mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-09 01:36:52 +08:00
d19754567d
* .h include only the strict minimum for their own parsing * this forces all files to include explicitment their needs and not count on far streched dependencies * this helps Makefile to rebuild only the minimum * according to this rule, most standalone .h are now gone * big app.h is gone * remove seldom __cplusplus, if c++ happens, everything will have to be done properly anyway * all unrequired include were removed * split common/ into common/ (client+arm) and common_arm/ (os+bootloader) * bring zlib to common/ * bring stuff not really/not yet used in common back to armsrc/ or client/ * bring liblua into client/ * bring uart into client/ * move some portions of code around (dbprint, protocols,...) * rename unused files into *_disabled.[ch] to make it explicit * rename soft Uarts between 14a, 14b and iclass, so a standalone could use several without clash * remove PrintAndLogDevice * move deprecated-hid-flasher from client to tools * Makefiles * treat deps in armsrc/ as in client/ * client: stop on warning (-Werror), same as for armsrc/ Tested on: * all standalone modes * Linux
81 lines
2.4 KiB
C
81 lines
2.4 KiB
C
#ifndef __LFSAMPLING_H
|
|
#define __LFSAMPLING_H
|
|
|
|
#include "common.h"
|
|
#include "pm3_cmd.h"
|
|
|
|
typedef struct BitstreamOut BitstreamOut;
|
|
|
|
/**
|
|
* acquisition of Cotag LF signal. Similar to other LF, since the Cotag has such long datarate RF/384
|
|
* and is Manchester?, we directly gather the manchester data into bigbuff
|
|
**/
|
|
void doCotagAcquisition(size_t sample_size);
|
|
uint32_t doCotagAcquisitionManchester(void);
|
|
|
|
/**
|
|
* acquisition of T55x7 LF signal. Similar to other LF, but adjusted with @marshmellows thresholds
|
|
* the data is collected in BigBuf.
|
|
**/
|
|
void doT55x7Acquisition(size_t sample_size);
|
|
|
|
/**
|
|
* Initializes the FPGA for reader-mode (field on), and acquires the samples.
|
|
* @return number of bits sampled
|
|
**/
|
|
uint32_t SampleLF(bool silent, int sample_size);
|
|
|
|
/**
|
|
* Initializes the FPGA for sniff-mode (field off), and acquires the samples.
|
|
* @return number of bits sampled
|
|
**/
|
|
uint32_t SniffLF();
|
|
|
|
// adds sample size to default options
|
|
uint32_t DoPartialAcquisition(int trigger_threshold, bool silent, int sample_size, uint32_t cancel_after);
|
|
|
|
/**
|
|
* @brief Does sample acquisition, ignoring the config values set in the sample_config.
|
|
* This method is typically used by tag-specific readers who just wants to read the samples
|
|
* the normal way
|
|
* @param trigger_threshold
|
|
* @param silent
|
|
* @return number of bits sampled
|
|
*/
|
|
uint32_t DoAcquisition_default(int trigger_threshold, bool silent);
|
|
/**
|
|
* @brief Does sample acquisition, using the config values set in the sample_config.
|
|
* @param trigger_threshold
|
|
* @param silent
|
|
* @return number of bits sampled
|
|
*/
|
|
|
|
uint32_t DoAcquisition_config(bool silent, int sample_size);
|
|
|
|
/**
|
|
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
|
|
* if not already loaded, sets divisor and starts up the antenna.
|
|
* @param divisor : 1, 88> 255 or negative ==> 134.8 kHz
|
|
* 0 or 95 ==> 125 kHz
|
|
*
|
|
**/
|
|
void LFSetupFPGAForADC(int divisor, bool lf_field);
|
|
|
|
/**
|
|
* Called from the USB-handler to set the sampling configuration
|
|
* The sampling config is used for std reading and sniffing.
|
|
*
|
|
* Other functions may read samples and ignore the sampling config,
|
|
* such as functions to read the UID from a prox tag or similar.
|
|
*
|
|
* Values set to '0' implies no change (except for averaging)
|
|
* @brief setSamplingConfig
|
|
* @param sc
|
|
*/
|
|
void setSamplingConfig(sample_config *sc);
|
|
|
|
sample_config *getSamplingConfig();
|
|
|
|
void printConfig();
|
|
|
|
#endif // __LFSAMPLING_H
|