proxmark3/client/ui.c
2017-10-21 13:00:36 +02:00

173 lines
4.6 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2009 Michael Gernoth <michael at gernoth.net>
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// UI utilities
//-----------------------------------------------------------------------------
#include "ui.h"
double CursorScaleFactor = 1;
int PlotGridX=0, PlotGridY=0, PlotGridXdefault= 64, PlotGridYdefault= 64, CursorCPos= 0, CursorDPos= 0;
int offline;
int flushAfterWrite = 0; //buzzy
int GridOffset = 0;
bool GridLocked = false;
bool showDemod = true;
pthread_mutex_t print_lock = PTHREAD_MUTEX_INITIALIZER;
static char *logfilename = "proxmark3.log";
void PrintAndLog(char *fmt, ...) {
char *saved_line;
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
static int logging = 1;
// lock this section to avoid interlacing prints from different threads
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
logfile = fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
}
#ifdef RL_STATE_READCMD
// We are using GNU readline.
int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
if (need_hack) {
saved_point = rl_point;
saved_line = rl_copy_text(0, rl_end);
rl_save_prompt();
rl_replace_line("", 0);
rl_redisplay();
}
#else
// We are using libedit (OSX), which doesn't support this flag.
int need_hack = 0;
#endif
va_start(argptr, fmt);
va_copy(argptr2, argptr);
vprintf(fmt, argptr);
printf(" "); // cleaning prompt
va_end(argptr);
printf("\n");
if (need_hack) {
rl_restore_prompt();
rl_replace_line(saved_line, 0);
rl_point = saved_point;
rl_redisplay();
free(saved_line);
}
if (logging && logfile) {
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
}
va_end(argptr2);
if (flushAfterWrite == 1) {
fflush(NULL);
}
//release lock
pthread_mutex_unlock(&print_lock);
}
void SetLogFilename(char *fn) {
logfilename = fn;
}
void iceIIR_Butterworth(int *data, const size_t len){
int i,j;
int * output = (int* ) malloc(sizeof(int) * len);
if ( !output ) return;
// clear mem
memset(output, 0x00, len);
size_t adjustedLen = len;
float fc = 0.1125f; // center frequency
// create very simple low-pass filter to remove images (2nd-order Butterworth)
float complex iir_buf[3] = {0,0,0};
float b[3] = {0.003621681514929, 0.007243363029857, 0.003621681514929};
float a[3] = {1.000000000000000, -1.822694925196308, 0.837181651256023};
float sample = 0; // input sample read from array
float complex x_prime = 1.0f; // save sample for estimating frequency
float complex x;
for (i = 0; i < adjustedLen; ++i) {
sample = data[i];
// remove DC offset and mix to complex baseband
x = (sample - 127.5f) * cexpf( _Complex_I * 2 * M_PI * fc * i );
// apply low-pass filter, removing spectral image (IIR using direct-form II)
iir_buf[2] = iir_buf[1];
iir_buf[1] = iir_buf[0];
iir_buf[0] = x - a[1]*iir_buf[1] - a[2]*iir_buf[2];
x = b[0]*iir_buf[0] +
b[1]*iir_buf[1] +
b[2]*iir_buf[2];
// compute instantaneous frequency by looking at phase difference
// between adjacent samples
float freq = cargf(x * conjf(x_prime));
x_prime = x; // retain this sample for next iteration
output[i] =(freq > 0) ? 127 : -127;
}
// show data
//memcpy(data, output, adjustedLen);
for (j=0; j<adjustedLen; ++j)
data[j] = output[j];
free(output);
}
void iceSimple_Filter(int *data, const size_t len, uint8_t k){
// ref: http://www.edn.com/design/systems-design/4320010/A-simple-software-lowpass-filter-suits-embedded-system-applications
// parameter K
#define FILTER_SHIFT 4
int32_t filter_reg = 0;
int16_t input, output;
int8_t shift = (k <=8 ) ? k : FILTER_SHIFT;
for (int i = 0; i < len; ++i){
input = data[i];
// Update filter with current sample
filter_reg = filter_reg - (filter_reg >> shift) + input;
// Scale output for unity gain
output = filter_reg >> shift;
data[i] = output;
}
}
float complex cexpf (float complex Z)
{
float complex Res;
double rho = exp (__real__ Z);
__real__ Res = rho * cosf(__imag__ Z);
__imag__ Res = rho * sinf(__imag__ Z);
return Res;
}