proxmark3/armsrc/lfsampling.c

316 lines
9.7 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Miscellaneous routines for low frequency sampling.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
#include "usb_cdc.h" // for usb_poll_validate_length
#include "lfsampling.h"
sample_config config = { 1, 8, 1, 95, 0 } ;
void printConfig()
{
Dbprintf("LF Sampling config: ");
Dbprintf(" [q] divisor: %d ", config.divisor);
Dbprintf(" [b] bps: %d ", config.bits_per_sample);
Dbprintf(" [d] decimation: %d ", config.decimation);
Dbprintf(" [a] averaging: %d ", config.averaging);
Dbprintf(" [t] trigger threshold: %d ", config.trigger_threshold);
}
/**
* Called from the USB-handler to set the sampling configuration
* The sampling config is used for std reading and snooping.
*
* Other functions may read samples and ignore the sampling config,
* such as functions to read the UID from a prox tag or similar.
*
* Values set to '0' implies no change (except for averaging)
* @brief setSamplingConfig
* @param sc
*/
void setSamplingConfig(sample_config *sc)
{
if(sc->divisor != 0) config.divisor = sc->divisor;
if(sc->bits_per_sample != 0) config.bits_per_sample = sc->bits_per_sample;
if(sc->decimation != 0) config.decimation = sc->decimation;
if(sc->trigger_threshold != -1) config.trigger_threshold = sc->trigger_threshold;
config.averaging = sc->averaging;
if(config.bits_per_sample > 8) config.bits_per_sample = 8;
if(config.decimation < 1) config.decimation = 1;
printConfig();
}
sample_config* getSamplingConfig()
{
return &config;
}
typedef struct {
uint8_t * buffer;
uint32_t numbits;
uint32_t position;
} BitstreamOut;
/**
* @brief Pushes bit onto the stream
* @param stream
* @param bit
*/
void pushBit( BitstreamOut* stream, uint8_t bit)
{
int bytepos = stream->position >> 3; // divide by 8
int bitpos = stream->position & 7;
*(stream->buffer+bytepos) |= (bit > 0) << (7 - bitpos);
stream->position++;
stream->numbits++;
}
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.
* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
* 0 or 95 ==> 125 KHz
*
**/
void LFSetupFPGAForADC(int divisor, bool lf_field)
{
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
else if (divisor == 0)
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
else
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
// Connect the A/D to the peak-detected low-frequency path.
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc();
}
/**
* Does the sample acquisition. If threshold is specified, the actual sampling
* is not commenced until the threshold has been reached.
* This method implements decimation and quantization in order to
* be able to provide longer sample traces.
* Uses the following global settings:
* @param decimation - how much should the signal be decimated. A decimation of N means we keep 1 in N samples, etc.
* @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample.
* @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample
* value that will be used is the average value of the three samples.
* @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
* to -1 to ignore threshold.
* @param silent - is true, now outputs are made. If false, dbprints the status
* @return the number of bits occupied by the samples.
*/
uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averaging, int trigger_threshold,bool silent)
{
//bigbuf, to hold the aquired raw data signal
uint8_t *dest = BigBuf_get_addr();
uint16_t bufsize = BigBuf_max_traceLen();
//BigBuf_Clear_ext(false); //creates issues with cmdread (marshmellow)
if(bits_per_sample < 1) bits_per_sample = 1;
if(bits_per_sample > 8) bits_per_sample = 8;
if(decimation < 1) decimation = 1;
// Use a bit stream to handle the output
BitstreamOut data = { dest , 0, 0};
int sample_counter = 0;
uint8_t sample = 0;
//If we want to do averaging
uint32_t sample_sum =0 ;
uint32_t sample_total_numbers =0 ;
uint32_t sample_total_saved =0 ;
while(!BUTTON_PRESS() && !usb_poll_validate_length() ) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
LED_D_OFF();
// threshold either high or low values 128 = center 0. if trigger = 178
if ((trigger_threshold > 0) && (sample < (trigger_threshold+128)) && (sample > (128-trigger_threshold))) //
continue;
trigger_threshold = 0;
sample_total_numbers++;
if(averaging)
{
sample_sum += sample;
}
//Check decimation
if(decimation > 1)
{
sample_counter++;
if(sample_counter < decimation) continue;
sample_counter = 0;
}
//Averaging
if(averaging && decimation > 1) {
sample = sample_sum / decimation;
sample_sum =0;
}
//Store the sample
sample_total_saved ++;
if(bits_per_sample == 8){
dest[sample_total_saved-1] = sample;
data.numbits = sample_total_saved << 3;//Get the return value correct
if(sample_total_saved >= bufsize) break;
}
else{
pushBit(&data, sample & 0x80);
if(bits_per_sample > 1) pushBit(&data, sample & 0x40);
if(bits_per_sample > 2) pushBit(&data, sample & 0x20);
if(bits_per_sample > 3) pushBit(&data, sample & 0x10);
if(bits_per_sample > 4) pushBit(&data, sample & 0x08);
if(bits_per_sample > 5) pushBit(&data, sample & 0x04);
if(bits_per_sample > 6) pushBit(&data, sample & 0x02);
//Not needed, 8bps is covered above
//if(bits_per_sample > 7) pushBit(&data, sample & 0x01);
if((data.numbits >> 3) +1 >= bufsize) break;
}
}
}
if(!silent)
{
Dbprintf("Done, saved %d out of %d seen samples at %d bits/sample",sample_total_saved, sample_total_numbers,bits_per_sample);
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
}
return data.numbits;
}
/**
* @brief Does sample acquisition, ignoring the config values set in the sample_config.
* This method is typically used by tag-specific readers who just wants to read the samples
* the normal way
* @param trigger_threshold
* @param silent
* @return number of bits sampled
*/
uint32_t DoAcquisition_default(int trigger_threshold, bool silent)
{
return DoAcquisition(1,8,0,trigger_threshold,silent);
}
uint32_t DoAcquisition_config( bool silent)
{
return DoAcquisition(config.decimation
,config.bits_per_sample
,config.averaging
,config.trigger_threshold
,silent);
}
uint32_t ReadLF(bool activeField, bool silent)
{
if (!silent) printConfig();
LFSetupFPGAForADC(config.divisor, activeField);
// Now call the acquisition routine
return DoAcquisition_config(silent);
}
/**
* Initializes the FPGA for reader-mode (field on), and acquires the samples.
* @return number of bits sampled
**/
uint32_t SampleLF(bool printCfg)
{
return ReadLF(true, printCfg);
}
/**
* Initializes the FPGA for snoop-mode (field off), and acquires the samples.
* @return number of bits sampled
**/
uint32_t SnoopLF() {
return ReadLF(false, true);
}
/**
* acquisition of T55x7 LF signal. Similart to other LF, but adjusted with @marshmellows thresholds
* the data is collected in BigBuf.
**/
void doT55x7Acquisition(size_t sample_size) {
#define T55xx_READ_UPPER_THRESHOLD 128+60 // 60 grph
#define T55xx_READ_LOWER_THRESHOLD 128-60 // -60 grph
#define T55xx_READ_TOL 5
uint8_t *dest = BigBuf_get_addr();
uint16_t bufsize = BigBuf_max_traceLen();
if ( bufsize > sample_size )
bufsize = sample_size;
uint16_t i = 0;
bool startFound = false;
bool highFound = false;
bool lowFound = false;
uint8_t curSample = 0;
uint8_t lastSample = 0;
uint16_t skipCnt = 0;
while(!BUTTON_PRESS() && !usb_poll_validate_length() && skipCnt < 1000 && (i < bufsize) ) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
curSample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
LED_D_OFF();
// skip until the first high sample above threshold
if (!startFound && curSample > T55xx_READ_UPPER_THRESHOLD) {
//if (curSample > lastSample)
// lastSample = curSample;
highFound = true;
} else if (!highFound) {
skipCnt++;
continue;
}
// skip until the first Low sample below threshold
if (!startFound && curSample < T55xx_READ_LOWER_THRESHOLD) {
//if (curSample > lastSample)
lastSample = curSample;
lowFound = true;
} else if (!lowFound) {
skipCnt++;
continue;
}
// skip until first high samples begin to change
if (startFound || curSample > T55xx_READ_LOWER_THRESHOLD+T55xx_READ_TOL){
// if just found start - recover last sample
if (!startFound) {
dest[i++] = lastSample;
startFound = true;
}
// collect samples
dest[i++] = curSample;
}
}
}
}