mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-10 17:49:32 +08:00
3621 lines
112 KiB
C
3621 lines
112 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) Gerhard de Koning Gans - May 2008
|
|
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
|
|
//
|
|
// This program is free software: you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation, either version 3 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// See LICENSE.txt for the text of the license.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "mifarecmd.h"
|
|
|
|
#include "pmflash.h"
|
|
#include "proxmark3_arm.h"
|
|
#include "string.h"
|
|
#include "mifareutil.h"
|
|
#include "protocols.h"
|
|
#include "parity.h"
|
|
#include "BigBuf.h"
|
|
#include "cmd.h"
|
|
#include "flashmem.h"
|
|
#include "fpgaloader.h"
|
|
#include "iso14443a.h"
|
|
#include "mifaredesfire.h"
|
|
#include "util.h"
|
|
#include "commonutil.h"
|
|
#include "crc16.h"
|
|
#include "dbprint.h"
|
|
#include "ticks.h"
|
|
#include "usb_cdc.h" // usb_poll_validate_length
|
|
#include "spiffs.h" // spiffs
|
|
#include "appmain.h" // print_stack_usage
|
|
|
|
#ifndef HARDNESTED_AUTHENTICATION_TIMEOUT
|
|
# define HARDNESTED_AUTHENTICATION_TIMEOUT 848 // card times out 1ms after wrong authentication (according to NXP documentation)
|
|
#endif
|
|
#ifndef HARDNESTED_PRE_AUTHENTICATION_LEADTIME
|
|
# define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication
|
|
#endif
|
|
|
|
// send an incomplete dummy response in order to trigger the card's authentication failure timeout
|
|
#ifndef CHK_TIMEOUT
|
|
# define CHK_TIMEOUT(void) { \
|
|
ReaderTransmit(&dummy_answer, 1, NULL); \
|
|
uint32_t timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT; \
|
|
while (GetCountSspClk() < timeout) {}; \
|
|
}
|
|
#endif
|
|
|
|
static uint8_t dummy_answer = 0;
|
|
|
|
// magic uid card generation 1 commands
|
|
static uint8_t wupC1[] = { MIFARE_MAGICWUPC1 };
|
|
static uint8_t wupC2[] = { MIFARE_MAGICWUPC2 };
|
|
static uint8_t wipeC[] = { MIFARE_MAGICWIPEC };
|
|
// GDM alt magic wakeup
|
|
static uint8_t wupGDM1[] = { MIFARE_MAGIC_GDM_WUPC1 };
|
|
static uint8_t wupGDM2[] = { MIFARE_MAGIC_GDM_WUPC2 };
|
|
|
|
static bool mifare_wakeup_auth(struct Crypto1State *pcs, MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t block_no) {
|
|
uint32_t cuid = 0;
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
switch (wakeup) {
|
|
case MF_WAKE_NONE:
|
|
break;
|
|
case MF_WAKE_WUPA:
|
|
if (!iso14443a_select_cardEx(NULL, NULL, &cuid, true, 0, true, &WUPA_POLLING_PARAMETERS)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
return false;
|
|
};
|
|
break;
|
|
case MF_WAKE_REQA:
|
|
if (!iso14443a_select_cardEx(NULL, NULL, &cuid, true, 0, true, &REQA_POLLING_PARAMETERS)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
return false;
|
|
};
|
|
break;
|
|
case MF_WAKE_GEN1A:
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
|
|
return false;
|
|
}
|
|
|
|
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
|
|
}
|
|
break;
|
|
case MF_WAKE_GEN1B:
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
|
|
return false;
|
|
}
|
|
break;
|
|
case MF_WAKE_GDM_ALT:
|
|
ReaderTransmitBitsPar(wupGDM1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupGDM1 error");
|
|
return false;
|
|
}
|
|
ReaderTransmit(wupGDM2, sizeof(wupGDM2), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("wupGDM2 error");
|
|
// maybe this is fine on some tags?
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (key_auth_cmd != 0) {
|
|
uint64_t ui64key = bytes_to_num(key, 6);
|
|
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, NULL, NULL, NULL, NULL, false, false)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Select, Authenticate, Read a MIFARE tag.
|
|
// wakeup determines the type of wakeup
|
|
// key_auth_cmd is usually one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, MIFARE_MAGIC_GDM_AUTH_KEY or 0 to disable auth
|
|
// read_cmd is usually one of ISO14443A_CMD_READBLOCK, MIFARE_MAGIC_GDM_READBLOCK, or MIFARE_MAGIC_GDM_READ_CFG
|
|
// block_data must be 16*count bytes large
|
|
// block_no through block_no+count-1 normally needs to be within the same sector
|
|
//-----------------------------------------------------------------------------
|
|
int16_t mifare_cmd_readblocks(MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t read_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) {
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs = (key_auth_cmd == 0) ? NULL : &mpcs;;
|
|
|
|
uint32_t timeout = iso14a_get_timeout();
|
|
|
|
int retval = PM3_SUCCESS;
|
|
|
|
if (mifare_wakeup_auth(pcs, wakeup, key_auth_cmd, key, block_no) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
// frame waiting time (FWT) in 1/fc
|
|
uint32_t fwt = 256 * 16 * (1 << 7);
|
|
iso14a_set_timeout(fwt / (8 * 16));
|
|
|
|
for (uint8_t i = 0; i < count; i++) {
|
|
if (mifare_classic_readblock_ex(pcs, block_no + i, block_data + (i * 16), read_cmd)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
};
|
|
}
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
};
|
|
|
|
OUT:
|
|
crypto1_deinit(pcs);
|
|
|
|
iso14a_set_timeout(timeout);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
BigBuf_free();
|
|
return retval;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Select, Authenticate, Write a MIFARE tag.
|
|
// wakeup determines the type of wakeup
|
|
// key_auth_cmd is usually one of MIFARE_AUTH_KEYA, MIFARE_AUTH_KEYB, MIFARE_MAGIC_GDM_AUTH_KEY or 0 to disable auth
|
|
// write_cmd is usually one of ISO14443A_CMD_WRITEBLOCK, MIFARE_MAGIC_GDM_WRITEBLOCK, or MIFARE_MAGIC_GDM_WRITE_CFG
|
|
// block_data must be 16*count bytes large
|
|
// block_no through block_no+count-1 normally needs to be within the same sector
|
|
//-----------------------------------------------------------------------------
|
|
int16_t mifare_cmd_writeblocks(MifareWakeupType wakeup, uint8_t key_auth_cmd, uint8_t *key, uint8_t write_cmd, uint8_t block_no, uint8_t count, uint8_t *block_data) {
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs = (key_auth_cmd == 0) ? NULL : &mpcs;;
|
|
|
|
int retval = PM3_SUCCESS;
|
|
|
|
if (mifare_wakeup_auth(pcs, wakeup, key_auth_cmd, key, block_no) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
for (uint8_t i = 0; i < count; i++) {
|
|
int res = mifare_classic_writeblock_ex(pcs, block_no + i, block_data + (i * 16), write_cmd);
|
|
if (res == PM3_ETEAROFF) {
|
|
retval = PM3_ETEAROFF;
|
|
goto OUT;
|
|
} else if (res != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
}
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
};
|
|
|
|
OUT:
|
|
crypto1_deinit(pcs);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
BigBuf_free();
|
|
|
|
return retval;
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Select, Authenticate, Read a MIFARE tag.
|
|
// read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes)
|
|
//-----------------------------------------------------------------------------
|
|
void MifareReadSector(uint8_t sector_no, uint8_t key_type, uint8_t *key) {
|
|
uint8_t block_no = FirstBlockOfSector(sector_no);
|
|
uint8_t num_blocks = NumBlocksPerSector(sector_no);
|
|
|
|
uint8_t outbuf[16 * 16];
|
|
int16_t retval = mifare_cmd_readblocks(MF_WAKE_WUPA, MIFARE_AUTH_KEYA + (key_type & 0xF), key, ISO14443A_CMD_READBLOCK, block_no, num_blocks, outbuf);
|
|
|
|
reply_old(CMD_ACK, retval == PM3_SUCCESS, 0, 0, outbuf, 16 * num_blocks);
|
|
}
|
|
|
|
void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes) {
|
|
|
|
bool turnOffField = (arg0 == 1);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
if (!mifare_ultra_auth(keybytes)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed");
|
|
OnError(1);
|
|
return;
|
|
}
|
|
|
|
if (turnOffField) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
|
|
}
|
|
|
|
void MifareUL_AES_Auth(bool turn_off_field, uint8_t keyno, uint8_t *keybytes) {
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_ESOFT, NULL, 0);
|
|
return;
|
|
};
|
|
|
|
if (!mifare_ultra_aes_auth(keyno, keybytes)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication failed");
|
|
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_ESOFT, NULL, 0);
|
|
return;
|
|
}
|
|
|
|
if (turn_off_field) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
reply_ng(CMD_HF_MIFAREULAES_AUTH, PM3_SUCCESS, NULL, 0);
|
|
}
|
|
|
|
// Arg0 = BlockNo,
|
|
// Arg1 = UsePwd bool
|
|
// datain = PWD bytes,
|
|
void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
|
|
uint8_t blockNo = arg0;
|
|
uint8_t dataout[16] = {0x00};
|
|
bool useKey = (arg1 == 1); //UL_C
|
|
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
|
|
if (!len) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%02X)", len);
|
|
OnError(1);
|
|
return;
|
|
}
|
|
|
|
// UL-C authentication
|
|
if (useKey) {
|
|
uint8_t key[16] = {0x00};
|
|
memcpy(key, datain, sizeof(key));
|
|
|
|
if (!mifare_ultra_auth(key)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// UL-EV1 / NTAG authentication
|
|
if (usePwd) {
|
|
uint8_t pwd[4] = {0x00};
|
|
memcpy(pwd, datain, 4);
|
|
uint8_t pack[4] = {0, 0, 0, 0};
|
|
if (!mifare_ul_ev1_auth(pwd, pack)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (mifare_ultra_readblock(blockNo, dataout)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block error");
|
|
OnError(2);
|
|
return;
|
|
}
|
|
|
|
if (mifare_ultra_halt()) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
OnError(3);
|
|
return;
|
|
}
|
|
|
|
reply_mix(CMD_ACK, 1, 0, 0, dataout, 16);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
|
|
// arg0 = blockNo (start)
|
|
// arg1 = Pages (number of blocks)
|
|
// arg2 = useKey
|
|
// datain = KEY bytes
|
|
void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain) {
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// params
|
|
uint8_t blockNo = arg0;
|
|
uint16_t blocks = arg1;
|
|
bool useKey = (arg2 == 1); // UL_C
|
|
bool usePwd = (arg2 == 2); // UL_EV1/NTAG
|
|
uint32_t countblocks = 0;
|
|
uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE);
|
|
if (dataout == NULL) {
|
|
Dbprintf("out of memory");
|
|
OnError(1);
|
|
return;
|
|
}
|
|
|
|
int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true);
|
|
if (!len) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card (RC:%d)", len);
|
|
OnError(1);
|
|
return;
|
|
}
|
|
|
|
// UL-C authentication
|
|
if (useKey) {
|
|
uint8_t key[16] = {0x00};
|
|
memcpy(key, datain, sizeof(key));
|
|
|
|
if (!mifare_ultra_auth(key)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// UL-EV1 / NTAG authentication
|
|
if (usePwd) {
|
|
uint8_t pwd[4] = {0x00};
|
|
memcpy(pwd, datain, sizeof(pwd));
|
|
uint8_t pack[4] = {0, 0, 0, 0};
|
|
|
|
if (!mifare_ul_ev1_auth(pwd, pack)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < blocks; i++) {
|
|
if ((i * 4) + 4 >= CARD_MEMORY_SIZE) {
|
|
Dbprintf("Data exceeds buffer!!");
|
|
break;
|
|
}
|
|
|
|
len = mifare_ultra_readblock(blockNo + i, dataout + (4 * i));
|
|
|
|
if (len) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read block %d error", i);
|
|
// if no blocks read - error out
|
|
if (i == 0) {
|
|
OnError(2);
|
|
return;
|
|
} else {
|
|
//stop at last successful read block and return what we got
|
|
break;
|
|
}
|
|
} else {
|
|
countblocks++;
|
|
}
|
|
}
|
|
|
|
len = mifare_ultra_halt();
|
|
if (len) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
OnError(3);
|
|
return;
|
|
}
|
|
|
|
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Blocks read %d", countblocks);
|
|
|
|
countblocks *= 4;
|
|
|
|
reply_mix(CMD_ACK, 1, countblocks, dataout - BigBuf_get_addr(), 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
BigBuf_free();
|
|
set_tracing(false);
|
|
}
|
|
|
|
void MifareValue(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) {
|
|
// params
|
|
uint8_t blockNo = arg0;
|
|
uint8_t keyType = arg1;
|
|
uint8_t transferKeyType = arg2;
|
|
uint64_t ui64Key = 0;
|
|
uint64_t transferUi64Key = 0;
|
|
uint8_t blockdata[16] = {0x00};
|
|
|
|
ui64Key = bytes_to_num(datain, 6);
|
|
memcpy(blockdata, datain + 11, 16);
|
|
transferUi64Key = bytes_to_num(datain + 27, 6);
|
|
|
|
// variables
|
|
uint8_t action = datain[9];
|
|
uint8_t transferBlk = datain[10];
|
|
bool needAuth = datain[33];
|
|
uint8_t isOK = 0;
|
|
uint8_t uid[10] = {0x00};
|
|
uint32_t cuid = 0;
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t len = 0;
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
|
|
while (true) {
|
|
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
break;
|
|
};
|
|
|
|
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
break;
|
|
};
|
|
|
|
if (mifare_classic_value(pcs, blockNo, blockdata, action) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
break;
|
|
};
|
|
|
|
if (needAuth) {
|
|
// transfer to other sector
|
|
if (mifare_classic_auth(pcs, cuid, transferBlk, transferKeyType, transferUi64Key, AUTH_NESTED)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Nested auth error");
|
|
break;
|
|
}
|
|
}
|
|
|
|
// send transfer (commit the change)
|
|
len = mifare_sendcmd_short(pcs, 1, MIFARE_CMD_TRANSFER, (transferBlk != 0) ? transferBlk : blockNo, receivedAnswer, sizeof(receivedAnswer), NULL, NULL);
|
|
if (len != 1 && receivedAnswer[0] != 0x0A) { // 0x0a - ACK
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error in transfer: %02x", receivedAnswer[0]);
|
|
break;
|
|
}
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
break;
|
|
};
|
|
|
|
isOK = 1;
|
|
break;
|
|
}
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
|
|
|
|
reply_mix(CMD_ACK, isOK, 0, 0, 0, 0);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
// Arg0 : Block to write to.
|
|
// Arg1 : 0 = use no authentication.
|
|
// 1 = use 0x1A authentication.
|
|
// 2 = use 0x1B authentication.
|
|
// datain : 4 first bytes is data to be written.
|
|
// : 4/16 next bytes is authentication key.
|
|
static void MifareUWriteBlockEx(uint8_t arg0, uint8_t arg1, uint8_t *datain, bool reply) {
|
|
uint8_t blockNo = arg0;
|
|
bool useKey = (arg1 == 1); //UL_C
|
|
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
|
|
uint8_t blockdata[4] = {0x00};
|
|
|
|
memcpy(blockdata, datain, 4);
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
// UL-C authentication
|
|
if (useKey) {
|
|
uint8_t key[16] = {0x00};
|
|
memcpy(key, datain + 4, sizeof(key));
|
|
|
|
if (!mifare_ultra_auth(key)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// UL-EV1 / NTAG authentication
|
|
if (usePwd) {
|
|
uint8_t pwd[4] = {0x00};
|
|
memcpy(pwd, datain + 4, 4);
|
|
uint8_t pack[4] = {0, 0, 0, 0};
|
|
if (!mifare_ul_ev1_auth(pwd, pack)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (mifare_ultra_writeblock(blockNo, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
if (mifare_ultra_halt()) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
|
|
|
|
if (reply)
|
|
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
|
|
MifareUWriteBlockEx(arg0, arg1, datain, true);
|
|
}
|
|
|
|
// Arg0 : Block to write to.
|
|
// Arg1 : 0 = use no authentication.
|
|
// 1 = use 0x1A authentication.
|
|
// 2 = use 0x1B authentication.
|
|
// datain : 16 first bytes is data to be written.
|
|
// : 4/16 next bytes is authentication key.
|
|
void MifareUWriteBlockCompat(uint8_t arg0, uint8_t arg1, uint8_t *datain) {
|
|
uint8_t blockNo = arg0;
|
|
bool useKey = (arg1 == 1); //UL_C
|
|
bool usePwd = (arg1 == 2); //UL_EV1/NTAG
|
|
uint8_t blockdata[16] = {0x00};
|
|
|
|
memcpy(blockdata, datain, 16);
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
// UL-C authentication
|
|
if (useKey) {
|
|
uint8_t key[16] = {0x00};
|
|
memcpy(key, datain + 16, sizeof(key));
|
|
|
|
if (!mifare_ultra_auth(key)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// UL-EV1 / NTAG authentication
|
|
if (usePwd) {
|
|
uint8_t pwd[4] = {0x00};
|
|
memcpy(pwd, datain + 16, 4);
|
|
uint8_t pack[4] = {0, 0, 0, 0};
|
|
if (!mifare_ul_ev1_auth(pwd, pack)) {
|
|
OnError(1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (mifare_ultra_writeblock_compat(blockNo, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
if (mifare_ultra_halt()) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
if (g_dbglevel >= 2) DbpString("WRITE BLOCK FINISHED");
|
|
|
|
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
void MifareUSetPwd(uint8_t arg0, uint8_t *datain) {
|
|
|
|
uint8_t pwd[16] = {0x00};
|
|
uint8_t blockdata[4] = {0x00};
|
|
|
|
memcpy(pwd, datain, 16);
|
|
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
LED_C_OFF();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
blockdata[0] = pwd[7];
|
|
blockdata[1] = pwd[6];
|
|
blockdata[2] = pwd[5];
|
|
blockdata[3] = pwd[4];
|
|
if (mifare_ultra_writeblock(44, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(44);
|
|
return;
|
|
};
|
|
|
|
blockdata[0] = pwd[3];
|
|
blockdata[1] = pwd[2];
|
|
blockdata[2] = pwd[1];
|
|
blockdata[3] = pwd[0];
|
|
if (mifare_ultra_writeblock(45, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(45);
|
|
return;
|
|
};
|
|
|
|
blockdata[0] = pwd[15];
|
|
blockdata[1] = pwd[14];
|
|
blockdata[2] = pwd[13];
|
|
blockdata[3] = pwd[12];
|
|
if (mifare_ultra_writeblock(46, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(46);
|
|
return;
|
|
};
|
|
|
|
blockdata[0] = pwd[11];
|
|
blockdata[1] = pwd[10];
|
|
blockdata[2] = pwd[9];
|
|
blockdata[3] = pwd[8];
|
|
if (mifare_ultra_writeblock(47, blockdata) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Write block error");
|
|
OnError(47);
|
|
return;
|
|
};
|
|
|
|
if (mifare_ultra_halt()) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
OnError(0);
|
|
return;
|
|
};
|
|
|
|
reply_mix(CMD_ACK, 1, 0, 0, 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
// Return 1 if the nonce is invalid else return 0
|
|
static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, const uint8_t *parity) {
|
|
return (
|
|
(oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \
|
|
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \
|
|
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))
|
|
) ? 1 : 0;
|
|
}
|
|
|
|
void MifareAcquireNonces(uint32_t arg0, uint32_t flags) {
|
|
|
|
uint8_t uid[10] = {0x00};
|
|
uint8_t answer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t par[1] = {0x00};
|
|
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
|
|
uint32_t cuid = 0;
|
|
int16_t isOK = 0;
|
|
uint16_t num_nonces = 0;
|
|
uint8_t cascade_levels = 0;
|
|
uint8_t blockNo = arg0 & 0xff;
|
|
uint8_t keyType = (arg0 >> 8) & 0xff;
|
|
bool initialize = flags & 0x0001;
|
|
bool field_off = flags & 0x0004;
|
|
bool have_uid = false;
|
|
|
|
LED_A_ON();
|
|
LED_C_OFF();
|
|
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (initialize)
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
LED_C_ON();
|
|
|
|
while (num_nonces < PM3_CMD_DATA_SIZE / 4) {
|
|
|
|
// Test if the action was cancelled
|
|
if (BUTTON_PRESS()) {
|
|
isOK = 2;
|
|
field_off = true;
|
|
break;
|
|
}
|
|
|
|
if (!have_uid) { // need a full select cycle to get the uid first
|
|
iso14a_card_select_t card_info;
|
|
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (ALL)");
|
|
continue;
|
|
}
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
have_uid = true;
|
|
} else { // no need for anticollision. We can directly select the card
|
|
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireNonces: Can't select card (UID)");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transmit MIFARE_CLASSIC_AUTH
|
|
uint8_t dcmd[4] = {0x60 + (keyType & 0x01), blockNo, 0x00, 0x00};
|
|
AddCrc14A(dcmd, 2);
|
|
ReaderTransmit(dcmd, sizeof(dcmd), NULL);
|
|
int len = ReaderReceive(answer, sizeof(answer), par);
|
|
|
|
// wait for the card to become ready again
|
|
CHK_TIMEOUT();
|
|
|
|
if (len != 4) {
|
|
if (g_dbglevel >= 2) Dbprintf("AcquireNonces: Auth1 error");
|
|
continue;
|
|
}
|
|
|
|
// Save the tag nonce (nt)
|
|
memcpy(buf + num_nonces * 4, answer, 4);
|
|
num_nonces++;
|
|
}
|
|
|
|
LED_C_OFF();
|
|
LED_B_ON();
|
|
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
|
|
LED_B_OFF();
|
|
|
|
if (g_dbglevel >= 3) DbpString("AcquireNonces finished");
|
|
|
|
if (field_off) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// acquire encrypted nonces in order to perform the attack described in
|
|
// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
|
|
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
|
|
// Computer and Communications Security, 2015
|
|
//-----------------------------------------------------------------------------
|
|
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) {
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
uint8_t uid[10] = {0x00};
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t par_enc[1] = {0x00};
|
|
uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};
|
|
|
|
uint64_t ui64Key = bytes_to_num(datain, 6);
|
|
uint32_t cuid = 0;
|
|
int16_t isOK = PM3_SUCCESS;
|
|
uint16_t num_nonces = 0;
|
|
uint8_t nt_par_enc = 0;
|
|
uint8_t cascade_levels = 0;
|
|
uint8_t blockNo = arg0 & 0xff;
|
|
uint8_t keyType = (arg0 >> 8) & 0xff;
|
|
uint8_t targetBlockNo = arg1 & 0xff;
|
|
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
|
|
bool initialize = flags & 0x0001;
|
|
bool slow = flags & 0x0002;
|
|
bool field_off = flags & 0x0004;
|
|
bool have_uid = false;
|
|
|
|
LED_A_ON();
|
|
LED_C_OFF();
|
|
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(false);
|
|
|
|
if (initialize)
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
LED_C_ON();
|
|
|
|
uint8_t prev_enc_nt[] = {0, 0, 0, 0};
|
|
uint8_t prev_counter = 0;
|
|
|
|
for (uint16_t i = 0; i <= PM3_CMD_DATA_SIZE - 9;) {
|
|
|
|
// Test if the action was cancelled
|
|
if (BUTTON_PRESS()) {
|
|
isOK = PM3_EOPABORTED;
|
|
field_off = true;
|
|
break;
|
|
}
|
|
|
|
if (have_uid == false) { // need a full select cycle to get the uid first
|
|
iso14a_card_select_t card_info;
|
|
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (ALL)");
|
|
continue;
|
|
}
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
have_uid = true;
|
|
} else { // no need for anticollision. We can directly select the card
|
|
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Can't select card (UID)");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (slow)
|
|
SpinDelayUs(HARDNESTED_PRE_AUTHENTICATION_LEADTIME);
|
|
|
|
uint32_t nt1 = 0;
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth1 error");
|
|
continue;
|
|
}
|
|
|
|
// nested authentication
|
|
uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0xF), targetBlockNo, receivedAnswer, sizeof(receivedAnswer), par_enc, NULL);
|
|
|
|
// wait for the card to become ready again
|
|
CHK_TIMEOUT();
|
|
|
|
if (len != 4) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireEncryptedNonces: Auth2 error len=%d", len);
|
|
continue;
|
|
}
|
|
|
|
num_nonces++;
|
|
if (num_nonces % 2) {
|
|
memcpy(buf + i, receivedAnswer, 4);
|
|
nt_par_enc = par_enc[0] & 0xf0;
|
|
} else {
|
|
nt_par_enc |= par_enc[0] >> 4;
|
|
memcpy(buf + i + 4, receivedAnswer, 4);
|
|
memcpy(buf + i + 8, &nt_par_enc, 1);
|
|
i += 9;
|
|
}
|
|
|
|
|
|
if (prev_enc_nt[0] == receivedAnswer[0] &&
|
|
prev_enc_nt[1] == receivedAnswer[1] &&
|
|
prev_enc_nt[2] == receivedAnswer[2] &&
|
|
prev_enc_nt[3] == receivedAnswer[3]
|
|
) {
|
|
prev_counter++;
|
|
}
|
|
memcpy(prev_enc_nt, receivedAnswer, 4);
|
|
if (prev_counter == 5) {
|
|
if (g_dbglevel >= DBG_EXTENDED) {
|
|
DbpString("Static encrypted nonce detected, exiting...");
|
|
uint32_t a = bytes_to_num(prev_enc_nt, 4);
|
|
uint32_t b = bytes_to_num(receivedAnswer, 4);
|
|
Dbprintf("( %08x vs %08x )", a, b);
|
|
}
|
|
isOK = PM3_ESTATIC_NONCE;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
LED_C_OFF();
|
|
crypto1_deinit(pcs);
|
|
LED_B_ON();
|
|
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
|
|
LED_B_OFF();
|
|
|
|
if (field_off) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// acquire static encrypted nonces in order to perform the attack described in
|
|
// Philippe Teuwen, "MIFARE Classic: exposing the static encrypted nonce variant"
|
|
//-----------------------------------------------------------------------------
|
|
void MifareAcquireStaticEncryptedNonces(uint32_t flags, uint8_t *key) {
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
uint8_t uid[10] = {0x00};
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t par_enc[1] = {0x00};
|
|
// ((MIFARE_1K_MAXSECTOR + 1) * 2) * 9 < PM3_CMD_DATA_SIZE
|
|
uint8_t buf[((MIFARE_1K_MAXSECTOR + 1) * 2) * 9] = {0x00};
|
|
uint64_t ui64Key = bytes_to_num(key, 6);
|
|
bool with_data = flags & 1;
|
|
uint32_t cuid = 0;
|
|
int16_t isOK = PM3_SUCCESS;
|
|
uint16_t num_nonces = 0;
|
|
uint8_t cascade_levels = 0;
|
|
bool have_uid = false;
|
|
|
|
LED_A_ON();
|
|
LED_C_OFF();
|
|
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(false);
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
LED_C_ON();
|
|
|
|
for (uint16_t sec = 0; sec < MIFARE_1K_MAXSECTOR + 1; sec++) {
|
|
uint16_t sec_gap = sec;
|
|
if (sec >= MIFARE_1K_MAXSECTOR) {
|
|
// gap between user blocks and advanced verification method blocks
|
|
sec_gap += 16;
|
|
}
|
|
uint16_t blockNo = sec_gap * 4;
|
|
for (uint8_t keyType = 0; keyType < 2; keyType++) {
|
|
// Test if the action was cancelled
|
|
if (BUTTON_PRESS()) {
|
|
isOK = PM3_EOPABORTED;
|
|
break;
|
|
}
|
|
if (have_uid == false) { // need a full select cycle to get the uid first
|
|
iso14a_card_select_t card_info;
|
|
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Can't select card (ALL)");
|
|
continue;
|
|
}
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
have_uid = true;
|
|
} else { // no need for anticollision. We can directly select the card
|
|
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Can't select card (UID)");
|
|
continue;
|
|
}
|
|
}
|
|
|
|
uint32_t nt1 = 0;
|
|
if (mifare_classic_authex_cmd(pcs, cuid, blockNo, MIFARE_AUTH_KEYA + keyType + 4, ui64Key, AUTH_FIRST, &nt1, NULL, NULL, NULL, false, false)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Auth1 error");
|
|
isOK = PM3_ESOFT;
|
|
goto out;
|
|
};
|
|
if (with_data) {
|
|
if (blockNo < MIFARE_1K_MAXSECTOR * 4) {
|
|
uint8_t data[16];
|
|
for (uint16_t tb = blockNo; tb < blockNo + 4; tb++) {
|
|
memset(data, 0x00, sizeof(data));
|
|
int res = mifare_classic_readblock(pcs, tb, data);
|
|
if (res == 1) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Read error");
|
|
isOK = PM3_ESOFT;
|
|
goto out;
|
|
}
|
|
emlSetMem_xt(data, tb, 1, 16);
|
|
}
|
|
}
|
|
}
|
|
// nested authentication
|
|
uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + keyType + 4, blockNo, receivedAnswer, sizeof(receivedAnswer), par_enc, NULL);
|
|
if (len != 4) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Auth2 error len=%d", len);
|
|
isOK = PM3_ESOFT;
|
|
goto out;
|
|
}
|
|
uint32_t nt_enc = bytes_to_num(receivedAnswer, 4);
|
|
crypto1_init(pcs, ui64Key);
|
|
uint32_t nt = crypto1_word(pcs, nt_enc ^ cuid, 1) ^ nt_enc;
|
|
// Dbprintf("Sec %2i key %i nT=%08x", sec, keyType + 4, nt);
|
|
num_to_bytes(nt, 4, buf + (((sec * 2) + keyType) * 9));
|
|
// send some crap to fail auth
|
|
uint8_t nack[] = {0x04};
|
|
ReaderTransmit(nack, sizeof(nack), NULL);
|
|
|
|
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Can't select card (UID)");
|
|
continue;
|
|
}
|
|
if (mifare_classic_authex_cmd(pcs, cuid, blockNo, MIFARE_AUTH_KEYA + keyType + 4, ui64Key, AUTH_FIRST, &nt1, NULL, NULL, NULL, false, false)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Auth1 error");
|
|
isOK = PM3_ESOFT;
|
|
goto out;
|
|
};
|
|
|
|
// nested authentication on regular keytype
|
|
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + keyType, blockNo, receivedAnswer, sizeof(receivedAnswer), par_enc, NULL);
|
|
if (len != 4) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("AcquireStaticEncryptedNonces: Auth2 error len=%d", len);
|
|
isOK = PM3_ESOFT;
|
|
goto out;
|
|
}
|
|
memcpy(buf + (((sec * 2) + keyType) * 9) + 4, receivedAnswer, 4);
|
|
nt_enc = bytes_to_num(receivedAnswer, 4);
|
|
uint8_t nt_par_err = ((((par_enc[0] >> 7) & 1) ^ oddparity8((nt_enc >> 24) & 0xFF)) << 3 |
|
|
(((par_enc[0] >> 6) & 1) ^ oddparity8((nt_enc >> 16) & 0xFF)) << 2 |
|
|
(((par_enc[0] >> 5) & 1) ^ oddparity8((nt_enc >> 8) & 0xFF)) << 1 |
|
|
(((par_enc[0] >> 4) & 1) ^ oddparity8((nt_enc >> 0) & 0xFF)));
|
|
// Dbprintf("Sec %2i key %i {nT}=%02x%02x%02x%02x perr=%x", sec, keyType, receivedAnswer[0], receivedAnswer[1], receivedAnswer[2], receivedAnswer[3], nt_par_err);
|
|
buf[(((sec * 2) + keyType) * 9) + 8] = nt_par_err;
|
|
// send some crap to fail auth
|
|
ReaderTransmit(nack, sizeof(nack), NULL);
|
|
}
|
|
}
|
|
out:
|
|
LED_C_OFF();
|
|
crypto1_deinit(pcs);
|
|
LED_B_ON();
|
|
reply_old(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf));
|
|
LED_B_OFF();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MIFARE nested authentication.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key) {
|
|
uint64_t ui64Key = 0;
|
|
ui64Key = bytes_to_num(key, 6);
|
|
|
|
// variables
|
|
uint16_t i, j, len;
|
|
static uint16_t dmin, dmax;
|
|
|
|
uint8_t par[1] = {0x00};
|
|
uint8_t par_array[4] = {0x00};
|
|
uint8_t uid[10] = {0x00};
|
|
uint32_t cuid = 0, nt1, nt2, nttest, ks1;
|
|
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
|
|
|
|
uint16_t ncount = 0;
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
|
|
uint32_t auth1_time, auth2_time;
|
|
static uint16_t delta_time = 0;
|
|
|
|
LED_A_ON();
|
|
LED_C_OFF();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
|
|
if (calibrate)
|
|
clear_trace();
|
|
|
|
set_tracing(true);
|
|
|
|
// statistics on nonce distance
|
|
int16_t isOK = PM3_SUCCESS;
|
|
#define NESTED_MAX_TRIES 12
|
|
if (calibrate) { // calibrate: for first call only. Otherwise reuse previous calibration
|
|
LED_B_ON();
|
|
WDT_HIT();
|
|
|
|
uint32_t prev_enc_nt = 0;
|
|
uint8_t prev_counter = 0;
|
|
|
|
uint16_t unsuccessful_tries = 0;
|
|
uint16_t davg = 0;
|
|
dmax = 0;
|
|
dmin = 2000;
|
|
delta_time = 0;
|
|
uint16_t rtr;
|
|
for (rtr = 0; rtr < 17; rtr++) {
|
|
|
|
// Test if the action was cancelled
|
|
if (BUTTON_PRESS() || data_available()) {
|
|
isOK = PM3_EOPABORTED;
|
|
break;
|
|
}
|
|
|
|
// prepare next select. No need to power down the card.
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error");
|
|
rtr--;
|
|
continue;
|
|
}
|
|
|
|
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == 0) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card");
|
|
rtr--;
|
|
continue;
|
|
};
|
|
|
|
auth1_time = 0;
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error");
|
|
rtr--;
|
|
continue;
|
|
};
|
|
auth2_time = (delta_time) ? auth1_time + delta_time : 0;
|
|
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error");
|
|
rtr--;
|
|
continue;
|
|
};
|
|
|
|
// cards with fixed nonce
|
|
// NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160
|
|
|
|
uint32_t nttmp = prng_successor(nt1, 100);
|
|
for (i = 101; i < 1200; i++) {
|
|
nttmp = prng_successor(nttmp, 1);
|
|
if (nttmp == nt2) break;
|
|
}
|
|
|
|
if (i != 1200) {
|
|
if (rtr != 0) {
|
|
davg += i;
|
|
dmin = MIN(dmin, i);
|
|
dmax = MAX(dmax, i);
|
|
} else {
|
|
// allow some slack for proper timing
|
|
delta_time = auth2_time - auth1_time + 32;
|
|
}
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nested: calibrating... ntdist=%d", i);
|
|
} else {
|
|
unsuccessful_tries++;
|
|
// card isn't vulnerable to nested attack (random numbers are not predictable)
|
|
if (unsuccessful_tries > NESTED_MAX_TRIES) {
|
|
isOK = PM3_EFAILED;
|
|
}
|
|
}
|
|
|
|
|
|
if (nt1 == nt2) {
|
|
prev_counter++;
|
|
}
|
|
prev_enc_nt = nt2;
|
|
|
|
if (prev_counter == 5) {
|
|
if (g_dbglevel >= DBG_EXTENDED) {
|
|
DbpString("Static encrypted nonce detected, exiting...");
|
|
Dbprintf("( %08x vs %08x )", prev_enc_nt, nt2);
|
|
}
|
|
isOK = PM3_ESTATIC_NONCE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (rtr > 1)
|
|
davg = (davg + (rtr - 1) / 2) / (rtr - 1);
|
|
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time);
|
|
|
|
dmin = davg - 2;
|
|
dmax = davg + 2;
|
|
|
|
LED_B_OFF();
|
|
}
|
|
// -------------------------------------------------------------------------------------------------
|
|
|
|
LED_C_ON();
|
|
|
|
// get crypted nonces for target sector
|
|
for (i = 0; ((i < 2) && (isOK == PM3_SUCCESS)); i++) {
|
|
|
|
// look for exactly two different nonces
|
|
|
|
target_nt[i] = 0;
|
|
// continue until we have an unambiguous nonce
|
|
while (target_nt[i] == 0) {
|
|
|
|
// Test if the action was cancelled
|
|
if (BUTTON_PRESS() || data_available()) {
|
|
isOK = PM3_EOPABORTED;
|
|
break;
|
|
}
|
|
|
|
// prepare next select. No need to power down the card.
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Halt error");
|
|
continue;
|
|
}
|
|
|
|
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Can't select card");
|
|
continue;
|
|
};
|
|
|
|
auth1_time = 0;
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth1 error");
|
|
continue;
|
|
};
|
|
|
|
// nested authentication
|
|
auth2_time = auth1_time + delta_time;
|
|
|
|
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0xF), targetBlockNo, receivedAnswer, sizeof(receivedAnswer), par, &auth2_time);
|
|
if (len != 4) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Nested: Auth2 error len=%d", len);
|
|
continue;
|
|
};
|
|
|
|
nt2 = bytes_to_num(receivedAnswer, 4);
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i + 1, nt1, nt2, par[0]);
|
|
|
|
// Parity validity check
|
|
for (j = 0; j < 4; j++) {
|
|
par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7 - j)) & 0x01));
|
|
}
|
|
|
|
ncount = 0;
|
|
nttest = prng_successor(nt1, dmin - 1);
|
|
for (j = dmin; j < dmax + 1; j++) {
|
|
nttest = prng_successor(nttest, 1);
|
|
ks1 = nt2 ^ nttest;
|
|
|
|
if (valid_nonce(nttest, nt2, ks1, par_array)) {
|
|
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: dismissed (ambiguous), ntdist=%d", i + 1, j);
|
|
target_nt[i] = 0;
|
|
break;
|
|
}
|
|
target_nt[i] = nttest;
|
|
target_ks[i] = ks1;
|
|
ncount++;
|
|
if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces
|
|
target_nt[i] = 0;
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j);
|
|
break;
|
|
}
|
|
if (g_dbglevel >= DBG_DEBUG) Dbprintf("Nonce#%d: valid, ntdist=%d", i + 1, j);
|
|
}
|
|
}
|
|
if (target_nt[i] == 0 && j == dmax + 1 && g_dbglevel >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i + 1);
|
|
}
|
|
}
|
|
|
|
LED_C_OFF();
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
struct p {
|
|
int16_t isOK;
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t cuid[4];
|
|
uint8_t nt_a[4];
|
|
uint8_t ks_a[4];
|
|
uint8_t nt_b[4];
|
|
uint8_t ks_b[4];
|
|
} PACKED payload;
|
|
payload.isOK = isOK;
|
|
payload.block = targetBlockNo;
|
|
payload.keytype = targetKeyType;
|
|
|
|
memcpy(payload.cuid, &cuid, 4);
|
|
memcpy(payload.nt_a, &target_nt[0], 4);
|
|
memcpy(payload.ks_a, &target_ks[0], 4);
|
|
memcpy(payload.nt_b, &target_nt[1], 4);
|
|
memcpy(payload.ks_b, &target_ks[1], 4);
|
|
|
|
LED_B_ON();
|
|
reply_ng(CMD_HF_MIFARE_NESTED, PM3_SUCCESS, (uint8_t *)&payload, sizeof(payload));
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
void MifareStaticNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, uint8_t *key) {
|
|
|
|
LEDsoff();
|
|
|
|
uint64_t ui64Key = bytes_to_num(key, 6);
|
|
uint16_t len;
|
|
uint8_t uid[10] = { 0x00 };
|
|
uint32_t cuid = 0, nt1 = 0, nt2 = 0, nt3 = 0;
|
|
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
|
|
uint8_t par[1] = { 0x00 };
|
|
uint8_t receivedAnswer[10] = { 0x00 };
|
|
|
|
struct Crypto1State mpcs = { 0, 0 };
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
int16_t isOK = PM3_ESOFT;
|
|
LED_C_ON();
|
|
|
|
// Main loop - get crypted nonces for target sector
|
|
for (uint8_t rtr = 0; rtr < 2; rtr++) {
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
continue;
|
|
}
|
|
|
|
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
|
|
continue;
|
|
};
|
|
|
|
// first collection
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
|
|
continue;
|
|
};
|
|
|
|
// pre-generate nonces
|
|
if (targetKeyType == 1 && nt1 == 0x009080A2) {
|
|
target_nt[0] = prng_successor(nt1, 161);
|
|
target_nt[1] = prng_successor(nt1, 321);
|
|
} else {
|
|
target_nt[0] = prng_successor(nt1, 160);
|
|
target_nt[1] = prng_successor(nt1, 320);
|
|
}
|
|
|
|
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0xF), targetBlockNo, receivedAnswer, sizeof(receivedAnswer), par, NULL);
|
|
if (len != 4) {
|
|
continue;
|
|
};
|
|
|
|
nt2 = bytes_to_num(receivedAnswer, 4);
|
|
target_ks[0] = nt2 ^ target_nt[0];
|
|
|
|
// second collection
|
|
if (mifare_classic_halt(pcs)) {
|
|
continue;
|
|
}
|
|
|
|
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
|
|
continue;
|
|
};
|
|
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) {
|
|
continue;
|
|
};
|
|
|
|
if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, NULL, NULL)) {
|
|
continue;
|
|
};
|
|
|
|
len = mifare_sendcmd_short(pcs, AUTH_NESTED, MIFARE_AUTH_KEYA + (targetKeyType & 0xF), targetBlockNo, receivedAnswer, sizeof(receivedAnswer), par, NULL);
|
|
if (len != 4) {
|
|
continue;
|
|
};
|
|
|
|
nt3 = bytes_to_num(receivedAnswer, 4);
|
|
target_ks[1] = nt3 ^ target_nt[1];
|
|
|
|
isOK = PM3_SUCCESS;
|
|
}
|
|
|
|
LED_C_OFF();
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
struct p {
|
|
uint8_t block;
|
|
uint8_t keytype;
|
|
uint8_t cuid[4];
|
|
uint8_t nt_a[4];
|
|
uint8_t ks_a[4];
|
|
uint8_t nt_b[4];
|
|
uint8_t ks_b[4];
|
|
} PACKED payload;
|
|
payload.block = targetBlockNo;
|
|
payload.keytype = targetKeyType;
|
|
|
|
memcpy(payload.cuid, &cuid, 4);
|
|
memcpy(payload.nt_a, &target_nt[0], 4);
|
|
memcpy(payload.ks_a, &target_ks[0], 4);
|
|
memcpy(payload.nt_b, &target_nt[1], 4);
|
|
memcpy(payload.ks_b, &target_ks[1], 4);
|
|
|
|
LED_B_ON();
|
|
reply_ng(CMD_HF_MIFARE_STATIC_NESTED, isOK, (uint8_t *)&payload, sizeof(payload));
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MIFARE check keys. key count up to 85.
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
typedef struct sector_t {
|
|
uint8_t keyA[6];
|
|
uint8_t keyB[6];
|
|
} sector_t;
|
|
|
|
typedef struct chk_t {
|
|
uint64_t key;
|
|
uint32_t cuid;
|
|
uint8_t cl;
|
|
uint8_t block;
|
|
uint8_t keyType;
|
|
uint8_t *uid;
|
|
struct Crypto1State *pcs;
|
|
} chk_t;
|
|
|
|
// checks one key.
|
|
// fast select, tries 5 times to select
|
|
//
|
|
// return:
|
|
// 2 = failed to select.
|
|
// 1 = wrong key
|
|
// 0 = correct key
|
|
static uint8_t chkKey(struct chk_t *c) {
|
|
uint8_t i = 0, res = 2;
|
|
bool selected = false;
|
|
while (i < 5) {
|
|
// this part is from Piwi's faster nonce collecting part in Hardnested.
|
|
// assume: fast select
|
|
if (!iso14443a_fast_select_card(c->uid, c->cl)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
selected = true;
|
|
res = mifare_classic_authex(c->pcs, c->cuid, c->block, c->keyType, c->key, AUTH_FIRST, NULL, NULL);
|
|
|
|
// CHK_TIMEOUT();
|
|
|
|
// if successful auth, send HALT
|
|
// if ( !res )
|
|
// mifare_classic_halt(c->pcs);
|
|
break;
|
|
}
|
|
if (selected == false) {
|
|
Dbprintf("chkKey: Failed at fast selecting the card!");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static uint8_t chkKey_readb(struct chk_t *c, uint8_t *keyb) {
|
|
|
|
if (!iso14443a_fast_select_card(c->uid, c->cl))
|
|
return 2;
|
|
|
|
if (mifare_classic_authex(c->pcs, c->cuid, c->block, 0, c->key, AUTH_FIRST, NULL, NULL))
|
|
return 1;
|
|
|
|
uint8_t data[16] = {0x00};
|
|
uint8_t res = mifare_classic_readblock(c->pcs, c->block, data);
|
|
|
|
// successful read
|
|
if (!res) {
|
|
// data was something else than zeros.
|
|
if (memcmp(data + 10, "\x00\x00\x00\x00\x00\x00", 6) != 0) {
|
|
memcpy(keyb, data + 10, 6);
|
|
res = 0;
|
|
} else {
|
|
res = 3;
|
|
}
|
|
mifare_classic_halt(c->pcs);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static void chkKey_scanA(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) {
|
|
for (uint8_t s = 0; s < *sectorcnt; s++) {
|
|
|
|
// skip already found A keys
|
|
if (found[(s * 2)])
|
|
continue;
|
|
|
|
c->block = FirstBlockOfSector(s);
|
|
if (chkKey(c) == 0) {
|
|
num_to_bytes(c->key, 6, k_sector[s].keyA);
|
|
found[(s * 2)] = 1;
|
|
++*foundkeys;
|
|
|
|
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan A found (%d)", c->block);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void chkKey_scanB(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, const uint8_t *sectorcnt, uint8_t *foundkeys) {
|
|
for (uint8_t s = 0; s < *sectorcnt; s++) {
|
|
|
|
// skip already found B keys
|
|
if (found[(s * 2) + 1])
|
|
continue;
|
|
|
|
c->block = FirstBlockOfSector(s);
|
|
if (chkKey(c) == 0) {
|
|
num_to_bytes(c->key, 6, k_sector[s].keyB);
|
|
found[(s * 2) + 1] = 1;
|
|
++*foundkeys;
|
|
|
|
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Scan B found (%d)", c->block);
|
|
}
|
|
}
|
|
}
|
|
|
|
// loop all A keys,
|
|
// when A is found but not B, try to read B.
|
|
static void chkKey_loopBonly(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) {
|
|
|
|
// read Block B, if A is found.
|
|
for (uint8_t s = 0; s < *sectorcnt; ++s) {
|
|
|
|
if (found[(s * 2)] && found[(s * 2) + 1])
|
|
continue;
|
|
|
|
c->block = (FirstBlockOfSector(s) + NumBlocksPerSector(s) - 1);
|
|
|
|
// A but not B
|
|
if (found[(s * 2)] && !found[(s * 2) + 1]) {
|
|
c->key = bytes_to_num(k_sector[s].keyA, 6);
|
|
uint8_t status = chkKey_readb(c, k_sector[s].keyB);
|
|
if (status == 0) {
|
|
found[(s * 2) + 1] = 1;
|
|
++*foundkeys;
|
|
|
|
if (g_dbglevel >= 3) Dbprintf("ChkKeys_fast: Reading B found (%d)", c->block);
|
|
|
|
// try quick find all B?
|
|
// assume: keys comes in groups. Find one B, test against all B.
|
|
c->key = bytes_to_num(k_sector[s].keyB, 6);
|
|
c->keyType = 1;
|
|
chkKey_scanB(c, k_sector, found, sectorcnt, foundkeys);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// get Chunks of keys, to test authentication against card.
|
|
// arg0 = antal sectorer
|
|
// arg0 = first time
|
|
// arg1 = clear trace
|
|
// arg2 = antal nycklar i keychunk
|
|
// datain = keys as array
|
|
void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
|
|
|
|
// first call or
|
|
uint8_t sectorcnt = arg0 & 0xFF; // 16;
|
|
uint8_t firstchunk = (arg0 >> 8) & 0xF;
|
|
uint8_t lastchunk = (arg0 >> 12) & 0xF;
|
|
uint16_t singleSectorParams = (arg0 >> 16) & 0xFFFF;
|
|
uint8_t strategy = arg1 & 0xFF;
|
|
uint8_t use_flashmem = (arg1 >> 8) & 0xFF;
|
|
uint16_t keyCount = arg2 & 0xFF;
|
|
uint8_t status = 0;
|
|
bool singleSectorMode = (singleSectorParams >> 15) & 1;
|
|
uint8_t keytype = (singleSectorParams >> 8) & 1;
|
|
uint8_t blockn = singleSectorParams & 0xFF;
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
struct chk_t chk_data;
|
|
|
|
uint8_t allkeys = sectorcnt << 1;
|
|
|
|
static uint32_t cuid = 0;
|
|
static uint8_t cascade_levels = 0;
|
|
static uint8_t foundkeys = 0;
|
|
static sector_t k_sector[80];
|
|
static uint8_t found[80];
|
|
static uint8_t *uid;
|
|
|
|
int oldbg = g_dbglevel;
|
|
|
|
#ifdef WITH_FLASH
|
|
if (use_flashmem) {
|
|
BigBuf_free();
|
|
uint16_t isok = 0;
|
|
uint8_t size[2] = {0x00, 0x00};
|
|
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET, size, 2);
|
|
if (isok != 2)
|
|
goto OUT;
|
|
|
|
keyCount = size[1] << 8 | size[0];
|
|
|
|
if (keyCount == 0)
|
|
goto OUT;
|
|
|
|
// limit size of available for keys in bigbuff
|
|
// a key is 6bytes
|
|
uint16_t key_mem_available = MIN(BigBuf_get_size(), keyCount * 6);
|
|
|
|
keyCount = key_mem_available / 6;
|
|
|
|
datain = BigBuf_malloc(key_mem_available);
|
|
if (datain == NULL)
|
|
goto OUT;
|
|
|
|
isok = Flash_ReadData(DEFAULT_MF_KEYS_OFFSET + 2, datain, key_mem_available);
|
|
if (isok != key_mem_available)
|
|
goto OUT;
|
|
|
|
}
|
|
#endif
|
|
|
|
if (uid == NULL || firstchunk) {
|
|
uid = BigBuf_malloc(10);
|
|
if (uid == NULL)
|
|
goto OUT;
|
|
}
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
|
|
if (firstchunk) {
|
|
clear_trace();
|
|
set_tracing(false);
|
|
|
|
memset(k_sector, 0x00, 480 + 10);
|
|
memset(found, 0x00, sizeof(found));
|
|
foundkeys = 0;
|
|
|
|
iso14a_card_select_t card_info;
|
|
if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys_fast: Can't select card (ALL)");
|
|
goto OUT;
|
|
}
|
|
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
CHK_TIMEOUT();
|
|
}
|
|
|
|
// clear debug level. We are expecting lots of authentication failures...
|
|
g_dbglevel = DBG_NONE;
|
|
|
|
// set check struct.
|
|
chk_data.uid = uid;
|
|
chk_data.cuid = cuid;
|
|
chk_data.cl = cascade_levels;
|
|
chk_data.pcs = pcs;
|
|
chk_data.block = 0;
|
|
|
|
if (singleSectorMode) {
|
|
allkeys = 1;
|
|
chk_data.block = blockn;
|
|
chk_data.keyType = keytype;
|
|
for (uint16_t i = 0; i < keyCount; ++i) {
|
|
|
|
// Allow button press / usb cmd to interrupt device
|
|
if (BUTTON_PRESS() || data_available()) {
|
|
goto OUT;
|
|
}
|
|
|
|
WDT_HIT();
|
|
|
|
chk_data.key = bytes_to_num(datain + i * 6, 6);
|
|
if (chkKey(&chk_data) == 0) {
|
|
foundkeys++;
|
|
reply_old(CMD_ACK, 1, 0, 0, datain + i * 6, 6);
|
|
goto out;
|
|
}
|
|
}
|
|
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
|
|
out:
|
|
LEDsoff();
|
|
crypto1_deinit(pcs);
|
|
if (foundkeys == allkeys || lastchunk) {
|
|
set_tracing(false);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
}
|
|
g_dbglevel = oldbg;
|
|
return;
|
|
}
|
|
|
|
|
|
// keychunk loop - depth first one sector.
|
|
if (strategy == 1 || use_flashmem) {
|
|
|
|
uint8_t newfound = foundkeys;
|
|
|
|
uint16_t lastpos = 0;
|
|
uint16_t s_point = 0;
|
|
// Sector main loop
|
|
// keep track of how many sectors on card.
|
|
for (uint8_t s = 0; s < sectorcnt; ++s) {
|
|
|
|
if (found[(s * 2)] && found[(s * 2) + 1])
|
|
continue;
|
|
|
|
for (uint16_t i = s_point; i < keyCount; ++i) {
|
|
|
|
// Allow button press / usb cmd to interrupt device
|
|
if (BUTTON_PRESS() || data_available()) {
|
|
goto OUT;
|
|
}
|
|
|
|
// found all keys?
|
|
if (foundkeys == allkeys)
|
|
goto OUT;
|
|
|
|
WDT_HIT();
|
|
|
|
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
|
|
chk_data.block = FirstBlockOfSector(s);
|
|
|
|
// new key
|
|
chk_data.key = bytes_to_num(datain + i * 6, 6);
|
|
|
|
// skip already found A keys
|
|
if (!found[(s * 2)]) {
|
|
chk_data.keyType = 0;
|
|
status = chkKey(&chk_data);
|
|
if (status == 0) {
|
|
memcpy(k_sector[s].keyA, datain + i * 6, 6);
|
|
found[(s * 2)] = 1;
|
|
++foundkeys;
|
|
|
|
chkKey_scanA(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
// read Block B, if A is found.
|
|
chkKey_loopBonly(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
chk_data.keyType = 1;
|
|
chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
chk_data.keyType = 0;
|
|
chk_data.block = FirstBlockOfSector(s);
|
|
|
|
if (use_flashmem) {
|
|
if (lastpos != i && lastpos != 0) {
|
|
if (i - lastpos < 0xF) {
|
|
s_point = i & 0xFFF0;
|
|
}
|
|
} else {
|
|
lastpos = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// skip already found B keys
|
|
if (!found[(s * 2) + 1]) {
|
|
chk_data.keyType = 1;
|
|
status = chkKey(&chk_data);
|
|
if (status == 0) {
|
|
memcpy(k_sector[s].keyB, datain + i * 6, 6);
|
|
found[(s * 2) + 1] = 1;
|
|
++foundkeys;
|
|
|
|
chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
if (use_flashmem) {
|
|
if (lastpos != i && lastpos != 0) {
|
|
|
|
if (i - lastpos < 0xF)
|
|
s_point = i & 0xFFF0;
|
|
} else {
|
|
lastpos = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (found[(s * 2)] && found[(s * 2) + 1])
|
|
break;
|
|
|
|
} // end keys test loop - depth first
|
|
|
|
// assume1. if no keys found in first sector, get next keychunk from client
|
|
if (!use_flashmem && (newfound - foundkeys == 0))
|
|
goto OUT;
|
|
|
|
} // end loop - sector
|
|
} // end strategy 1
|
|
|
|
if (foundkeys == allkeys)
|
|
goto OUT;
|
|
|
|
if (strategy == 2 || use_flashmem) {
|
|
|
|
// Keychunk loop
|
|
for (uint16_t i = 0; i < keyCount; i++) {
|
|
|
|
// Allow button press / usb cmd to interrupt device
|
|
if (BUTTON_PRESS() || data_available()) break;
|
|
|
|
// found all keys?
|
|
if (foundkeys == allkeys)
|
|
goto OUT;
|
|
|
|
WDT_HIT();
|
|
|
|
// new key
|
|
chk_data.key = bytes_to_num(datain + i * 6, 6);
|
|
|
|
// Sector main loop
|
|
// keep track of how many sectors on card.
|
|
for (uint8_t s = 0; s < sectorcnt; ++s) {
|
|
|
|
if (found[(s * 2)] && found[(s * 2) + 1]) continue;
|
|
|
|
// found all keys?
|
|
if (foundkeys == allkeys)
|
|
goto OUT;
|
|
|
|
// assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector
|
|
chk_data.block = FirstBlockOfSector(s);
|
|
|
|
// skip already found A keys
|
|
if (!found[(s * 2)]) {
|
|
chk_data.keyType = 0;
|
|
status = chkKey(&chk_data);
|
|
if (status == 0) {
|
|
memcpy(k_sector[s].keyA, datain + i * 6, 6);
|
|
found[(s * 2)] = 1;
|
|
++foundkeys;
|
|
|
|
chkKey_scanA(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
// read Block B, if A is found.
|
|
chkKey_loopBonly(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
|
|
chk_data.block = FirstBlockOfSector(s);
|
|
}
|
|
}
|
|
|
|
// skip already found B keys
|
|
if (!found[(s * 2) + 1]) {
|
|
chk_data.keyType = 1;
|
|
status = chkKey(&chk_data);
|
|
if (status == 0) {
|
|
memcpy(k_sector[s].keyB, datain + i * 6, 6);
|
|
found[(s * 2) + 1] = 1;
|
|
++foundkeys;
|
|
|
|
chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys);
|
|
}
|
|
}
|
|
} // end loop sectors
|
|
} // end loop keys
|
|
} // end loop strategy 2
|
|
OUT:
|
|
LEDsoff();
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
// All keys found, send to client, or last keychunk from client
|
|
if (foundkeys == allkeys || lastchunk) {
|
|
|
|
uint64_t foo = 0;
|
|
for (uint8_t m = 0; m < 64; m++) {
|
|
foo |= ((uint64_t)(found[m] & 1) << m);
|
|
}
|
|
|
|
uint16_t bar = 0;
|
|
uint8_t j = 0;
|
|
for (uint8_t m = 64; m < ARRAYLEN(found); m++) {
|
|
bar |= ((uint16_t)(found[m] & 1) << j++);
|
|
}
|
|
|
|
uint8_t *tmp = BigBuf_malloc(480 + 10);
|
|
memcpy(tmp, k_sector, sectorcnt * sizeof(sector_t));
|
|
num_to_bytes(foo, 8, tmp + 480);
|
|
tmp[488] = bar & 0xFF;
|
|
tmp[489] = bar >> 8 & 0xFF;
|
|
|
|
reply_old(CMD_ACK, foundkeys, 0, 0, tmp, 480 + 10);
|
|
|
|
set_tracing(false);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
BigBuf_free();
|
|
BigBuf_Clear_ext(false);
|
|
|
|
// special trick ecfill
|
|
if (use_flashmem && foundkeys == allkeys) {
|
|
|
|
uint8_t block[16] = {0};
|
|
for (int i = 0; i < sectorcnt; i++) {
|
|
|
|
uint8_t blockno;
|
|
if (i < 32) {
|
|
blockno = (i * 4) ^ 0x3;
|
|
} else {
|
|
blockno = (32 * 4 + (i - 32) * 16) ^ 0xF;
|
|
}
|
|
// get ST
|
|
emlGetMem(block, blockno, 1);
|
|
|
|
memcpy(block, k_sector[i].keyA, 6);
|
|
memcpy(block + 10, k_sector[i].keyB, 6);
|
|
|
|
emlSetMem_xt(block, blockno, 1, sizeof(block));
|
|
}
|
|
|
|
MifareECardLoad(sectorcnt, MF_KEY_A);
|
|
MifareECardLoad(sectorcnt, MF_KEY_B);
|
|
}
|
|
} else {
|
|
// partial/none keys found
|
|
reply_mix(CMD_ACK, foundkeys, 0, 0, 0, 0);
|
|
}
|
|
|
|
g_dbglevel = oldbg;
|
|
}
|
|
|
|
void MifareChkKeys(uint8_t *datain, uint8_t reserved_mem) {
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
uint8_t uid[10] = {0x00};
|
|
|
|
uint64_t key = 0;
|
|
uint32_t cuid = 0;
|
|
uint8_t cascade_levels = 0;
|
|
struct {
|
|
uint8_t key[6];
|
|
bool found;
|
|
} PACKED keyresult;
|
|
keyresult.found = false;
|
|
memset(keyresult.key, 0x00, sizeof(keyresult.key));
|
|
|
|
bool have_uid = false;
|
|
|
|
uint8_t keyType = datain[0];
|
|
uint8_t blockNo = datain[1];
|
|
bool clearTrace = datain[2];
|
|
uint16_t key_count = (datain[3] << 8) | datain[4];
|
|
|
|
uint16_t key_mem_available;
|
|
if (reserved_mem)
|
|
key_mem_available = key_count * 6;
|
|
else
|
|
key_mem_available = MIN((PM3_CMD_DATA_SIZE - 5), key_count * 6);
|
|
|
|
key_count = key_mem_available / 6;
|
|
|
|
datain += 5;
|
|
|
|
LEDsoff();
|
|
LED_A_ON();
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
if (clearTrace)
|
|
clear_trace();
|
|
|
|
int oldbg = g_dbglevel;
|
|
g_dbglevel = DBG_NONE;
|
|
|
|
set_tracing(false);
|
|
|
|
for (uint16_t i = 0; i < key_count; i++) {
|
|
|
|
// Iceman: use piwi's faster nonce collecting part in hardnested.
|
|
if (have_uid == false) { // need a full select cycle to get the uid first
|
|
iso14a_card_select_t card_info;
|
|
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (ALL)");
|
|
--i; // try same key once again
|
|
continue;
|
|
}
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
have_uid = true;
|
|
} else { // no need for anticollision. We can directly select the card
|
|
if (iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("ChkKeys: Can't select card (UID)");
|
|
--i; // try same key once again
|
|
continue;
|
|
}
|
|
}
|
|
|
|
key = bytes_to_num(datain + i * 6, 6);
|
|
if (mifare_classic_auth(pcs, cuid, blockNo, keyType, key, AUTH_FIRST)) {
|
|
// CHK_TIMEOUT();
|
|
continue;
|
|
}
|
|
|
|
memcpy(keyresult.key, datain + i * 6, 6);
|
|
keyresult.found = true;
|
|
break;
|
|
}
|
|
|
|
LED_B_ON();
|
|
crypto1_deinit(pcs);
|
|
|
|
reply_ng(CMD_HF_MIFARE_CHKKEYS, PM3_SUCCESS, (uint8_t *)&keyresult, sizeof(keyresult));
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
g_dbglevel = oldbg;
|
|
}
|
|
|
|
void MifareChkKeys_file(uint8_t *fn) {
|
|
|
|
#ifdef WITH_FLASH
|
|
BigBuf_free();
|
|
|
|
SpinOff(0);
|
|
|
|
int changed = rdv40_spiffs_lazy_mount();
|
|
uint32_t size = size_in_spiffs((char *)fn);
|
|
uint8_t *mem = BigBuf_malloc(size);
|
|
|
|
rdv40_spiffs_read_as_filetype((char *)fn, mem, size, RDV40_SPIFFS_SAFETY_SAFE);
|
|
|
|
if (changed) {
|
|
rdv40_spiffs_lazy_unmount();
|
|
}
|
|
|
|
SpinOff(0);
|
|
|
|
MifareChkKeys(mem, true);
|
|
|
|
BigBuf_free();
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// MIFARE Personalize UID. Only for Mifare Classic EV1 7Byte UID
|
|
//-----------------------------------------------------------------------------
|
|
void MifarePersonalizeUID(uint8_t keyType, uint8_t perso_option, uint64_t key) {
|
|
|
|
uint16_t isOK = PM3_EUNDEF;
|
|
uint8_t uid[10];
|
|
uint32_t cuid;
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
LED_A_ON();
|
|
|
|
while (true) {
|
|
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
break;
|
|
}
|
|
|
|
uint8_t block_number = 0;
|
|
if (mifare_classic_auth(pcs, cuid, block_number, keyType, key, AUTH_FIRST)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
break;
|
|
}
|
|
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
|
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
|
|
int len = mifare_sendcmd_short(pcs, true, MIFARE_EV1_PERSONAL_UID, perso_option, receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar, NULL);
|
|
if (len != 1 || receivedAnswer[0] != CARD_ACK) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
|
|
break;
|
|
}
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
break;
|
|
}
|
|
isOK = PM3_SUCCESS;
|
|
break;
|
|
}
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
LED_B_ON();
|
|
reply_ng(CMD_HF_MIFARE_PERSONALIZE_UID, isOK, NULL, 0);
|
|
LED_B_OFF();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Work with emulator memory
|
|
//
|
|
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
|
|
// involved in dealing with emulator memory. But if it is called later, it might
|
|
// destroy the Emulator Memory.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void MifareEMemClr(void) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
emlClearMem();
|
|
}
|
|
|
|
void MifareEMemGet(uint8_t blockno, uint8_t blockcnt) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
//
|
|
size_t size = blockcnt * 16;
|
|
if (size > PM3_CMD_DATA_SIZE) {
|
|
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_EMALLOC, NULL, 0);
|
|
return;
|
|
}
|
|
|
|
uint8_t *buf = BigBuf_malloc(size);
|
|
|
|
emlGetMem(buf, blockno, blockcnt); // data, block num, blocks count (max 4)
|
|
|
|
LED_B_ON();
|
|
reply_ng(CMD_HF_MIFARE_EML_MEMGET, PM3_SUCCESS, buf, size);
|
|
LED_B_OFF();
|
|
BigBuf_free_keep_EM();
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Load a card into the emulator memory
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
int MifareECardLoadExt(uint8_t sectorcnt, uint8_t keytype) {
|
|
int retval = MifareECardLoad(sectorcnt, keytype);
|
|
reply_ng(CMD_HF_MIFARE_EML_LOAD, retval, NULL, 0);
|
|
return retval;
|
|
}
|
|
|
|
int MifareECardLoad(uint8_t sectorcnt, uint8_t keytype) {
|
|
|
|
LED_A_ON();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// variables
|
|
bool have_uid = false;
|
|
uint8_t cascade_levels = 0;
|
|
uint32_t cuid = 0;
|
|
uint8_t uid[10] = {0x00};
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
int retval = PM3_SUCCESS;
|
|
|
|
// increase time-out. Magic card etc are slow
|
|
uint32_t timeout = iso14a_get_timeout();
|
|
// frame waiting time (FWT) in 1/fc
|
|
uint32_t fwt = 256 * 16 * (1 << 6);
|
|
iso14a_set_timeout(fwt / (8 * 16));
|
|
|
|
for (uint8_t s = 0; s < sectorcnt; s++) {
|
|
|
|
uint64_t ui64Key = emlGetKey(s, keytype);
|
|
|
|
// MIFARE Classic 1K Ev1 , MIFARE Classic MINI Ev1
|
|
if (sectorcnt == 18) {
|
|
// MFC 1K EV1, skip sector 16 since its lockdown
|
|
if (s == 16) {
|
|
// unknown sector trailer, keep the keys, set only the AC
|
|
uint8_t st[16] = {0x00};
|
|
emlGetMem(st, FirstBlockOfSector(s) + 3, 1);
|
|
memcpy(st + 6, "\x70\xF0\xF8\x69", 4);
|
|
emlSetMem_xt(st, FirstBlockOfSector(s) + 3, 1, 16);
|
|
continue;
|
|
}
|
|
|
|
// ICEMAN: ugly hack, we don't want to trigger the partial load message
|
|
// MFC 1K EV1 sector 17 don't use key A.
|
|
// not mention we don't save signatures in our MFC dump files.
|
|
if (s == 17 && keytype == MF_KEY_A) {
|
|
ui64Key = 0x4B791BEA7BCC;
|
|
keytype = 1;
|
|
}
|
|
}
|
|
|
|
// use fast select
|
|
if (have_uid == false) { // need a full select cycle to get the uid first
|
|
iso14a_card_select_t card_info;
|
|
if (iso14443a_select_card(uid, &card_info, &cuid, true, 0, true) == 0) {
|
|
continue;
|
|
}
|
|
|
|
switch (card_info.uidlen) {
|
|
case 4 :
|
|
cascade_levels = 1;
|
|
break;
|
|
case 7 :
|
|
cascade_levels = 2;
|
|
break;
|
|
case 10:
|
|
cascade_levels = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
have_uid = true;
|
|
} else { // no need for anticollision. We can directly select the card
|
|
if (iso14443a_fast_select_card(uid, cascade_levels) == 0) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Auth
|
|
if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(s), keytype, ui64Key, AUTH_FIRST)) {
|
|
|
|
ui64Key = emlGetKey(s, MF_KEY_B);
|
|
|
|
if (mifare_classic_auth(pcs, cuid, FirstBlockOfSector(s), MF_KEY_B, ui64Key, AUTH_FIRST)) {
|
|
retval = PM3_EPARTIAL;
|
|
if (g_dbglevel >= DBG_ERROR) {
|
|
Dbprintf("Sector %2d - Auth error", s);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
|
|
#define MAX_RETRIES 2
|
|
|
|
uint8_t data[16] = {0x00};
|
|
for (uint8_t b = 0; b < NumBlocksPerSector(s); b++) {
|
|
|
|
memset(data, 0x00, sizeof(data));
|
|
uint8_t tb = FirstBlockOfSector(s) + b;
|
|
uint8_t r = 0;
|
|
for (; r < MAX_RETRIES; r++) {
|
|
|
|
int res = mifare_classic_readblock(pcs, tb, data);
|
|
if (res == 1) {
|
|
retval |= PM3_EPARTIAL;
|
|
if (g_dbglevel >= DBG_ERROR) {
|
|
Dbprintf("Error No rights reading sector %2d block %2d", s, b);
|
|
}
|
|
break;
|
|
}
|
|
// retry if wrong len.
|
|
if (res != 0) {
|
|
continue;
|
|
}
|
|
|
|
// No need to copy empty
|
|
if (memcmp(data, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16) == 0) {
|
|
break;
|
|
}
|
|
|
|
if (IsSectorTrailer(b)) {
|
|
// sector trailer, keep the keys, set only the AC
|
|
uint8_t st[16] = {0x00};
|
|
emlGetMem(st, tb, 1);
|
|
memcpy(st + 6, data + 6, 4);
|
|
emlSetMem_xt(st, tb, 1, 16);
|
|
} else {
|
|
emlSetMem_xt(data, tb, 1, 16);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// if we failed all retries, notify client
|
|
if (r == MAX_RETRIES) {
|
|
retval |= PM3_EPARTIAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
int res = mifare_classic_halt(pcs);
|
|
(void)res;
|
|
|
|
iso14a_set_timeout(timeout);
|
|
crypto1_deinit(pcs);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
return retval;
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn)
|
|
//
|
|
// PARAMS - workFlags
|
|
// bit 0 - need get UID
|
|
// bit 1 - need wupC
|
|
// bit 2 - need HALT after sequence
|
|
// bit 3 - need turn on FPGA before sequence
|
|
// bit 4 - need turn off FPGA
|
|
// bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a)
|
|
// bit 6 - wipe tag.
|
|
//-----------------------------------------------------------------------------
|
|
|
|
void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
|
|
|
|
// params
|
|
uint8_t workFlags = arg0;
|
|
uint8_t blockNo = arg1;
|
|
|
|
// detect 1a/1b
|
|
bool is1b = false;
|
|
|
|
// variables
|
|
bool isOK = false; //assume we will get an error
|
|
uint8_t errormsg = 0x00;
|
|
uint8_t uid[10] = {0x00};
|
|
uint8_t data[18] = {0x00};
|
|
uint32_t cuid = 0;
|
|
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
|
|
|
|
if (workFlags & MAGIC_INIT) {
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
}
|
|
|
|
//loop doesn't loop just breaks out if error
|
|
while (true) {
|
|
// read UID and return to client with write
|
|
if (workFlags & MAGIC_UID) {
|
|
if (!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
errormsg = MAGIC_UID;
|
|
mifare_classic_halt(NULL);
|
|
break;
|
|
}
|
|
mifare_classic_halt(NULL);
|
|
}
|
|
|
|
// wipe tag, fill it with zeros
|
|
if (workFlags & MAGIC_WIPE) {
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
|
|
errormsg = MAGIC_WIPE;
|
|
break;
|
|
}
|
|
|
|
uint32_t old_timeout = iso14a_get_timeout();
|
|
|
|
// 2000 ms timeout
|
|
// 13560000 / 1000 / (8 * 16) * timeout
|
|
iso14a_set_timeout(21190);
|
|
|
|
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wipeC error");
|
|
errormsg = MAGIC_WIPE;
|
|
break;
|
|
}
|
|
iso14a_set_timeout(old_timeout);
|
|
|
|
mifare_classic_halt(NULL);
|
|
}
|
|
|
|
// write block
|
|
if (workFlags & MAGIC_WUPC) {
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
|
|
errormsg = MAGIC_WUPC;
|
|
break;
|
|
}
|
|
|
|
if (!is1b) {
|
|
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
|
|
is1b = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send command error");
|
|
errormsg = 4;
|
|
break;
|
|
}
|
|
|
|
memcpy(data, datain, 16);
|
|
AddCrc14A(data, 16);
|
|
|
|
ReaderTransmit(data, sizeof(data), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("write block send data error");
|
|
errormsg = 0;
|
|
break;
|
|
}
|
|
|
|
if (workFlags & MAGIC_HALT) {
|
|
mifare_classic_halt(NULL);
|
|
}
|
|
|
|
isOK = true;
|
|
break;
|
|
|
|
} // end while
|
|
|
|
if (isOK)
|
|
reply_mix(CMD_ACK, 1, 0, 0, uid, sizeof(uid));
|
|
else
|
|
OnErrorMagic(errormsg);
|
|
|
|
if (workFlags & MAGIC_OFF)
|
|
OnSuccessMagic();
|
|
}
|
|
|
|
void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain) {
|
|
|
|
uint8_t workFlags = arg0;
|
|
uint8_t blockNo = arg1;
|
|
uint8_t errormsg = 0x00;
|
|
bool isOK = false; //assume we will get an error
|
|
|
|
// detect 1a/1b
|
|
bool is1b = false;
|
|
|
|
// variables
|
|
uint8_t data[MAX_MIFARE_FRAME_SIZE];
|
|
uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00};
|
|
uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00};
|
|
|
|
memset(data, 0x00, sizeof(data));
|
|
|
|
if (workFlags & MAGIC_INIT) {
|
|
LED_A_ON();
|
|
LED_B_OFF();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
}
|
|
|
|
// increase time-out. Magic card etc are slow
|
|
uint32_t timeout = iso14a_get_timeout();
|
|
// frame waiting time (FWT) in 1/fc
|
|
uint32_t fwt = 256 * 16 * (1 << 7);
|
|
iso14a_set_timeout(fwt / (8 * 16));
|
|
|
|
//loop doesn't loop just breaks out if error or done
|
|
while (true) {
|
|
if (workFlags & MAGIC_WUPC) {
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("wupC1 error");
|
|
errormsg = MAGIC_WUPC;
|
|
break;
|
|
}
|
|
|
|
if (is1b == false) {
|
|
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
|
|
if ((ReaderReceive(receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar) == 0) || (receivedAnswer[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_INFO) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]");
|
|
is1b = true;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// read block
|
|
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, sizeof(receivedAnswer), receivedAnswerPar, NULL) != MAX_MIFARE_FRAME_SIZE)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("read block send command error");
|
|
errormsg = 0;
|
|
break;
|
|
}
|
|
|
|
memcpy(data, receivedAnswer, sizeof(data));
|
|
|
|
// send HALT
|
|
if (workFlags & MAGIC_HALT) {
|
|
mifare_classic_halt(NULL);
|
|
}
|
|
|
|
isOK = true;
|
|
break;
|
|
}
|
|
// if MAGIC_DATAIN, the data stays on device side.
|
|
if (workFlags & MAGIC_DATAIN) {
|
|
if (isOK) {
|
|
memcpy(datain, data, sizeof(data));
|
|
}
|
|
} else {
|
|
if (isOK) {
|
|
reply_old(CMD_ACK, 1, 0, 0, data, sizeof(data));
|
|
} else {
|
|
OnErrorMagic(errormsg);
|
|
}
|
|
}
|
|
|
|
if (workFlags & MAGIC_OFF) {
|
|
OnSuccessMagic();
|
|
}
|
|
|
|
iso14a_set_timeout(timeout);
|
|
}
|
|
|
|
static void mf_reset_card(void) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(40);
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
}
|
|
|
|
void MifareCIdent(bool is_mfc, uint8_t keytype, uint8_t *key) {
|
|
// variables
|
|
uint8_t rec[1] = {0x00};
|
|
uint8_t recpar[1] = {0x00};
|
|
uint8_t rats[4] = {ISO14443A_CMD_RATS, 0x80, 0x31, 0x73};
|
|
uint8_t rdblf0[4] = {ISO14443A_CMD_READBLOCK, 0xF0, 0x8D, 0x5f};
|
|
uint8_t rdbl00[4] = {ISO14443A_CMD_READBLOCK, 0x00, 0x02, 0xa8};
|
|
uint8_t gen4gdmAuth[4] = {MIFARE_MAGIC_GDM_AUTH_KEY, 0x00, 0x6C, 0x92};
|
|
uint8_t gen4gdmGetConf[4] = {MIFARE_MAGIC_GDM_READ_CFG, 0x00, 0x39, 0xF7};
|
|
uint8_t gen4GetConf[8] = {GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_GETCNF, 0, 0};
|
|
uint8_t superGen1[9] = {0x0A, 0x00, 0x00, 0xA6, 0xB0, 0x00, 0x10, 0x14, 0x1D};
|
|
bool isGen2 = false;
|
|
|
|
uint8_t *par = BigBuf_calloc(MAX_PARITY_SIZE);
|
|
uint8_t *buf = BigBuf_calloc(PM3_CMD_DATA_SIZE);
|
|
uint8_t *uid = BigBuf_calloc(10);
|
|
uint16_t flag = MAGIC_FLAG_NONE;
|
|
uint32_t cuid = 0;
|
|
int res = 0;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
// Generation 1 test
|
|
ReaderTransmitBitsPar(wupC1, 7, NULL, NULL);
|
|
if (ReaderReceive(rec, 1, recpar) && (rec[0] == 0x0A)) {
|
|
|
|
flag = MAGIC_FLAG_GEN_1A;
|
|
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
|
|
uint16_t tmp = ReaderReceive(rec, 1, recpar);
|
|
if ((tmp && (rec[0] != 0x0A)) || (tmp == 0)) {
|
|
flag = MAGIC_FLAG_GEN_1B;
|
|
}
|
|
|
|
// check for GDM config
|
|
ReaderTransmit(gen4gdmGetConf, sizeof(gen4gdmGetConf), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res > 1) {
|
|
flag |= MAGIC_FLAG_GDM_WUP_40;
|
|
}
|
|
}
|
|
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res) {
|
|
// Check for Magic Gen4 GTU with default password:
|
|
// Get config should return 30 or 32 bytes
|
|
AddCrc14A(gen4GetConf, sizeof(gen4GetConf) - 2);
|
|
ReaderTransmit(gen4GetConf, sizeof(gen4GetConf), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 32 || res == 34) {
|
|
flag |= MAGIC_FLAG_GEN_4GTU;
|
|
}
|
|
}
|
|
|
|
// reset card
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, false);
|
|
if (res) {
|
|
if (cuid == 0xAA55C396) {
|
|
flag |= MAGIC_FLAG_GEN_UNFUSED;
|
|
}
|
|
|
|
ReaderTransmit(rats, sizeof(rats), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
|
|
if (res) {
|
|
if (memcmp(buf, "\x09\x78\x00\x91\x02\xDA\xBC\x19\x10", 9) == 0) {
|
|
// test for some MFC gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x0D\x78\x00\x71\x02\x88\x49\xA1\x30\x20\x15\x06\x08\x56\x3D", 15) == 0) {
|
|
// test for some MFC 7b gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x0A\x78\x00\x81\x02\xDB\xA0\xC1\x19\x40\x2A\xB5", 12) == 0) {
|
|
// test for Ultralight magic gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x41\xDF", 18) == 0) {
|
|
// test for Ultralight EV1 magic gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xC3\x00\x04\x03\x01\x01\x00\x0B\x03\x16\xD7", 18) == 0) {
|
|
// test for some other Ultralight EV1 magic gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x85\x00\x00\xA0\x0A\x00\x0A\xB0\x00\x00\x00\x00\x00\x00\x00\x00\x18\x4D", 18) == 0) {
|
|
// test for some other Ultralight magic gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
} else if (memcmp(buf, "\x85\x00\x00\xA0\x00\x00\x0A\xA5\x00\x04\x04\x02\x01\x00\x0F\x03\x79\x0C", 18) == 0) {
|
|
// test for NTAG213 magic gen2
|
|
isGen2 = true;
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
}
|
|
|
|
// test for super card
|
|
ReaderTransmit(superGen1, sizeof(superGen1), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 22) {
|
|
uint8_t isGen = MAGIC_FLAG_SUPER_GEN1;
|
|
|
|
// check for super card gen2
|
|
// not available after RATS, reset card before executing
|
|
mf_reset_card();
|
|
|
|
iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
ReaderTransmit(rdbl00, sizeof(rdbl00), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 18) {
|
|
isGen = MAGIC_FLAG_SUPER_GEN2;
|
|
}
|
|
|
|
flag |= isGen;
|
|
}
|
|
}
|
|
|
|
if (is_mfc == false) {
|
|
// magic ntag test
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res == 2) {
|
|
ReaderTransmit(rdblf0, sizeof(rdblf0), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 18) {
|
|
flag |= MAGIC_FLAG_NTAG21X;
|
|
}
|
|
}
|
|
} else {
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
// CUID (with default sector 0 B key) test
|
|
// regular cards will NAK the WRITEBLOCK(0) command, while DirectWrite will ACK it
|
|
// if we do get an ACK, we immediately abort to ensure nothing is ever actually written
|
|
// only perform test if we haven't already identified Gen2. No need test if we have a positive identification already
|
|
if (isGen2 == false) {
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res) {
|
|
|
|
uint64_t tmpkey = bytes_to_num(key, 6);
|
|
if (mifare_classic_authex(pcs, cuid, 0, keytype, tmpkey, AUTH_FIRST, NULL, NULL) == 0) {
|
|
|
|
if ((mifare_sendcmd_short(pcs, 1, ISO14443A_CMD_WRITEBLOCK, 0, buf, PM3_CMD_DATA_SIZE, par, NULL) == 1) && (buf[0] == 0x0A)) {
|
|
flag |= MAGIC_FLAG_GEN_2;
|
|
// turn off immediately to ensure nothing ever accidentally writes to the block
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
}
|
|
crypto1_deinit(pcs);
|
|
}
|
|
}
|
|
|
|
// magic MFC Gen3 test 1
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res) {
|
|
ReaderTransmit(rdbl00, sizeof(rdbl00), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 18) {
|
|
flag |= MAGIC_FLAG_GEN_3;
|
|
}
|
|
}
|
|
|
|
// magic MFC Gen4 GDM magic auth test
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res) {
|
|
ReaderTransmit(gen4gdmAuth, sizeof(gen4gdmAuth), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 4) {
|
|
flag |= MAGIC_FLAG_GDM_AUTH;
|
|
}
|
|
}
|
|
|
|
// QL88 test
|
|
mf_reset_card();
|
|
|
|
res = iso14443a_select_card(uid, NULL, &cuid, true, 0, true);
|
|
if (res) {
|
|
if (mifare_classic_authex(pcs, cuid, 68, MF_KEY_B, 0x707B11FC1481, AUTH_FIRST, NULL, NULL) == 0) {
|
|
flag |= MAGIC_FLAG_QL88;
|
|
}
|
|
crypto1_deinit(pcs);
|
|
}
|
|
}
|
|
};
|
|
|
|
// GDM alt magic wakeup (20)
|
|
ReaderTransmitBitsPar(wupGDM1, 7, NULL, NULL);
|
|
if (ReaderReceive(rec, 1, recpar) && (rec[0] == 0x0a)) {
|
|
flag |= MAGIC_FLAG_GDM_WUP_20;
|
|
}
|
|
|
|
reply_ng(CMD_HF_MIFARE_CIDENT, PM3_SUCCESS, (uint8_t *)&flag, sizeof(uint16_t));
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareHasStaticNonce(void) {
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
// variables
|
|
int retval = PM3_SUCCESS;
|
|
uint32_t nt = 0;
|
|
uint8_t *uid = BigBuf_malloc(10);
|
|
|
|
memset(uid, 0x00, 10);
|
|
|
|
uint8_t data[1] = { NONCE_FAIL };
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
uint8_t counter = 0;
|
|
for (uint8_t i = 0; i < 3; i++) {
|
|
|
|
if (!iso14443a_select_card(uid, NULL, NULL, true, 0, true)) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
uint8_t rec[4] = {0x00};
|
|
uint8_t recpar[1] = {0x00};
|
|
// Transmit MIFARE_CLASSIC_AUTH 0x60, block 0
|
|
int len = mifare_sendcmd_short(pcs, false, MIFARE_AUTH_KEYA, 0, rec, sizeof(rec), recpar, NULL);
|
|
if (len != 4) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
// Save the tag nonce (nt)
|
|
if (nt == bytes_to_num(rec, 4)) {
|
|
counter++;
|
|
}
|
|
|
|
nt = bytes_to_num(rec, 4);
|
|
|
|
// some cards with static nonce need to be reset before next query
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
CHK_TIMEOUT();
|
|
|
|
memset(rec, 0x00, sizeof(rec));
|
|
}
|
|
|
|
if (counter) {
|
|
Dbprintf("Static nonce......... " _YELLOW_("%08x"), nt);
|
|
data[0] = NONCE_STATIC;
|
|
} else {
|
|
data[0] = NONCE_NORMAL;
|
|
}
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_STATIC_NONCE, retval, data, sizeof(data));
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
crypto1_deinit(pcs);
|
|
}
|
|
|
|
// FUDAN card w static encrypted nonces
|
|
// 2B F9 1C 1B D5 08 48 48 03 A4 B1 B1 75 FF 2D 90
|
|
// ^^ ^^
|
|
|
|
void MifareHasStaticEncryptedNonce(uint8_t block_no, uint8_t key_type, uint8_t *key, uint8_t block_no_nested, uint8_t key_type_nested, uint8_t *key_nested, uint8_t nr_nested, bool reset, bool hardreset, bool addread, bool addauth, bool incblk2, bool corruptnrar, bool corruptnrarparity) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
LEDsoff();
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
int retval = PM3_SUCCESS;
|
|
|
|
uint8_t data[14] = { NONCE_FAIL };
|
|
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs;
|
|
pcs = &mpcs;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
uint8_t enc_counter = 0;
|
|
uint8_t key_auth_cmd = MIFARE_AUTH_KEYA + key_type;
|
|
uint8_t key_auth_cmd_nested = MIFARE_AUTH_KEYA + key_type_nested;
|
|
uint64_t ui64key = bytes_to_num(key, 6);
|
|
uint64_t ui64key_nested = bytes_to_num(key_nested, 6);
|
|
uint32_t oldntenc = 0;
|
|
bool need_first_auth = true;
|
|
uint32_t cuid;
|
|
uint32_t nt;
|
|
uint32_t old_nt;
|
|
uint32_t ntenc;
|
|
uint8_t ntencpar;
|
|
if (nr_nested == 0) {
|
|
cuid = 0;
|
|
if (iso14443a_select_card(NULL, NULL, &cuid, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Select error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, &old_nt, NULL, NULL, NULL, corruptnrar, corruptnrarparity)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
};
|
|
}
|
|
for (uint8_t i = 0; i < nr_nested; i++) {
|
|
if (need_first_auth) {
|
|
cuid = 0;
|
|
|
|
if (hardreset) {
|
|
if (g_dbglevel >= DBG_EXTENDED) {
|
|
Dbprintf("RF reset");
|
|
}
|
|
// some cards need longer than mf_reset_card() to see effect on nT
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(150);
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
}
|
|
if (g_dbglevel >= DBG_EXTENDED) {
|
|
Dbprintf("select");
|
|
}
|
|
if (iso14443a_select_card(NULL, NULL, &cuid, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_FIRST, &old_nt, NULL, NULL, NULL, corruptnrar, corruptnrarparity)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
};
|
|
if (!reset && !hardreset) {
|
|
need_first_auth = false;
|
|
}
|
|
if (addread) {
|
|
uint8_t dataread[16] = {0x00};
|
|
mifare_classic_readblock(pcs, block_no, dataread);
|
|
}
|
|
if (addauth) {
|
|
if (mifare_classic_authex_cmd(pcs, cuid, block_no, key_auth_cmd, ui64key, AUTH_NESTED, &nt, NULL, NULL, NULL, false, false)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
} else if (g_dbglevel >= DBG_EXTENDED) {
|
|
Dbprintf("Nonce distance: %i", nonce_distance(old_nt, nt));
|
|
}
|
|
old_nt = nt;
|
|
}
|
|
}
|
|
|
|
nt = 0;
|
|
ntenc = 0;
|
|
if (mifare_classic_authex_cmd(pcs, cuid, incblk2 ? block_no_nested + (i * 4) : block_no_nested, key_auth_cmd_nested, ui64key_nested, AUTH_NESTED, &nt, &ntenc, &ntencpar, NULL, false, false)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Nested auth error");
|
|
need_first_auth = true;
|
|
} else if (g_dbglevel >= DBG_EXTENDED) {
|
|
Dbprintf("Nonce distance: %i", nonce_distance(old_nt, nt));
|
|
}
|
|
old_nt = nt;
|
|
if (oldntenc == 0) {
|
|
oldntenc = ntenc;
|
|
} else if (ntenc == oldntenc) {
|
|
enc_counter++;
|
|
}
|
|
}
|
|
|
|
if (enc_counter) {
|
|
data[0] = NONCE_STATIC_ENC;
|
|
data[1] = (cuid >> 24) & 0xFF;
|
|
data[2] = (cuid >> 16) & 0xFF;
|
|
data[3] = (cuid >> 8) & 0xFF;
|
|
data[4] = (cuid >> 0) & 0xFF;
|
|
data[5] = (nt >> 24) & 0xFF;
|
|
data[6] = (nt >> 16) & 0xFF;
|
|
data[7] = (nt >> 8) & 0xFF;
|
|
data[8] = (nt >> 0) & 0xFF;
|
|
data[9] = (ntenc >> 24) & 0xFF;
|
|
data[10] = (ntenc >> 16) & 0xFF;
|
|
data[11] = (ntenc >> 8) & 0xFF;
|
|
data[12] = (ntenc >> 0) & 0xFF;
|
|
data[13] = ntencpar;
|
|
} else {
|
|
data[0] = NONCE_NORMAL;
|
|
}
|
|
|
|
OUT:
|
|
crypto1_deinit(pcs);
|
|
|
|
reply_ng(CMD_HF_MIFARE_STATIC_ENCRYPTED_NONCE, retval, data, sizeof(data));
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
}
|
|
|
|
void OnSuccessMagic(void) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
void OnErrorMagic(uint8_t reason) {
|
|
// ACK, ISOK, reason,0,0,0
|
|
reply_mix(CMD_ACK, 0, reason, 0, 0, 0);
|
|
OnSuccessMagic();
|
|
}
|
|
|
|
int DoGen3Cmd(uint8_t *cmd, uint8_t cmd_len) {
|
|
int retval = PM3_SUCCESS;
|
|
uint8_t *par = BigBuf_calloc(MAX_PARITY_SIZE);
|
|
uint8_t *buf = BigBuf_calloc(PM3_CMD_DATA_SIZE);
|
|
|
|
LED_B_ON();
|
|
uint32_t save_iso14a_timeout = iso14a_get_timeout();
|
|
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 2000); // 2 seconds timeout
|
|
|
|
ReaderTransmit(cmd, cmd_len, NULL);
|
|
int res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
if (res == 4 && memcmp(buf, "\x90\x00\xfd\x07", 4) == 0) {
|
|
// timeout for card memory reset
|
|
SpinDelay(1000);
|
|
} else {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Card operation not completed");
|
|
retval = PM3_ESOFT;
|
|
}
|
|
iso14a_set_timeout(save_iso14a_timeout);
|
|
LED_B_OFF();
|
|
return retval;
|
|
}
|
|
|
|
void MifareGen3UID(uint8_t uidlen, uint8_t *uid) {
|
|
int retval = PM3_SUCCESS;
|
|
uint8_t uid_cmd[5] = { 0x90, 0xfb, 0xcc, 0xcc, 0x07 };
|
|
uint8_t *old_uid = BigBuf_calloc(10);
|
|
uint8_t *cmd = BigBuf_calloc(sizeof(uid_cmd) + uidlen + 2);
|
|
iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_calloc(sizeof(iso14a_card_select_t));
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (iso14443a_select_card(old_uid, card_info, NULL, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
if (card_info->uidlen != uidlen) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong UID length");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
memcpy(cmd, uid_cmd, sizeof(uid_cmd));
|
|
memcpy(&cmd[sizeof(uid_cmd)], uid, uidlen);
|
|
AddCrc14A(cmd, sizeof(uid_cmd) + uidlen);
|
|
|
|
retval = DoGen3Cmd(cmd, sizeof(uid_cmd) + uidlen + 2);
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_GEN3UID, retval, old_uid, uidlen);
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareGen3Blk(uint8_t block_len, uint8_t *block) {
|
|
|
|
int retval = PM3_SUCCESS;
|
|
uint8_t block_cmd[5] = { 0x90, 0xf0, 0xcc, 0xcc, 0x10 };
|
|
uint8_t cmdlen = sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE;
|
|
uint8_t *cmd = BigBuf_calloc(cmdlen);
|
|
|
|
iso14a_card_select_t *card_info = (iso14a_card_select_t *) BigBuf_calloc(sizeof(iso14a_card_select_t));
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (iso14443a_select_card(NULL, card_info, NULL, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
bool doReselect = false;
|
|
if (block_len < MIFARE_BLOCK_SIZE) {
|
|
if ((mifare_sendcmd_short(NULL, CRYPT_NONE, ISO14443A_CMD_READBLOCK, 0, &cmd[sizeof(block_cmd)], MAX_MIFARE_FRAME_SIZE, NULL, NULL) != MAX_MIFARE_FRAME_SIZE)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Read manufacturer block failed");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
doReselect = true;
|
|
}
|
|
|
|
if (block_len > 0) {
|
|
memcpy(cmd, block_cmd, sizeof(block_cmd));
|
|
memcpy(&cmd[sizeof(block_cmd)], block, block_len);
|
|
int ofs = sizeof(block_cmd);
|
|
if (card_info->uidlen == 4) {
|
|
cmd[ofs + 4] = cmd[ofs + 0] ^ cmd[ofs + 1] ^ cmd[ofs + 2] ^ cmd[ofs + 3];
|
|
ofs += 5;
|
|
} else if (card_info->uidlen == 7) {
|
|
ofs += 7;
|
|
} else {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Wrong Card UID length");
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
cmd[ofs++] = card_info->sak;
|
|
cmd[ofs++] = card_info->atqa[0];
|
|
cmd[ofs++] = card_info->atqa[1];
|
|
AddCrc14A(cmd, sizeof(block_cmd) + MIFARE_BLOCK_SIZE);
|
|
|
|
if (doReselect) {
|
|
if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
}
|
|
|
|
retval = DoGen3Cmd(cmd, sizeof(block_cmd) + MAX_MIFARE_FRAME_SIZE);
|
|
}
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_GEN3BLK, retval, &cmd[sizeof(block_cmd)], MIFARE_BLOCK_SIZE);
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareGen3Freez(void) {
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
int retval = PM3_SUCCESS;
|
|
uint8_t freeze_cmd[7] = { 0x90, 0xfd, 0x11, 0x11, 0x00, 0xe7, 0x91 };
|
|
|
|
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
|
|
retval = DoGen3Cmd(freeze_cmd, sizeof(freeze_cmd));
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_GEN3FREEZ, retval, NULL, 0);
|
|
// turns off
|
|
OnSuccessMagic();
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareG4ReadBlk(uint8_t blockno, uint8_t *pwd, uint8_t workFlags) {
|
|
bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ;
|
|
bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ;
|
|
|
|
int res = 0;
|
|
int retval = PM3_SUCCESS;
|
|
|
|
uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE);
|
|
if (buf == NULL) {
|
|
retval = PM3_EMALLOC;
|
|
goto OUT;
|
|
}
|
|
|
|
uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE);
|
|
if (par == NULL) {
|
|
retval = PM3_EMALLOC;
|
|
goto OUT;
|
|
}
|
|
|
|
if (setup) {
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
}
|
|
|
|
LED_B_ON();
|
|
|
|
static uint32_t save_iso14a_timeout;
|
|
if (setup) {
|
|
save_iso14a_timeout = iso14a_get_timeout();
|
|
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout
|
|
}
|
|
|
|
uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_READ, blockno,
|
|
0x00, 0x00
|
|
};
|
|
|
|
memcpy(cmd + 1, pwd, 4);
|
|
|
|
AddCrc14A(cmd, sizeof(cmd) - 2);
|
|
|
|
ReaderTransmit(cmd, sizeof(cmd), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
|
|
if (res != 18) {
|
|
retval = PM3_ESOFT;
|
|
}
|
|
|
|
if (done || retval != 0) {
|
|
iso14a_set_timeout(save_iso14a_timeout);
|
|
}
|
|
|
|
LED_B_OFF();
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_G4_RDBL, retval, buf, res);
|
|
|
|
// turns off
|
|
if (done || retval != 0) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
|
|
LEDsoff();
|
|
if (done || retval != 0) {
|
|
set_tracing(false);
|
|
}
|
|
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareG4WriteBlk(uint8_t blockno, uint8_t *pwd, uint8_t *data, uint8_t workFlags) {
|
|
bool setup = ((workFlags & MAGIC_INIT) == MAGIC_INIT) ;
|
|
bool done = ((workFlags & MAGIC_OFF) == MAGIC_OFF) ;
|
|
|
|
int res = 0;
|
|
int retval = PM3_SUCCESS;
|
|
|
|
uint8_t *buf = BigBuf_malloc(PM3_CMD_DATA_SIZE);
|
|
if (buf == NULL) {
|
|
retval = PM3_EMALLOC;
|
|
goto OUT;
|
|
}
|
|
|
|
// check args
|
|
if (data == NULL) {
|
|
retval = PM3_EINVARG;
|
|
goto OUT;
|
|
}
|
|
|
|
uint8_t *par = BigBuf_malloc(MAX_PARITY_SIZE);
|
|
if (par == NULL) {
|
|
retval = PM3_EMALLOC;
|
|
goto OUT;
|
|
}
|
|
|
|
if (setup) {
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
|
|
retval = PM3_ESOFT;
|
|
goto OUT;
|
|
}
|
|
}
|
|
|
|
LED_B_ON();
|
|
|
|
static uint32_t save_iso14a_timeout;
|
|
if (setup) {
|
|
save_iso14a_timeout = iso14a_get_timeout();
|
|
iso14a_set_timeout(13560000 / 1000 / (8 * 16) * 1000); // 2 seconds timeout
|
|
}
|
|
|
|
uint8_t cmd[] = { GEN_4GTU_CMD, 0x00, 0x00, 0x00, 0x00, GEN_4GTU_WRITE, blockno,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00
|
|
};
|
|
|
|
memcpy(cmd + 1, pwd, 4);
|
|
memcpy(cmd + 7, data, 16);
|
|
|
|
AddCrc14A(cmd, sizeof(cmd) - 2);
|
|
|
|
ReaderTransmit(cmd, sizeof(cmd), NULL);
|
|
res = ReaderReceive(buf, PM3_CMD_DATA_SIZE, par);
|
|
|
|
if ((res != 4) || (memcmp(buf, "\x90\x00\xfd\x07", 4) != 0)) {
|
|
retval = PM3_ESOFT;
|
|
}
|
|
|
|
if (done || retval != 0) {
|
|
iso14a_set_timeout(save_iso14a_timeout);
|
|
}
|
|
LED_B_OFF();
|
|
|
|
OUT:
|
|
reply_ng(CMD_HF_MIFARE_G4_WRBL, retval, buf, res);
|
|
// turns off
|
|
if (done || retval != 0) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
|
|
LEDsoff();
|
|
if (done || retval != 0) {
|
|
set_tracing(false);
|
|
}
|
|
|
|
BigBuf_free();
|
|
}
|
|
|
|
void MifareSetMod(uint8_t *datain) {
|
|
|
|
uint8_t mod = datain[0];
|
|
uint64_t ui64Key = bytes_to_num(datain + 1, 6);
|
|
|
|
// variables
|
|
uint16_t isOK = PM3_EUNDEF;
|
|
uint8_t *uid = BigBuf_calloc(10);
|
|
|
|
uint32_t cuid = 0;
|
|
struct Crypto1State mpcs = {0, 0};
|
|
struct Crypto1State *pcs = &mpcs;
|
|
|
|
uint8_t *buf = BigBuf_calloc(MAX_MIFARE_FRAME_SIZE);
|
|
uint8_t *par = BigBuf_calloc(MAX_MIFARE_PARITY_SIZE);
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
LED_A_ON();
|
|
|
|
while (true) {
|
|
if (iso14443a_select_card(uid, NULL, &cuid, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
break;
|
|
}
|
|
|
|
if (mifare_classic_auth(pcs, cuid, 0, 0, ui64Key, AUTH_FIRST)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Auth error");
|
|
break;
|
|
}
|
|
|
|
int respLen;
|
|
if (((respLen = mifare_sendcmd_short(pcs, CRYPT_ALL, MIFARE_EV1_SETMOD, mod, buf, MAX_MIFARE_FRAME_SIZE, par, NULL)) != 1) || (buf[0] != 0x0a)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("SetMod error; response[0]: %hhX, len: %d", buf[0], respLen);
|
|
break;
|
|
}
|
|
|
|
if (mifare_classic_halt(pcs)) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Halt error");
|
|
break;
|
|
}
|
|
|
|
isOK = PM3_SUCCESS;
|
|
break;
|
|
}
|
|
|
|
crypto1_deinit(pcs);
|
|
|
|
LED_B_ON();
|
|
reply_ng(CMD_HF_MIFARE_SETMOD, isOK, NULL, 0);
|
|
LED_B_OFF();
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
BigBuf_free();
|
|
}
|
|
|
|
//
|
|
// DESFIRE
|
|
//
|
|
void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain) {
|
|
uint8_t dataout[12] = {0x00};
|
|
uint32_t cuid = 0;
|
|
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
int len = iso14443a_select_card(NULL, NULL, &cuid, true, 0, false);
|
|
if (!len) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(1);
|
|
return;
|
|
};
|
|
|
|
if (mifare_desfire_des_auth1(cuid, dataout) != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Authentication part1: Fail.");
|
|
OnError(4);
|
|
return;
|
|
}
|
|
|
|
if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 1 FINISHED");
|
|
reply_mix(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout));
|
|
}
|
|
|
|
void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain) {
|
|
uint32_t cuid = arg0;
|
|
uint8_t key[16] = {0x00};
|
|
uint8_t dataout[12] = {0x00};
|
|
uint8_t isOK = 0;
|
|
|
|
memcpy(key, datain, 16);
|
|
|
|
isOK = mifare_desfire_des_auth2(cuid, key, dataout);
|
|
|
|
if (isOK != PM3_SUCCESS) {
|
|
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("Authentication part2: Failed");
|
|
OnError(4);
|
|
return;
|
|
}
|
|
|
|
if (g_dbglevel >= DBG_EXTENDED) DbpString("AUTH 2 FINISHED");
|
|
|
|
reply_old(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout));
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
set_tracing(false);
|
|
}
|
|
|
|
//
|
|
// Tear-off attack against MFU.
|
|
// - Moebius et al
|
|
void MifareU_Otp_Tearoff(uint8_t blno, uint32_t tearoff_time, uint8_t *data_testwrite) {
|
|
uint8_t blockNo = blno;
|
|
|
|
if (g_dbglevel >= DBG_DEBUG) DbpString("Preparing OTP tear-off");
|
|
|
|
if (tearoff_time > 43000) {
|
|
tearoff_time = 43000;
|
|
}
|
|
|
|
g_tearoff_delay_us = tearoff_time;
|
|
g_tearoff_enabled = true;
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// write cmd to send, include CRC
|
|
// 1b write, 1b block, 4b data, 2 crc
|
|
uint8_t cmd[] = {
|
|
MIFARE_ULC_WRITE, blockNo,
|
|
data_testwrite[0], data_testwrite[1], data_testwrite[2], data_testwrite[3],
|
|
0, 0
|
|
};
|
|
AddCrc14A(cmd, sizeof(cmd) - 2);
|
|
|
|
// anticollision / select card
|
|
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(1);
|
|
reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_EFAILED, NULL, 0);
|
|
return;
|
|
};
|
|
// send
|
|
LED_D_ON();
|
|
ReaderTransmit(cmd, sizeof(cmd), NULL);
|
|
tearoff_hook();
|
|
reply_ng(CMD_HF_MFU_OTP_TEAROFF, PM3_SUCCESS, NULL, 0);
|
|
}
|
|
|
|
//
|
|
// Tear-off attack against MFU counter
|
|
void MifareU_Counter_Tearoff(uint8_t counter, uint32_t tearoff_time, uint8_t *datain) {
|
|
|
|
if (tearoff_time > 43000) {
|
|
tearoff_time = 43000;
|
|
}
|
|
|
|
LEDsoff();
|
|
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
|
|
clear_trace();
|
|
set_tracing(true);
|
|
|
|
// Send MFU counter increase cmd
|
|
uint8_t cmd[] = {
|
|
MIFARE_ULEV1_INCR_CNT,
|
|
counter,
|
|
datain[0], // lsb
|
|
datain[1],
|
|
datain[2], // msb
|
|
datain[3], // rfu
|
|
0,
|
|
0,
|
|
};
|
|
AddCrc14A(cmd, sizeof(cmd) - 2);
|
|
|
|
// anticollision / select card
|
|
if (iso14443a_select_card(NULL, NULL, NULL, true, 0, true) == false) {
|
|
if (g_dbglevel >= DBG_ERROR) Dbprintf("Can't select card");
|
|
OnError(1);
|
|
switch_off();
|
|
LEDsoff();
|
|
return;
|
|
};
|
|
|
|
// send
|
|
ReaderTransmit(cmd, sizeof(cmd), NULL);
|
|
LED_D_ON();
|
|
SpinDelayUsPrecision(tearoff_time);
|
|
switch_off();
|
|
LEDsoff();
|
|
reply_ng(CMD_HF_MFU_COUNTER_TEAROFF, PM3_SUCCESS, NULL, 0);
|
|
}
|