhi>>8 )&0xff );
WriteTIbyte( (idhi>>16)&0xff );
WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
WriteTIbyte( (crc )&0xff ); // crc lo
WriteTIbyte( (crc>>8 )&0xff ); // crc hi
WriteTIbyte(0x00); // write frame lo
WriteTIbyte(0x03); // write frame hi
HIGH(GPIO_SSC_DOUT);
SpinDelay(50); // programming time
LED_A_OFF();
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Now use 'lf ti read' to check");
}
void SimulateTagLowFrequency(uint16_t period, uint32_t gap, uint8_t ledcontrol)
{
int i;
uint8_t *tab = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
i = 0;
for(;;) {
//wait until SSC_CLK goes HIGH
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
if(BUTTON_PRESS() || usb_poll()) {
DbpString("Stopped");
return;
}
WDT_HIT();
}
if (ledcontrol)
LED_D_ON();
if(tab[i])
OPEN_COIL();
else
SHORT_COIL();
if (ledcontrol)
LED_D_OFF();
//wait until SSC_CLK goes LOW
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
if(BUTTON_PRESS()) {
DbpString("Stopped");
return;
}
WDT_HIT();
}
i++;
if(i == period) {
i = 0;
if (gap) {
SHORT_COIL();
SpinDelayUs(gap);
}
}
}
}
#define DEBUG_FRAME_CONTENTS 1
void SimulateTagLowFrequencyBidir(int divisor, int t0)
{
}
// compose fc/8 fc/10 waveform (FSK2)
static void fc(int c, int *n)
{
uint8_t *dest = BigBuf_get_addr();
int idx;
// for when we want an fc8 pattern every 4 logical bits
if(c==0) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
// an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
if(c==8) {
for (idx=0; idx<6; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
// an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
if(c==10) {
for (idx=0; idx<5; idx++) {
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=1;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
dest[((*n)++)]=0;
}
}
}
// compose fc/X fc/Y waveform (FSKx)
static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
{
uint8_t *dest = BigBuf_get_addr();
uint8_t halfFC = fc/2;
uint8_t wavesPerClock = clock/fc;
uint8_t mod = clock % fc; //modifier
uint8_t modAdj = fc/mod; //how often to apply modifier
bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
// loop through clock - step field clock
for (uint8_t idx=0; idx < wavesPerClock; idx++){
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
memset(dest+(*n)+(fc-halfFC), 1, halfFC);
*n += fc;
}
if (mod>0) (*modCnt)++;
if ((mod>0) && modAdjOk){ //fsk2
if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
memset(dest+(*n), 0, fc-halfFC);
memset(dest+(*n)+(fc-halfFC), 1, halfFC);
*n += fc;
}
}
if (mod>0 && !modAdjOk){ //fsk1
memset(dest+(*n), 0, mod-(mod/2));
memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
*n += mod;
}
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a HID tag until the button is pressed
void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
{
int n=0, i=0;
/*
HID tag bitstream format
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
A 1 bit is represented as 6 fc8 and 5 fc10 patterns
A 0 bit is represented as 5 fc10 and 6 fc8 patterns
A fc8 is inserted before every 4 bits
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
*/
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
return;
}
fc(0,&n);
// special start of frame marker containing invalid bit sequences
fc(8, &n); fc(8, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
fc(10, &n); fc(10, &n); // invalid
fc(8, &n); fc(10, &n); // logical 0
WDT_HIT();
// manchester encode bits 43 to 32
for (i=11; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((hi>>i)&1) {
fc(10, &n); fc(8, &n); // low-high transition
} else {
fc(8, &n); fc(10, &n); // high-low transition
}
}
WDT_HIT();
// manchester encode bits 31 to 0
for (i=31; i>=0; i--) {
if ((i%4)==3) fc(0,&n);
if ((lo>>i)&1) {
fc(10, &n); fc(8, &n); // low-high transition
} else {
fc(8, &n); fc(10, &n); // high-low transition
}
}
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol)
LED_A_OFF();
}
// prepare a waveform pattern in the buffer based on the ID given then
// simulate a FSK tag until the button is pressed
// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
int ledcontrol=1;
int n=0, i=0;
uint8_t fcHigh = arg1 >> 8;
uint8_t fcLow = arg1 & 0xFF;
uint16_t modCnt = 0;
uint8_t clk = arg2 & 0xFF;
uint8_t invert = (arg2 >> 8) & 1;
for (i=0; i<size; i++){
if (BitStream[i] == invert){
fcAll(fcLow, &n, clk, &modCnt);
} else {
fcAll(fcHigh, &n, clk, &modCnt);
}
}
Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
/*Dbprintf("DEBUG: First 32:");
uint8_t *dest = BigBuf_get_addr();
i=0;
Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
i+=16;
Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
*/
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol)
LED_A_OFF();
}
// compose ask waveform for one bit(ASK)
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
{
uint8_t *dest = BigBuf_get_addr();
uint8_t halfClk = clock/2;
// c = current bit 1 or 0
if (manchester==1){
memset(dest+(*n), c, halfClk);
memset(dest+(*n) + halfClk, c^1, halfClk);
} else {
memset(dest+(*n), c, clock);
}
*n += clock;
}
static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
{
uint8_t *dest = BigBuf_get_addr();
uint8_t halfClk = clock/2;
if (c){
memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
} else {
memset(dest+(*n), c ^ *phase, clock);
*phase ^= 1;
}
}
// args clock, ask/man or askraw, invert, transmission separator
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
int ledcontrol = 1;
int n=0, i=0;
uint8_t clk = (arg1 >> 8) & 0xFF;
uint8_t encoding = arg1 & 1;
uint8_t separator = arg2 & 1;
uint8_t invert = (arg2 >> 8) & 1;
if (encoding==2){ //biphase
uint8_t phase=0;
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
for (i=0; i<size; i++){
biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
}
}
} else { // ask/manchester || ask/raw
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert, &n, clk, encoding);
}
if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
for (i=0; i<size; i++){
askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
}
}
}
if (separator==1) Dbprintf("sorry but separator option not yet available");
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
//DEBUG
//Dbprintf("First 32:");
//uint8_t *dest = BigBuf_get_addr();
//i=0;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol)
LED_A_OFF();
}
//carrier can be 2,4 or 8
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
{
uint8_t *dest = BigBuf_get_addr();
uint8_t halfWave = waveLen/2;
//uint8_t idx;
int i = 0;
if (phaseChg){
// write phase change
memset(dest+(*n), *curPhase^1, halfWave);
memset(dest+(*n) + halfWave, *curPhase, halfWave);
*n += waveLen;
*curPhase ^= 1;
i += waveLen;
}
//write each normal clock wave for the clock duration
for (; i < clk; i+=waveLen){
memset(dest+(*n), *curPhase, halfWave);
memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
*n += waveLen;
}
}
// args clock, carrier, invert,
void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
{
int ledcontrol=1;
int n=0, i=0;
uint8_t clk = arg1 >> 8;
uint8_t carrier = arg1 & 0xFF;
uint8_t invert = arg2 & 0xFF;
uint8_t curPhase = 0;
for (i=0; i<size; i++){
if (BitStream[i] == curPhase){
pskSimBit(carrier, &n, clk, &curPhase, FALSE);
} else {
pskSimBit(carrier, &n, clk, &curPhase, TRUE);
}
}
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
//Dbprintf("DEBUG: First 32:");
//uint8_t *dest = BigBuf_get_addr();
//i=0;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
//i+=16;
//Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
if (ledcontrol)
LED_A_ON();
SimulateTagLowFrequency(n, 0, ledcontrol);
if (ledcontrol)
LED_A_OFF();
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
//const size_t sizeOfBigBuff = BigBuf_max_traceLen();
size_t size = 0;
uint32_t hi2=0, hi=0, lo=0;
int idx=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1,true);
// FSK demodulator
//size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use
size = 50*128*2; //big enough to catch 2 sequences of largest format
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
if (idx>0 && lo>0 && (size==96 || size==192)){
// go over previously decoded manchester data and decode into usable tag ID
if (hi2 != 0){ //extra large HID tags 88/192 bits
Dbprintf("TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
}else { //standard HID tags 44/96 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t bitlen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
uint32_t lo2=0;
lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
uint8_t idx3 = 1;
while(lo2 > 1){ //find last bit set to 1 (format len bit)
lo2=lo2 >> 1;
idx3++;
}
bitlen = idx3+19;
fc =0;
cardnum=0;
if(bitlen == 26){
cardnum = (lo>>1)&0xFFFF;
fc = (lo>>17)&0xFF;
}
if(bitlen == 37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
if(bitlen == 34){
cardnum = (lo>>1)&0xFFFF;
fc= ((hi&1)<<15)|(lo>>17);
}
if(bitlen == 35){
cardnum = (lo>>1)&0xFFFFF;
fc = ((hi&1)<<11)|(lo>>21);
}
}
else { //if bit 38 is not set then 37 bit format is used
bitlen= 37;
fc =0;
cardnum=0;
if(bitlen==37){
cardnum = (lo>>1)&0x7FFFF;
fc = ((hi&0xF)<<12)|(lo>>20);
}
}
//Dbprintf("TAG ID: %x%08x (%d)",
// (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum);
}
if (findone){
if (ledcontrol) LED_A_OFF();
*high = hi;
*low = lo;
return;
}
// reset
}
hi2 = hi = lo = idx = 0;
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
size_t size=0, idx=0;
int clk=0, invert=0, errCnt=0, maxErr=20;
uint32_t hi=0;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1,true);
size = BigBuf_max_traceLen();
//askdemod and manchester decode
if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
errCnt = askmandemod(dest, &size, &clk, &invert, maxErr);
WDT_HIT();
if (errCnt<0) continue;
errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
if (errCnt){
if (size>64){
Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
hi,
(uint32_t)(lo>>32),
(uint32_t)lo,
(uint32_t)(lo&0xFFFF),
(uint32_t)((lo>>16LL) & 0xFF),
(uint32_t)(lo & 0xFFFFFF));
} else {
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
(uint32_t)(lo>>32),
(uint32_t)lo,
(uint32_t)(lo&0xFFFF),
(uint32_t)((lo>>16LL) & 0xFF),
(uint32_t)(lo & 0xFFFFFF));
}
if (findone){
if (ledcontrol) LED_A_OFF();
*high=lo>>32;
*low=lo & 0xFFFFFFFF;
return;
}
}
WDT_HIT();
hi = lo = size = idx = 0;
clk = invert = errCnt = 0;
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = BigBuf_get_addr();
int idx=0;
uint32_t code=0, code2=0;
uint8_t version=0;
uint8_t facilitycode=0;
uint16_t number=0;
uint8_t crc = 0;
uint16_t calccrc = 0;
// Configure to go in 125Khz listen mode
LFSetupFPGAForADC(95, true);
while(!BUTTON_PRESS()) {
WDT_HIT();
if (ledcontrol) LED_A_ON();
DoAcquisition_default(-1,true);
//fskdemod and get start index
WDT_HIT();
idx = IOdemodFSK(dest, BigBuf_max_traceLen());
if (idx<0) continue;
//valid tag found
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
//
//Checksum:
//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
//preamble F0 E0 01 03 B6 75
// How to calc checksum,
// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
// F0 + E0 + 01 + 03 + B6 = 28A
// 28A & FF = 8A
// FF - 8A = 75
// Checksum: 0x75
//XSF(version)facility:codeone+codetwo
//Handle the data
if(findone){ //only print binary if we are doing one
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
}
code = bytebits_to_byte(dest+idx,32);
code2 = bytebits_to_byte(dest+idx+32,32);
version = bytebits_to_byte(dest+idx+27,8); //14,4
facilitycode = bytebits_to_byte(dest+idx+18,8) ;
number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
crc = bytebits_to_byte(dest+idx+54,8);
for (uint8_t i=1; i<6; ++i)
calccrc += bytebits_to_byte(dest+idx+9*i,8);
calccrc &= 0xff;
calccrc = 0xff - calccrc;
char *crcStr = (crc == calccrc) ? "ok":"!crc";
Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
// if we're only looking for one tag
if (findone){
if (ledcontrol) LED_A_OFF();
//LED_A_OFF();
*high=code;
*low=code2;
return;
}
code=code2=0;
version=facilitycode=0;
number=0;
idx=0;
WDT_HIT();
}
DbpString("Stopped");
if (ledcontrol) LED_A_OFF();
}
/*------------------------------
* T5555/T5557/T5567 routines
*------------------------------
*/
/* T55x7 configuration register definitions */
#define T55x7_POR_DELAY 0x00000001
#define T55x7_ST_TERMINATOR 0x00000008
#define T55x7_PWD 0x00000010
#define T55x7_MAXBLOCK_SHIFT 5
#define T55x7_AOR 0x00000200
#define T55x7_PSKCF_RF_2 0
#define T55x7_PSKCF_RF_4 0x00000400
#define T55x7_PSKCF_RF_8 0x00000800
#define T55x7_MODULATION_DIRECT 0
#define T55x7_MODULATION_PSK1 0x00001000
#define T55x7_MODULATION_PSK2 0x00002000
#define T55x7_MODULATION_PSK3 0x00003000
#define T55x7_MODULATION_FSK1 0x00004000
#define T55x7_MODULATION_FSK2 0x00005000
#define T55x7_MODULATION_FSK1a 0x00006000
#define T55x7_MODULATION_FSK2a 0x00007000
#define T55x7_MODULATION_MANCHESTER 0x00008000
#define T55x7_MODULATION_BIPHASE 0x00010000
#define T55x7_BITRATE_RF_8 0
#define T55x7_BITRATE_RF_16 0x00040000
#define T55x7_BITRATE_RF_32 0x00080000
#define T55x7_BITRATE_RF_40 0x000C0000
#define T55x7_BITRATE_RF_50 0x00100000
#define T55x7_BITRATE_RF_64 0x00140000
#define T55x7_BITRATE_RF_100 0x00180000
#define T55x7_BITRATE_RF_128 0x001C0000
/* T5555 (Q5) configuration register definitions */
#define T5555_ST_TERMINATOR 0x00000001
#define T5555_MAXBLOCK_SHIFT 0x00000001
#define T5555_MODULATION_MANCHESTER 0
#define T5555_MODULATION_PSK1 0x00000010
#define T5555_MODULATION_PSK2 0x00000020
#define T5555_MODULATION_PSK3 0x00000030
#define T5555_MODULATION_FSK1 0x00000040
#define T5555_MODULATION_FSK2 0x00000050
#define T5555_MODULATION_BIPHASE 0x00000060
#define T5555_MODULATION_DIRECT 0x00000070
#define T5555_INVERT_OUTPUT 0x00000080
#define T5555_PSK_RF_2 0
#define T5555_PSK_RF_4 0x00000100
#define T5555_PSK_RF_8 0x00000200
#define T5555_USE_PWD 0x00000400
#define T5555_USE_AOR 0x00000800
#define T5555_BITRATE_SHIFT 12
#define T5555_FAST_WRITE 0x00004000
#define T5555_PAGE_SELECT 0x00008000
/*
* Relevant times in microsecond
* To compensate antenna falling times shorten the write times
* and enlarge the gap ones.
*/
#define START_GAP 50*8 // 10 - 50fc 250
#define WRITE_GAP 20*8 // 8 - 30fc
#define WRITE_0 24*8 // 16 - 31fc 24fc 192
#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550
// VALUES TAKEN FROM EM4x function: SendForward
// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
// WRITE_GAP = 128; (16*8)
// WRITE_1 = 256 32*8; (32*8)
// These timings work for 4469/4269/4305 (with the 55*8 above)
// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
// 1 Cycle = 8 microseconds(us)
#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..)
// Write one bit to card
void T55xxWriteBit(int bit)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
if (!bit)
SpinDelayUs(WRITE_0);
else
SpinDelayUs(WRITE_1);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(WRITE_GAP);
}
// Write one card block in page 0, no lock
void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
uint32_t i = 0;
// Set up FPGA, 125kHz
// Wait for config.. (192+8190xPOW)x8 == 67ms
LFSetupFPGAForADC(0, true);
// Now start writting
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
if (PwdMode == 1){
// Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Lock bit
T55xxWriteBit(0);
// Data
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Data & i);
// Block
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
// so wait a little more)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
void TurnReadLFOn(){
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelayUs(8*150);
}
// Read one card block in page 0
void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
{
uint32_t i = 0;
uint8_t *dest = BigBuf_get_addr();
uint16_t bufferlength = BigBuf_max_traceLen();
if ( bufferlength > T55xx_SAMPLES_SIZE )
bufferlength = T55xx_SAMPLES_SIZE;
// Clear destination buffer before sending the command
memset(dest, 0x80, bufferlength);
// Set up FPGA, 125kHz
// Wait for config.. (192+8190xPOW)x8 == 67ms
LFSetupFPGAForADC(0, true);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(0); //Page 0
if (PwdMode == 1){
// Pwd
for (i = 0x80000000; i != 0; i >>= 1)
T55xxWriteBit(Pwd & i);
}
// Lock bit
T55xxWriteBit(0);
// Block
for (i = 0x04; i != 0; i >>= 1)
T55xxWriteBit(Block & i);
// Turn field on to read the response
TurnReadLFOn();
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
LED_D_OFF();
if (i >= bufferlength) break;
}
}
cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
// Read card traceability data (page 1)
void T55xxReadTrace(void){
uint32_t i = 0;
uint8_t *dest = BigBuf_get_addr();
uint16_t bufferlength = BigBuf_max_traceLen();
if ( bufferlength > T55xx_SAMPLES_SIZE )
bufferlength= T55xx_SAMPLES_SIZE;
// Clear destination buffer before sending the command
memset(dest, 0x80, bufferlength);
LFSetupFPGAForADC(0, true);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelayUs(START_GAP);
// Opcode
T55xxWriteBit(1);
T55xxWriteBit(1); //Page 1
// Turn field on to read the response
TurnReadLFOn();
// Now do the acquisition
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
i++;
LED_D_OFF();
if (i >= bufferlength) break;
}
}
cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
/*-------------- Cloning routines -----------*/
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
{
int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
int last_block = 0;
if (longFMT){
// Ensure no more than 84 bits supplied
if (hi2>0xFFFFF) {
DbpString("Tags can only have 84 bits.");
return;
}
// Build the 6 data blocks for supplied 84bit ID
last_block = 6;
data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
for (int i=0;i<4;i++) {
if (hi2 & (1<<(19-i)))
data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
else
data1 |= (1<<((3-i)*2)); // 0 -> 01
}
data2 = 0;
for (int i=0;i<16;i++) {
if (hi2 & (1<<(15-i)))
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
data3 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(31-i)))
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
}
data4 = 0;
for (int i=0;i<16;i++) {
if (hi & (1<<(15-i)))
data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data4 |= (1<<((15-i)*2)); // 0 -> 01
}
data5 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(31-i)))
data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data5 |= (1<<((15-i)*2)); // 0 -> 01
}
data6 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data6 |= (1<<((15-i)*2)); // 0 -> 01
}
}
else {
// Ensure no more than 44 bits supplied
if (hi>0xFFF) {
DbpString("Tags can only have 44 bits.");
return;
}
// Build the 3 data blocks for supplied 44bit ID
last_block = 3;
data1 = 0x1D000000; // load preamble
for (int i=0;i<12;i++) {
if (hi & (1<<(11-i)))
data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
else
data1 |= (1<<((11-i)*2)); // 0 -> 01
}
data2 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(31-i)))
data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data2 |= (1<<((15-i)*2)); // 0 -> 01
}
data3 = 0;
for (int i=0;i<16;i++) {
if (lo & (1<<(15-i)))
data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
else
data3 |= (1<<((15-i)*2)); // 0 -> 01
}
}
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data1,1,0,0);
T55xxWriteBlock(data2,2,0,0);
T55xxWriteBlock(data3,3,0,0);
if (longFMT) { // if long format there are 6 blocks
T55xxWriteBlock(data4,4,0,0);
T55xxWriteBlock(data5,5,0,0);
T55xxWriteBlock(data6,6,0,0);
}
// Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
T55xxWriteBlock(T55x7_BITRATE_RF_50 |
T55x7_MODULATION_FSK2a |
last_block << T55x7_MAXBLOCK_SHIFT,
0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
{
int data1=0, data2=0; //up to six blocks for long format
data1 = hi; // load preamble
data2 = lo;
LED_D_ON();
// Program the data blocks for supplied ID
// and the block 0 for HID format
T55xxWriteBlock(data1,1,0,0);
T55xxWriteBlock(data2,2,0,0);
//Config Block
T55xxWriteBlock(0x00147040,0,0,0);
LED_D_OFF();
DbpString("DONE!");
}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
#define EM410X_ID_LENGTH 40
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
{
int i, id_bit;
uint64_t id = EM410X_HEADER;
uint64_t rev_id = 0; // reversed ID
int c_parity[4]; // column parity
int r_parity = 0; // row parity
uint32_t clock = 0;
// Reverse ID bits given as parameter (for simpler operations)
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
if (i < 32) {
rev_id = (rev_id << 1) | (id_lo & 1);
id_lo >>= 1;
} else {
rev_id = (rev_id << 1) | (id_hi & 1);
id_hi >>= 1;
}
}
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
id_bit = rev_id & 1;
if (i % 4 == 0) {
// Don't write row parity bit at start of parsing
if (i)
id = (id << 1) | r_parity;
// Start counting parity for new row
r_parity = id_bit;
} else {
// Count row parity
r_parity ^= id_bit;
}
// First elements in column?
if (i < 4)
// Fill out first elements
c_parity[i] = id_bit;
else
// Count column parity
c_parity[i % 4] ^= id_bit;
// Insert ID bit
id = (id << 1) | id_bit;
rev_id >>= 1;
}
// Insert parity bit of last row
id = (id << 1) | r_parity;
// Fill out column parity at the end of tag
for (i = 0; i < 4; ++i)
id = (id << 1) | c_parity[i];
// Add stop bit
id <<= 1;
Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
LED_D_ON();
// Write EM410x ID
T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
T55xxWriteBlock((uint32_t)id, 2, 0, 0);
// Config for EM410x (RF/64, Manchester, Maxblock=2)
if (card) {
// Clock rate is stored in bits 8-15 of the card value
clock = (card & 0xFF00) >> 8;
Dbprintf("Clock rate: %d", clock);
switch (clock)
{
case 32:
clock = T55x7_BITRATE_RF_32;
break;
case 16:
clock = T55x7_BITRATE_RF_16;
break;
case 0:
// A value of 0 is assumed to be 64 for backwards-compatibility
// Fall through...
case 64:
clock = T55x7_BITRATE_RF_64;
break;
default:
Dbprintf("Invalid clock rate: %d", clock);
return;
}
// Writing configuration for T55x7 tag
T55xxWriteBlock(clock |
T55x7_MODULATION_MANCHESTER |
2 << T55x7_MAXBLOCK_SHIFT,
0, 0, 0);
}
else
// Writing configuration for T5555(Q5) tag
T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
T5555_MODULATION_MANCHESTER |
2 << T5555_MAXBLOCK_SHIFT,
0, 0, 0);
LED_D_OFF();
Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
(uint32_t)(id >> 32), (uint32_t)id);
}
// Clone Indala 64-bit tag by UID to T55x7
void CopyIndala64toT55x7(int hi, int lo)
{
//Program the 2 data blocks for supplied 64bit UID
// and the block 0 for Indala64 format
T55xxWriteBlock(hi,1,0,0);
T55xxWriteBlock(lo,2,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
T55x7_MODULATION_PSK1 |
2 << T55x7_MAXBLOCK_SHIFT,
0, 0, 0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
// T5567WriteBlock(0x603E1042,0);
DbpString("DONE!");
}
void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
{
//Program the 7 data blocks for supplied 224bit UID
// and the block 0 for Indala224 format
T55xxWriteBlock(uid1,1,0,0);
T55xxWriteBlock(uid2,2,0,0);
T55xxWriteBlock(uid3,3,0,0);
T55xxWriteBlock(uid4,4,0,0);
T55xxWriteBlock(uid5,5,0,0);
T55xxWriteBlock(uid6,6,0,0);
T55xxWriteBlock(uid7,7,0,0);
//Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
T55xxWriteBlock(T55x7_BITRATE_RF_32 |
T55x7_MODULATION_PSK1 |
7 << T55x7_MAXBLOCK_SHIFT,
0,0,0);
//Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
// T5567WriteBlock(0x603E10E2,0);
DbpString("DONE!");
}
#define abs(x) ( ((x)<0) ? -(x) : (x) )
#define max(x,y) ( x<y ? y:x)
int DemodPCF7931(uint8_t **outBlocks) {
uint8_t bits[256] = {0x00};
uint8_t blocks[8][16];
uint8_t *dest = BigBuf_get_addr();
int GraphTraceLen = BigBuf_max_traceLen();
if ( GraphTraceLen > 18000 )
GraphTraceLen = 18000;
int i, j, lastval, bitidx, half_switch;
int clock = 64;
int tolerance = clock / 8;
int pmc, block_done;
int lc, warnings = 0;
int num_blocks = 0;
int lmin=128, lmax=128;
uint8_t dir;
LFSetupFPGAForADC(95, true);
DoAcquisition_default(0, true);
lmin = 64;
lmax = 192;
i = 2;
/* Find first local max/min */
if(dest[1] > dest[0]) {
while(i < GraphTraceLen) {
if( !(dest[i] > dest[i-1]) && dest[i] > lmax)
break;
i++;
}
dir = 0;
}
else {
while(i < GraphTraceLen) {
if( !(dest[i] < dest[i-1]) && dest[i] < lmin)
break;
i++;
}
dir = 1;
}
lastval = i++;
half_switch = 0;
pmc = 0;
block_done = 0;
for (bitidx = 0; i < GraphTraceLen; i++)
{
if ( (dest[i-1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i-1] < dest[i] && dir == 0 && dest[i] < lmin))
{
lc = i - lastval;
lastval = i;
// Switch depending on lc length:
// Tolerance is 1/8 of clock rate (arbitrary)
if (abs(lc-clock/4) < tolerance) {
// 16T0
if((i - pmc) == lc) { /* 16T0 was previous one */
/* It's a PMC ! */
i += (128+127+16+32+33+16)-1;
lastval = i;
pmc = 0;
block_done = 1;
}
else {
pmc = i;
}
} else if (abs(lc-clock/2) < tolerance) {
// 32TO
if((i - pmc) == lc) { /* 16T0 was previous one */
/* It's a PMC ! */
i += (128+127+16+32+33)-1;
lastval = i;
pmc = 0;
block_done = 1;
}
else if(half_switch == 1) {
bits[bitidx++] = 0;
half_switch = 0;
}
else
half_switch++;
} else if (abs(lc-clock) < tolerance) {
// 64TO
bits[bitidx++] = 1;
} else {
// Error
warnings++;
if (warnings > 10)
{
Dbprintf("Error: too many detection errors, aborting.");
return 0;
}
}
if(block_done == 1) {
if(bitidx == 128) {
for(j=0; j<16; j++) {
blocks[num_blocks][j] = 128*bits[j*8+7]+
64*bits[j*8+6]+
32*bits[j*8+5]+
16*bits[j*8+4]+
8*bits[j*8+3]+
4*bits[j*8+2]+
2*bits[j*8+1]+
bits[j*8];
}
num_blocks++;
}
bitidx = 0;
block_done = 0;
half_switch = 0;
}
if(i < GraphTraceLen)
dir =(dest[i-1] > dest[i]) ? 0 : 1;
}
if(bitidx==255)
bitidx=0;
warnings = 0;
if(num_blocks == 4) break;
}
memcpy(outBlocks, blocks, 16*num_blocks);
return num_blocks;
}
int IsBlock0PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
return 1;
if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
return 1;
return 0;
}
int IsBlock1PCF7931(uint8_t *Block) {
// Assume RFU means 0 :)
if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
return 1;
return 0;
}
#define ALLOC 16
void ReadPCF7931() {
uint8_t Blocks[8][17];
uint8_t tmpBlocks[4][16];
int i, j, ind, ind2, n;
int num_blocks = 0;
int max_blocks = 8;
int ident = 0;
int error = 0;
int tries = 0;
memset(Blocks, 0, 8*17*sizeof(uint8_t));
do {
memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
n = DemodPCF7931((uint8_t**)tmpBlocks);
if(!n)
error++;
if(error==10 && num_blocks == 0) {
Dbprintf("Error, no tag or bad tag");
return;
}
else if (tries==20 || error==10) {
Dbprintf("Error reading the tag");
Dbprintf("Here is the partial content");
goto end;
}
for(i=0; i<n; i++)
Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
if(!ident) {
for(i=0; i<n; i++) {
if(IsBlock0PCF7931(tmpBlocks[i])) {
// Found block 0 ?
if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
// Found block 1!
// \o/
ident = 1;
memcpy(Blocks[0], tmpBlocks[i], 16);
Blocks[0][ALLOC] = 1;
memcpy(Blocks[1], tmpBlocks[i+1], 16);
Blocks[1][ALLOC] = 1;
max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
// Debug print
Dbprintf("(dbg) Max blocks: %d", max_blocks);
num_blocks = 2;
// Handle following blocks
for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
if(j==n) j=0;
if(j==i) break;
memcpy(Blocks[ind2], tmpBlocks[j], 16);
Blocks[ind2][ALLOC] = 1;
}
break;
}
}
}
}
else {
for(i=0; i<n; i++) { // Look for identical block in known blocks
if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
for(j=0; j<max_blocks; j++) {
if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
// Found an identical block
for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
if(ind2 < 0)
ind2 = max_blocks;
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
Blocks[ind2][ALLOC] = 1;
num_blocks++;
if(num_blocks == max_blocks) goto end;
}
}
for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
if(ind2 > max_blocks)
ind2 = 0;
if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
// Dbprintf("Tmp %d -> Block %d", ind, ind2);
memcpy(Blocks[ind2], tmpBlocks[ind], 16);
Blocks[ind2][ALLOC] = 1;
num_blocks++;
if(num_blocks == max_blocks) goto end;
}
}
}
}
}
}
}
tries++;
if (BUTTON_PRESS()) return;
} while (num_blocks != max_blocks);
end:
Dbprintf("-----------------------------------------");
Dbprintf("Memory content:");
Dbprintf("-----------------------------------------");
for(i=0; i<max_blocks; i++) {
if(Blocks[i][ALLOC]==1)
Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
else
Dbprintf("<missing block %d>", i);
}
Dbprintf("-----------------------------------------");
return ;
}
//-----------------------------------
// EM4469 / EM4305 routines
//-----------------------------------
#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
#define FWD_CMD_WRITE 0xA
#define FWD_CMD_READ 0x9
#define FWD_CMD_DISABLE 0x5
uint8_t forwardLink_data[64]; //array of forwarded bits
uint8_t * forward_ptr; //ptr for forward message preparation
uint8_t fwd_bit_sz; //forwardlink bit counter
uint8_t * fwd_write_ptr; //forwardlink bit pointer
//====================================================================
// prepares command bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Cmd( uint8_t cmd ) {
//--------------------------------------------------------------------
*forward_ptr++ = 0; //start bit
*forward_ptr++ = 0; //second pause for 4050 code
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
cmd >>= 1;
*forward_ptr++ = cmd;
return 6; //return number of emited bits
}
//====================================================================
// prepares address bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Addr( uint8_t addr ) {
//--------------------------------------------------------------------
register uint8_t line_parity;
uint8_t i;
line_parity = 0;
for(i=0;i<6;i++) {
*forward_ptr++ = addr;
line_parity ^= addr;
addr >>= 1;
}
*forward_ptr++ = (line_parity & 1);
return 7; //return number of emited bits
}
//====================================================================
// prepares data bits intreleaved with parity bits
// see EM4469 spec
//====================================================================
//--------------------------------------------------------------------
uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
//--------------------------------------------------------------------
register uint8_t line_parity;
register uint8_t column_parity;
register uint8_t i, j;
register uint16_t data;
data = data_low;
column_parity = 0;
for(i=0; i<4; i++) {
line_parity = 0;
for(j=0; j<8; j++) {
line_parity ^= data;
column_parity ^= (data & 1) << j;
*forward_ptr++ = data;
data >>= 1;
}
*forward_ptr++ = line_parity;
if(i == 1)
data = data_hi;
}
for(j=0; j<8; j++) {
*forward_ptr++ = column_parity;
column_parity >>= 1;
}
*forward_ptr = 0;
return 45; //return number of emited bits
}
//====================================================================
// Forward Link send function
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
// fwd_bit_count set with number of bits to be sent
//====================================================================
void SendForward(uint8_t fwd_bit_count) {
fwd_write_ptr = forwardLink_data;
fwd_bit_sz = fwd_bit_count;
LED_D_ON();
//Field on
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
// Give it a bit of time for the resonant antenna to settle.
// And for the tag to fully power up
SpinDelay(150);
// force 1st mod pulse (start gap must be longer for 4305)
fwd_bit_sz--; //prepare next bit modulation
fwd_write_ptr++;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
SpinDelayUs(16*8); //16 cycles on (8us each)
// now start writting
while(fwd_bit_sz-- > 0) { //prepare next bit modulation
if(((*fwd_write_ptr++) & 1) == 1)
SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
else {
//These timings work for 4469/4269/4305 (with the 55*8 above)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
SpinDelayUs(23*8); //16-4 cycles off (8us each)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
SpinDelayUs(9*8); //16 cycles on (8us each)
}
}
}
void EM4xLogin(uint32_t Password) {
uint8_t fwd_bit_count;
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
SendForward(fwd_bit_count);
//Wait for command to complete
SpinDelay(20);
}
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t *dest = BigBuf_get_addr();
uint16_t bufferlength = BigBuf_max_traceLen();
uint32_t i = 0;
// Clear destination buffer before sending the command 0x80 = average.
memset(dest, 0x80, bufferlength);
uint8_t fwd_bit_count;
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
fwd_bit_count += Prepare_Addr( Address );
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
SendForward(fwd_bit_count);
// Now do the acquisition
i = 0;
for(;;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
++i;
if (i >= bufferlength) break;
}
}
cmd_send(CMD_ACK,0,0,0,0,0);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
uint8_t fwd_bit_count;
//If password mode do login
if (PwdMode == 1) EM4xLogin(Pwd);
forward_ptr = forwardLink_data;
fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
fwd_bit_count += Prepare_Addr( Address );
fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
SendForward(fwd_bit_count);
//Wait for write to complete
SpinDelay(20);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}