proxmark3/client/fpga_compress.c

316 lines
9 KiB
C

//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Compression tool for FPGA config files. Compress several *.bit files at
// compile time. Decompression is done at run time (see fpgaloader.c).
// This uses the zlib library tuned to this specific case. The small file sizes
// allow to use "insane" parameters for optimum compression ratio.
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <stdbool.h>
#include <inttypes.h>
#include "zlib.h"
#define MAX(a,b) ((a)>(b)?(a):(b))
// zlib configuration
#define COMPRESS_LEVEL 9 // use best possible compression
#define COMPRESS_WINDOW_BITS 15 // default = max = 15 for a window of 2^15 = 32KBytes
#define COMPRESS_MEM_LEVEL 9 // determines the amount of memory allocated during compression. Default = 8.
/* COMPRESS_STRATEGY can be
Z_DEFAULT_STRATEGY (the default),
Z_FILTERED (more huffmann, less string matching),
Z_HUFFMAN_ONLY (huffman only, no string matching)
Z_RLE (distances limited to one)
Z_FIXED (prevents the use of dynamic Huffman codes)
*/
#define COMPRESS_STRATEGY Z_DEFAULT_STRATEGY
// zlib tuning parameters:
#define COMPRESS_GOOD_LENGTH 258
#define COMPRESS_MAX_LAZY 258
#define COMPRESS_MAX_NICE_LENGTH 258
#define COMPRESS_MAX_CHAIN 8192
#define FPGA_INTERLEAVE_SIZE 288 // (the FPGA's internal config frame size is 288 bits. Interleaving with 288 bytes should give best compression)
#define FPGA_CONFIG_SIZE 42336L // our current fpga_[lh]f.bit files are 42175 bytes. Rounded up to next multiple of FPGA_INTERLEAVE_SIZE
#define HARDNESTED_TABLE_SIZE (sizeof(uint32_t) * ((1L<<19)+1))
static void usage(void)
{
fprintf(stdout, "Usage: fpga_compress <infile1> <infile2> ... <infile_n> <outfile>\n");
fprintf(stdout, " Combine n FPGA bitstream files and compress them into one.\n\n");
fprintf(stdout, " fpga_compress -d <infile> <outfile>");
fprintf(stdout, " Decompress <infile>. Write result to <outfile>");
fprintf(stdout, " fpga_compress -t <infile> <outfile>");
fprintf(stdout, " Compress hardnested table <infile>. Write result to <outfile>");
}
static voidpf fpga_deflate_malloc(voidpf opaque, uInt items, uInt size)
{
return malloc(items*size);
}
static void fpga_deflate_free(voidpf opaque, voidpf address)
{
return free(address);
}
static bool all_feof(FILE *infile[], uint8_t num_infiles)
{
for (uint16_t i = 0; i < num_infiles; i++) {
if (!feof(infile[i])) {
return false;
}
}
return true;
}
int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile, bool hardnested_mode)
{
uint8_t *fpga_config;
uint32_t i;
int32_t ret;
uint8_t c;
z_stream compressed_fpga_stream;
if (hardnested_mode) {
fpga_config = malloc(num_infiles * HARDNESTED_TABLE_SIZE);
} else {
fpga_config = malloc(num_infiles * FPGA_CONFIG_SIZE);
}
// read the input files. Interleave them into fpga_config[]
i = 0;
do {
if (i >= num_infiles * (hardnested_mode?HARDNESTED_TABLE_SIZE:FPGA_CONFIG_SIZE)) {
if (hardnested_mode) {
fprintf(stderr, "Input file too big (> %lu bytes). This is probably not a hardnested bitflip state table.\n", HARDNESTED_TABLE_SIZE);
} else {
fprintf(stderr, "Input files too big (total > %lu bytes). These are probably not PM3 FPGA config files.\n", num_infiles*FPGA_CONFIG_SIZE);
}
for(uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
free(fpga_config);
return(EXIT_FAILURE);
}
for(uint16_t j = 0; j < num_infiles; j++) {
for(uint16_t k = 0; k < FPGA_INTERLEAVE_SIZE; k++) {
c = fgetc(infile[j]);
if (!feof(infile[j])) {
fpga_config[i++] = c;
} else if (num_infiles > 1) {
fpga_config[i++] = '\0';
}
}
}
} while (!all_feof(infile, num_infiles));
// initialize zlib structures
compressed_fpga_stream.next_in = fpga_config;
compressed_fpga_stream.avail_in = i;
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
compressed_fpga_stream.zfree = fpga_deflate_free;
compressed_fpga_stream.opaque = Z_NULL;
ret = deflateInit2(&compressed_fpga_stream,
COMPRESS_LEVEL,
Z_DEFLATED,
COMPRESS_WINDOW_BITS,
COMPRESS_MEM_LEVEL,
COMPRESS_STRATEGY);
// estimate the size of the compressed output
uint32_t outsize_max = deflateBound(&compressed_fpga_stream, compressed_fpga_stream.avail_in);
uint8_t *outbuf = malloc(outsize_max);
compressed_fpga_stream.next_out = outbuf;
compressed_fpga_stream.avail_out = outsize_max;
if (ret == Z_OK) {
ret = deflateTune(&compressed_fpga_stream,
COMPRESS_GOOD_LENGTH,
COMPRESS_MAX_LAZY,
COMPRESS_MAX_NICE_LENGTH,
COMPRESS_MAX_CHAIN);
}
if (ret == Z_OK) {
ret = deflate(&compressed_fpga_stream, Z_FINISH);
}
fprintf(stdout, "compressed %u input bytes to %lu output bytes\n", i, compressed_fpga_stream.total_out);
if (ret != Z_STREAM_END) {
fprintf(stderr, "Error in deflate(): %d %s\n", ret, compressed_fpga_stream.msg);
free(outbuf);
deflateEnd(&compressed_fpga_stream);
for(uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
fclose(outfile);
free(infile);
free(fpga_config);
return(EXIT_FAILURE);
}
for (i = 0; i < compressed_fpga_stream.total_out; i++) {
fputc(outbuf[i], outfile);
}
free(outbuf);
deflateEnd(&compressed_fpga_stream);
for(uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);
}
fclose(outfile);
free(infile);
free(fpga_config);
return(EXIT_SUCCESS);
}
int zlib_decompress(FILE *infile, FILE *outfile)
{
#define DECOMPRESS_BUF_SIZE 1024
uint8_t outbuf[DECOMPRESS_BUF_SIZE];
uint8_t inbuf[DECOMPRESS_BUF_SIZE];
int32_t ret;
z_stream compressed_fpga_stream;
// initialize zlib structures
compressed_fpga_stream.next_in = inbuf;
compressed_fpga_stream.avail_in = 0;
compressed_fpga_stream.next_out = outbuf;
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
compressed_fpga_stream.zalloc = fpga_deflate_malloc;
compressed_fpga_stream.zfree = fpga_deflate_free;
compressed_fpga_stream.opaque = Z_NULL;
ret = inflateInit2(&compressed_fpga_stream, 0);
do {
if (compressed_fpga_stream.avail_in == 0) {
compressed_fpga_stream.next_in = inbuf;
uint16_t i = 0;
do {
int32_t c = fgetc(infile);
if (!feof(infile)) {
inbuf[i++] = c & 0xFF;
compressed_fpga_stream.avail_in++;
} else {
break;
}
} while (i < DECOMPRESS_BUF_SIZE);
}
ret = inflate(&compressed_fpga_stream, Z_SYNC_FLUSH);
if (ret != Z_OK && ret != Z_STREAM_END) {
break;
}
if (compressed_fpga_stream.avail_out == 0) {
for (uint16_t i = 0; i < DECOMPRESS_BUF_SIZE; i++) {
fputc(outbuf[i], outfile);
}
compressed_fpga_stream.avail_out = DECOMPRESS_BUF_SIZE;
compressed_fpga_stream.next_out = outbuf;
}
} while (ret == Z_OK);
if (ret == Z_STREAM_END) { // reached end of input
uint16_t i = 0;
while (compressed_fpga_stream.avail_out < DECOMPRESS_BUF_SIZE) {
fputc(outbuf[i++], outfile);
compressed_fpga_stream.avail_out++;
}
fclose(outfile);
fclose(infile);
return(EXIT_SUCCESS);
} else {
fprintf(stderr, "Error. Inflate() returned error %d, %s", ret, compressed_fpga_stream.msg);
fclose(outfile);
fclose(infile);
return(EXIT_FAILURE);
}
}
int main(int argc, char **argv)
{
FILE **infiles;
FILE *outfile;
if (argc == 1 || argc == 2) {
usage();
return(EXIT_FAILURE);
}
if (!strcmp(argv[1], "-d")) { // Decompress
infiles = calloc(1, sizeof(FILE*));
if (argc != 4) {
usage();
return(EXIT_FAILURE);
}
infiles[0] = fopen(argv[2], "rb");
if (infiles[0] == NULL) {
fprintf(stderr, "Error. Cannot open input file %s", argv[2]);
return(EXIT_FAILURE);
}
outfile = fopen(argv[3], "wb");
if (outfile == NULL) {
fprintf(stderr, "Error. Cannot open output file %s", argv[3]);
return(EXIT_FAILURE);
}
return zlib_decompress(infiles[0], outfile);
} else { // Compress
bool hardnested_mode = false;
int num_input_files = 0;
if (!strcmp(argv[1], "-t")) { // hardnested table
if (argc != 4) {
usage();
return(EXIT_FAILURE);
}
hardnested_mode = true;
num_input_files = 1;
} else {
num_input_files = argc-2;
}
int adder = (hardnested_mode) ? 2 : 1;
infiles = calloc(num_input_files, sizeof(FILE*));
for (uint16_t i = 0; i < num_input_files; i++) {
infiles[i] = fopen(argv[i + adder ] , "rb");
if (infiles[i] == NULL) {
fprintf(stderr, "Error. Cannot open input file %s", argv[i + adder] );
return(EXIT_FAILURE);
} else {
printf("Opening %s %d \n", argv[i + adder], i+adder );
}
}
outfile = fopen(argv[argc-1], "wb");
if (outfile == NULL) {
fprintf(stderr, "Error. Cannot open output file %s", argv[argc-1]);
return(EXIT_FAILURE);
}
return zlib_compress(infiles, num_input_files, outfile, hardnested_mode);
}
}