proxmark3/client/src/cmddata.c
mwalker33 43907dc4ed Update cmddata.c
Fix issues when char cast to int8_t
2020-10-12 15:33:14 +11:00

2586 lines
96 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// iceman 2019
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Data and Graph commands
//-----------------------------------------------------------------------------
#include "cmddata.h"
#include <stdio.h>
#include <string.h>
#include <limits.h> // for CmdNorm INT_MIN && INT_MAX
#include <math.h> // pow
#include <ctype.h> // tolower
#include "commonutil.h" // ARRAYLEN
#include "cmdparser.h" // for command_t
#include "ui.h" // for show graph controls
#include "proxgui.h"
#include "graph.h" // for graph data
#include "comms.h"
#include "lfdemod.h" // for demod code
#include "loclass/cipherutils.h" // for decimating samples in getsamples
#include "cmdlfem4x.h" // askem410xdecode
#include "fileutils.h" // searchFile
#include "mifare/ndef.h"
#include "cliparser.h"
#include "cmdlft55xx.h" // print...
uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];
size_t DemodBufferLen = 0;
int32_t g_DemodStartIdx = 0;
int g_DemodClock = 0;
static int CmdHelp(const char *Cmd);
static int usage_data_printdemodbuf(void) {
PrintAndLogEx(NORMAL, "Usage: data print x o <offset> l <length>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h this help");
PrintAndLogEx(NORMAL, " i invert Demodbuffer before printing");
PrintAndLogEx(NORMAL, " x output in hex (omit for binary output)");
PrintAndLogEx(NORMAL, " o <offset> enter offset in # of bits");
PrintAndLogEx(NORMAL, " l <length> enter length to print in # of bits or hex characters respectively");
PrintAndLogEx(NORMAL, " s strip leading zeroes, i.e. set offset to first bit equal to one");
return PM3_SUCCESS;
}
static int usage_data_manrawdecode(void) {
PrintAndLogEx(NORMAL, "Usage: data manrawdecode [invert] [maxErr]");
PrintAndLogEx(NORMAL, " Takes 10 and 01 and converts to 0 and 1 respectively");
PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLogEx(NORMAL, " [invert] invert output");
PrintAndLogEx(NORMAL, " [maxErr] set number of errors allowed (default = 20)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " Example: data manrawdecode = decode manchester bitstream from the demodbuffer");
return PM3_SUCCESS;
}
static int usage_data_biphaserawdecode(void) {
PrintAndLogEx(NORMAL, "Usage: data biphaserawdecode [offset] [invert] [maxErr]");
PrintAndLogEx(NORMAL, " Converts 10 or 01 to 1 and 11 or 00 to 0");
PrintAndLogEx(NORMAL, " --must have binary sequence in demodbuffer (run data askrawdemod first)");
PrintAndLogEx(NORMAL, " --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position");
PrintAndLogEx(NORMAL, " [invert <0|1>], set to 1 to invert output");
PrintAndLogEx(NORMAL, " [maxErr int], set max errors tolerated - default=20");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " Example: data biphaserawdecode = decode biphase bitstream from the demodbuffer");
PrintAndLogEx(NORMAL, " Example: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output");
return PM3_SUCCESS;
}
static int usage_data_rawdemod(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod [modulation] <help>|<options>");
PrintAndLogEx(NORMAL, " [modulation] as 2 char,");
PrintAndLogEx(NORMAL, " "_YELLOW_("ab")" - ask/biphase");
PrintAndLogEx(NORMAL, " "_YELLOW_("am")" - ask/manchester");
PrintAndLogEx(NORMAL, " "_YELLOW_("ar")" - ask/raw");
PrintAndLogEx(NORMAL, " "_YELLOW_("fs")" - fsk");
PrintAndLogEx(NORMAL, " "_YELLOW_("nr")" - nrz/direct");
PrintAndLogEx(NORMAL, " "_YELLOW_("p1")" - psk1");
PrintAndLogEx(NORMAL, " "_YELLOW_("p2")" - psk2");
PrintAndLogEx(NORMAL, " <help> as 'h', prints the help for the specific modulation");
PrintAndLogEx(NORMAL, " <options> see specific modulation help for optional parameters");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod fs h = print help specific to fsk demod");
PrintAndLogEx(NORMAL, " data rawdemod fs = demod GraphBuffer using: fsk - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect");
PrintAndLogEx(NORMAL, " data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_am(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod am <s> [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLogEx(NORMAL, " ['s'] optional, check for Sequence Terminator");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect");
PrintAndLogEx(NORMAL, " <invert>, 1 to invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100");
PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLogEx(NORMAL, " <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod am = demod an ask/manchester tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_ab(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod ab [offset] [clock] <invert> [maxError] [maxLen] <amplify>");
PrintAndLogEx(NORMAL, " [offset], offset to begin biphase, default=0");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect");
PrintAndLogEx(NORMAL, " <invert>, 1 to invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100");
PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (512 bits at rf/64)");
PrintAndLogEx(NORMAL, " <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLogEx(NORMAL, " NOTE: <invert> can be entered as second or third argument");
PrintAndLogEx(NORMAL, " NOTE: <amplify> can be entered as first, second or last argument");
PrintAndLogEx(NORMAL, " NOTE: any other arg must have previous args set to work");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod ab = demod an ask/biph tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified");
PrintAndLogEx(NORMAL, " data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLogEx(NORMAL, " data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_ar(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod ar [clock] <invert> [maxError] [maxLen] [amplify]");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect");
PrintAndLogEx(NORMAL, " <invert>, 1 to invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100");
PrintAndLogEx(NORMAL, " [set maximum Samples to read], default = 32768 (1024 bits at rf/64)");
PrintAndLogEx(NORMAL, " <amplify>, 'a' to attempt demod with ask amplification, default = no amp");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod ar = demod an ask tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod ar a = demod an ask tag from GraphBuffer, amplified");
PrintAndLogEx(NORMAL, " data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLogEx(NORMAL, " data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_fs(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod fs [clock] <invert> [fchigh] [fclow]");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, omit for autodetect.");
PrintAndLogEx(NORMAL, " <invert>, 1 for invert output, can be used even if the clock is omitted");
PrintAndLogEx(NORMAL, " [fchigh], larger field clock length, omit for autodetect");
PrintAndLogEx(NORMAL, " [fclow], small field clock length, omit for autodetect");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect");
PrintAndLogEx(NORMAL, " data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc");
PrintAndLogEx(NORMAL, " data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output");
PrintAndLogEx(NORMAL, " data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc");
PrintAndLogEx(NORMAL, " data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_nr(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod nr [clock] <0|1> [maxError]");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect.");
PrintAndLogEx(NORMAL, " <invert>, 1 for invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod nr = demod a nrz/direct tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_p1(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod p1 [clock] <0|1> [maxError]");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect.");
PrintAndLogEx(NORMAL, " <invert>, 1 for invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod p1 = demod a psk1 tag from GraphBuffer");
PrintAndLogEx(NORMAL, " data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, " data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data");
PrintAndLogEx(NORMAL, " data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_data_rawdemod_p2(void) {
PrintAndLogEx(NORMAL, "Usage: data rawdemod p2 [clock] <0|1> [maxError]");
PrintAndLogEx(NORMAL, " [set clock as integer] optional, if not set, autodetect.");
PrintAndLogEx(NORMAL, " <invert>, 1 for invert output");
PrintAndLogEx(NORMAL, " [set maximum allowed errors], default = 100.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Example:");
PrintAndLogEx(NORMAL, " data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock");
PrintAndLogEx(NORMAL, " data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, " data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output");
PrintAndLogEx(NORMAL, " data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output");
PrintAndLogEx(NORMAL, " data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors");
return PM3_SUCCESS;
}
static int usage_data_autocorr(void) {
PrintAndLogEx(NORMAL, "Autocorrelate is used to detect repeating sequences. We use it as detection of length in bits a message inside the signal is");
PrintAndLogEx(NORMAL, "Usage: data autocorr w <window> [g]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " w <window> window length for correlation - default = 4000");
PrintAndLogEx(NORMAL, " g save back to GraphBuffer (overwrite)");
return PM3_SUCCESS;
}
static int usage_data_detectclock(void) {
PrintAndLogEx(NORMAL, "Usage: data detectclock [modulation] <clock>");
PrintAndLogEx(NORMAL, " [modulation as char], specify the modulation type you want to detect the clock of");
PrintAndLogEx(NORMAL, " <clock> , specify the clock (optional - to get best start position only)");
PrintAndLogEx(NORMAL, " 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " Example: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer");
PrintAndLogEx(NORMAL, " data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer");
PrintAndLogEx(NORMAL, " data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer");
PrintAndLogEx(NORMAL, " data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer");
return PM3_SUCCESS;
}
static int usage_data_hex2bin(void) {
PrintAndLogEx(NORMAL, "Usage: data hex2bin <hex_digits>");
PrintAndLogEx(NORMAL, " This function will ignore all non-hexadecimal characters (but stop reading on whitespace)");
return PM3_SUCCESS;
}
static int usage_data_bin2hex(void) {
PrintAndLogEx(NORMAL, "Usage: data bin2hex <binary_digits>");
PrintAndLogEx(NORMAL, " This function will ignore all characters not 1 or 0 (but stop reading on whitespace)");
return PM3_SUCCESS;
}
static int usage_data_buffclear(void) {
PrintAndLogEx(NORMAL, "This function clears the bigbuff on deviceside");
PrintAndLogEx(NORMAL, "Usage: data clear [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
return PM3_SUCCESS;
}
static int usage_data_fsktonrz(void) {
PrintAndLogEx(NORMAL, "Usage: data fsktonrz c <clock> l <fc_low> f <fc_high>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> enter the a clock (omit to autodetect)");
PrintAndLogEx(NORMAL, " l <fc_low> enter a field clock (omit to autodetect)");
PrintAndLogEx(NORMAL, " f <fc_high> enter a field clock (omit to autodetect)");
return PM3_SUCCESS;
}
//set the demod buffer with given array of binary (one bit per byte)
//by marshmellow
void setDemodBuff(uint8_t *buff, size_t size, size_t start_idx) {
if (buff == NULL) return;
if (size > MAX_DEMOD_BUF_LEN - start_idx)
size = MAX_DEMOD_BUF_LEN - start_idx;
for (size_t i = 0; i < size; i++)
DemodBuffer[i] = buff[start_idx++];
DemodBufferLen = size;
}
bool getDemodBuff(uint8_t *buff, size_t *size) {
if (buff == NULL) return false;
if (size == NULL) return false;
if (*size == 0) return false;
*size = (*size > DemodBufferLen) ? DemodBufferLen : *size;
memcpy(buff, DemodBuffer, *size);
return true;
}
// include <math.h>
// Root mean square
/*
static double rms(double *v, size_t n) {
double sum = 0.0;
for (size_t i = 0; i < n; i++)
sum += v[i] * v[i];
return sqrt(sum / n);
}
static int cmp_int(const void *a, const void *b) {
if (*(const int *)a < * (const int *)b)
return -1;
else
return *(const int *)a > *(const int *)b;
}
static int cmp_uint8(const void *a, const void *b) {
if (*(const uint8_t *)a < * (const uint8_t *)b)
return -1;
else
return *(const uint8_t *)a > *(const uint8_t *)b;
}
// Median of a array of values
static double median_int(int *src, size_t size) {
qsort(src, size, sizeof(int), cmp_int);
return 0.5 * (src[size / 2] + src[(size - 1) / 2]);
}
static double median_uint8(uint8_t *src, size_t size) {
qsort(src, size, sizeof(uint8_t), cmp_uint8);
return 0.5 * (src[size / 2] + src[(size - 1) / 2]);
}
*/
// function to compute mean for a series
static double compute_mean(const int *data, size_t n) {
double mean = 0.0;
for (size_t i = 0; i < n; i++)
mean += data[i];
mean /= n;
return mean;
}
// function to compute variance for a series
static double compute_variance(const int *data, size_t n) {
double variance = 0.0;
double mean = compute_mean(data, n);
for (size_t i = 0; i < n; i++)
variance += pow((data[i] - mean), 2.0);
variance /= n;
return variance;
}
// Function to compute autocorrelation for a series
// Author: Kenneth J. Christensen
// - Corrected divide by n to divide (n - lag) from Tobias Mueller
/*
static double compute_autoc(const int *data, size_t n, int lag) {
double autocv = 0.0; // Autocovariance value
double ac_value; // Computed autocorrelation value to be returned
double variance; // Computed variance
double mean;
mean = compute_mean(data, n);
variance = compute_variance(data, n);
for (size_t i=0; i < (n - lag); i++)
autocv += (data[i] - mean) * (data[i+lag] - mean);
autocv = (1.0 / (n - lag)) * autocv;
// Autocorrelation is autocovariance divided by variance
ac_value = autocv / variance;
return ac_value;
}
*/
// option '1' to save DemodBuffer any other to restore
void save_restoreDB(uint8_t saveOpt) {
static uint8_t SavedDB[MAX_DEMOD_BUF_LEN];
static size_t SavedDBlen;
static bool DB_Saved = false;
static size_t savedDemodStartIdx = 0;
static int savedDemodClock = 0;
if (saveOpt == GRAPH_SAVE) { //save
memcpy(SavedDB, DemodBuffer, sizeof(DemodBuffer));
SavedDBlen = DemodBufferLen;
DB_Saved = true;
savedDemodStartIdx = g_DemodStartIdx;
savedDemodClock = g_DemodClock;
} else if (DB_Saved) { //restore
memcpy(DemodBuffer, SavedDB, sizeof(DemodBuffer));
DemodBufferLen = SavedDBlen;
g_DemodClock = savedDemodClock;
g_DemodStartIdx = savedDemodStartIdx;
}
}
static int CmdSetDebugMode(const char *Cmd) {
int demod = 0;
sscanf(Cmd, "%i", &demod);
g_debugMode = (uint8_t)demod;
return PM3_SUCCESS;
}
//by marshmellow
// max output to 512 bits if we have more
// doesn't take inconsideration where the demod offset or bitlen found.
void printDemodBuff(void) {
int len = DemodBufferLen;
if (len < 1) {
PrintAndLogEx(INFO, "(printDemodBuff) no bits found in demod buffer");
return;
}
if (len > 512) len = 512;
PrintAndLogEx(NORMAL, "%s", sprint_bin_break(DemodBuffer, len, 32));
}
int CmdPrintDemodBuff(const char *Cmd) {
bool hexMode = false;
bool errors = false;
bool lstrip = false;
bool invert = false;
uint32_t offset = 0;
uint32_t length = 512;
char cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_data_printdemodbuf();
case 'x':
hexMode = true;
cmdp++;
break;
case 'o':
offset = param_get32ex(Cmd, cmdp + 1, 0, 10);
if (!offset) errors = true;
cmdp += 2;
break;
case 'l':
length = param_get32ex(Cmd, cmdp + 1, 512, 10);
if (!length) errors = true;
cmdp += 2;
break;
case 's':
lstrip = true;
cmdp++;
break;
case 'i':
invert = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_data_printdemodbuf();
if (DemodBufferLen == 0) {
PrintAndLogEx(WARNING, "Demodbuffer is empty");
return PM3_ESOFT;
}
if (lstrip) {
char *buf = (char *)(DemodBuffer + offset);
length = (length > (DemodBufferLen - offset)) ? DemodBufferLen - offset : length;
uint32_t i;
for (i = 0; i < length; i++) {
if (buf[i] == 1) break;
}
offset += i;
}
length = (length > (DemodBufferLen - offset)) ? DemodBufferLen - offset : length;
if (invert) {
char *buf = (char *)(DemodBuffer + offset);
for (uint32_t i = 0; i < length; i++) {
if (buf[i] == 1)
buf[i] = 0;
else {
if (buf[i] == 0)
buf[i] = 1;
}
}
}
if (hexMode) {
char *buf = (char *)(DemodBuffer + offset);
char hex[512] = {0x00};
int numBits = binarraytohex(hex, sizeof(hex), buf, length);
if (numBits == 0) {
return PM3_ESOFT;
}
PrintAndLogEx(SUCCESS, "DemodBuffer: %s", hex);
} else {
PrintAndLogEx(SUCCESS, "DemodBuffer:\n%s", sprint_bin_break(DemodBuffer + offset, length, 32));
}
return PM3_SUCCESS;
}
//by marshmellow
//this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer
int CmdGetBitStream(const char *Cmd) {
CmdHpf(Cmd);
for (uint32_t i = 0; i < GraphTraceLen; i++)
GraphBuffer[i] = (GraphBuffer[i] >= 1) ? 1 : 0;
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdConvertBitStream(const char *Cmd) {
if (isGraphBitstream()) {
convertGraphFromBitstream();
} else {
// get high, low
convertGraphFromBitstreamEx(-126, -127);
}
return PM3_SUCCESS;
}
//by marshmellow
//Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
// (amp may not be needed anymore)
//verbose will print results and demoding messages
//emSearch will auto search for EM410x format in bitstream
//askType switches decode: ask/raw = 0, ask/manchester = 1
int ASKDemod_ext(int clk, int invert, int maxErr, size_t maxLen, bool amplify, bool verbose, bool emSearch, uint8_t askType, bool *stCheck) {
PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) clk %i invert %i maxErr %i maxLen %zu amplify %i verbose %i emSearch %i askType %i ", clk, invert, maxErr, maxLen, amplify, verbose, emSearch, askType);
uint8_t askamp = 0;
if (!maxLen) maxLen = pm3_capabilities.bigbuf_size;
uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t));
if (bits == NULL) {
return PM3_EMALLOC;
}
size_t BitLen = getFromGraphBuf(bits);
PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) #samples from graphbuff: %zu", BitLen);
if (BitLen < 255) {
free(bits);
return PM3_ESOFT;
}
if (maxLen < BitLen && maxLen != 0) BitLen = maxLen;
int foundclk = 0;
//amplify signal before ST check
if (amplify) {
askAmp(bits, BitLen);
}
size_t ststart = 0, stend = 0;
// if (*stCheck)
bool st = DetectST(bits, &BitLen, &foundclk, &ststart, &stend);
if (clk == 0) {
if (foundclk == 32 || foundclk == 64) {
clk = foundclk;
}
}
if (st) {
*stCheck = st;
CursorCPos = ststart;
CursorDPos = stend;
if (verbose)
PrintAndLogEx(DEBUG, "Found Sequence Terminator - First one is shown by orange / blue graph markers");
}
int startIdx = 0;
int errCnt = askdemod_ext(bits, &BitLen, &clk, &invert, maxErr, askamp, askType, &startIdx);
if (errCnt < 0 || BitLen < 16) { //if fatal error (or -1)
PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) No data found errors:%d, invert:%c, bitlen:%zu, clock:%d", errCnt, (invert) ? 'Y' : 'N', BitLen, clk);
free(bits);
return PM3_ESOFT;
}
if (errCnt > maxErr) {
PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Too many errors found, errors:%d, bits:%zu, clock:%d", errCnt, BitLen, clk);
free(bits);
return PM3_ESOFT;
}
if (verbose) PrintAndLogEx(DEBUG, "DEBUG: (ASKDemod_ext) Using clock:%d, invert:%d, bits found:%zu, start index %d", clk, invert, BitLen, startIdx);
//output
setDemodBuff(bits, BitLen, 0);
setClockGrid(clk, startIdx);
if (verbose) {
if (errCnt > 0)
PrintAndLogEx(DEBUG, "# Errors during Demoding (shown as 7 in bit stream): %d", errCnt);
if (askType)
PrintAndLogEx(DEBUG, "ASK/Manchester - Clock: %d - Decoded bitstream:", clk);
else
PrintAndLogEx(DEBUG, "ASK/Raw - Clock: %d - Decoded bitstream:", clk);
printDemodBuff();
}
uint64_t lo = 0;
uint32_t hi = 0;
if (emSearch)
AskEm410xDecode(true, &hi, &lo);
free(bits);
return PM3_SUCCESS;
}
int ASKDemod(int clk, int invert, int maxErr, size_t maxLen, bool amplify, bool verbose, bool emSearch, uint8_t askType) {
bool st = false;
return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, verbose, emSearch, askType, &st);
}
//by marshmellow
//takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a'
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
static int Cmdaskmandemod(const char *Cmd) {
size_t slen = strlen(Cmd);
char cmdp = tolower(param_getchar(Cmd, 0));
if (slen > 45 || cmdp == 'h') return usage_data_rawdemod_am();
bool st = false, amplify = false;
int clk = 0, invert = 0, maxErr = 100;
size_t maxLen = 0;
if (slen) {
if (Cmd[0] == 's') {
st = true;
Cmd++;
} else if (slen > 1 && Cmd[1] == 's') {
st = true;
Cmd += 2;
}
char amp = tolower(param_getchar(Cmd, 0));
sscanf(Cmd, "%i %i %i %zu %c", &clk, &invert, &maxErr, &maxLen, &amp);
amplify = (amp == 'a');
}
if (clk == 1) {
invert = 1;
clk = 0;
}
if (invert != 0 && invert != 1) {
PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert);
return PM3_EINVARG;
}
return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, true, true, 1, &st);
}
//by marshmellow
//manchester decode
//strictly take 10 and 01 and convert to 0 and 1
static int Cmdmandecoderaw(const char *Cmd) {
size_t size = 0;
int high = 0, low = 0;
size_t i = 0;
uint16_t errCnt = 0;
int invert = 0, maxErr = 20;
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 5 || cmdp == 'h') return usage_data_manrawdecode();
if (DemodBufferLen == 0) return PM3_ESOFT;
uint8_t bits[MAX_DEMOD_BUF_LEN] = {0};
for (; i < DemodBufferLen; ++i) {
if (DemodBuffer[i] > high)
high = DemodBuffer[i];
else if (DemodBuffer[i] < low)
low = DemodBuffer[i];
bits[i] = DemodBuffer[i];
}
if (high > 7 || low < 0) {
PrintAndLogEx(ERR, "Error: please raw demod the wave first then manchester raw decode");
return PM3_ESOFT;
}
sscanf(Cmd, "%i %i", &invert, &maxErr);
size = i;
uint8_t alignPos = 0;
errCnt = manrawdecode(bits, &size, invert, &alignPos);
if (errCnt >= maxErr) {
PrintAndLogEx(ERR, "Too many errors: %u", errCnt);
return PM3_ESOFT;
}
PrintAndLogEx(NORMAL, "Manchester Decoded - # errors:%d - data:", errCnt);
PrintAndLogEx(NORMAL, "%s", sprint_bin_break(bits, size, 32));
if (errCnt == 0) {
uint64_t id = 0;
uint32_t hi = 0;
size_t idx = 0;
if (Em410xDecode(bits, &size, &idx, &hi, &id) == 1) {
//need to adjust to set bitstream back to manchester encoded data
//setDemodBuff(bits, size, idx);
printEM410x(hi, id);
}
}
return PM3_SUCCESS;
}
/*
* @author marshmellow
* biphase decode
* decodes 01 or 10 -> ZERO
* 11 or 00 -> ONE
* param offset adjust start position
* param invert invert output
* param masxErr maximum tolerated errors
*/
static int CmdBiphaseDecodeRaw(const char *Cmd) {
size_t size = 0;
int offset = 0, invert = 0, maxErr = 20, errCnt = 0;
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 5 || cmdp == 'h') return usage_data_biphaserawdecode();
sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr);
if (DemodBufferLen == 0) {
PrintAndLogEx(WARNING, "DemodBuffer Empty - run " _YELLOW_("'data rawdemod ar'")" first");
return PM3_ESOFT;
}
uint8_t bits[MAX_DEMOD_BUF_LEN] = {0};
size = sizeof(bits);
if (!getDemodBuff(bits, &size)) return PM3_ESOFT;
errCnt = BiphaseRawDecode(bits, &size, &offset, invert);
if (errCnt < 0) {
PrintAndLogEx(ERR, "Error during decode:%d", errCnt);
return PM3_ESOFT;
}
if (errCnt > maxErr) {
PrintAndLogEx(ERR, "Too many errors attempting to decode: %d", errCnt);
return PM3_ESOFT;
}
if (errCnt > 0)
PrintAndLogEx(WARNING, "# Errors found during Demod (shown as " _YELLOW_("7")" in bit stream): %d", errCnt);
PrintAndLogEx(NORMAL, "Biphase Decoded using offset: %d - # invert:%d - data:", offset, invert);
PrintAndLogEx(NORMAL, "%s", sprint_bin_break(bits, size, 32));
//remove first bit from raw demod
if (offset)
setDemodBuff(DemodBuffer, DemodBufferLen - offset, offset);
setClockGrid(g_DemodClock, g_DemodStartIdx + g_DemodClock * offset / 2);
return PM3_SUCCESS;
}
//by marshmellow
// - ASK Demod then Biphase decode GraphBuffer samples
int ASKbiphaseDemod(int offset, int clk, int invert, int maxErr, bool verbose) {
//ask raw demod GraphBuffer first
uint8_t BitStream[MAX_DEMOD_BUF_LEN];
size_t size = getFromGraphBuf(BitStream);
if (size == 0) {
PrintAndLogEx(DEBUG, "DEBUG: no data in graphbuf");
return PM3_ESOFT;
}
int startIdx = 0;
//invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer
int errCnt = askdemod_ext(BitStream, &size, &clk, &invert, maxErr, 0, 0, &startIdx);
if (errCnt < 0 || errCnt > maxErr) {
PrintAndLogEx(DEBUG, "DEBUG: no data or error found %d, clock: %d", errCnt, clk);
return PM3_ESOFT;
}
//attempt to Biphase decode BitStream
errCnt = BiphaseRawDecode(BitStream, &size, &offset, invert);
if (errCnt < 0) {
if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode: %d", errCnt);
return PM3_ESOFT;
}
if (errCnt > maxErr) {
if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: Error BiphaseRawDecode too many errors: %d", errCnt);
return PM3_ESOFT;
}
//success set DemodBuffer and return
setDemodBuff(BitStream, size, 0);
setClockGrid(clk, startIdx + clk * offset / 2);
if (g_debugMode || verbose) {
PrintAndLogEx(DEBUG, "Biphase Decoded using offset %d | clock %d | #errors %d | start index %d\ndata\n", offset, clk, errCnt, (startIdx + clk * offset / 2));
printDemodBuff();
}
return PM3_SUCCESS;
}
//by marshmellow - see ASKbiphaseDemod
static int Cmdaskbiphdemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 25 || cmdp == 'h') return usage_data_rawdemod_ab();
int offset = 0, clk = 0, invert = 0, maxErr = 50;
sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr);
return ASKbiphaseDemod(offset, clk, invert, maxErr, true);
}
//by marshmellow - see ASKDemod
static int Cmdaskrawdemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 25 || cmdp == 'h') return usage_data_rawdemod_ar();
bool st = false;
int clk = 0;
int invert = 0;
int maxErr = 100;
size_t maxLen = 0;
bool amplify = false;
char amp = tolower(param_getchar(Cmd, 0));
sscanf(Cmd, "%i %i %i %zu %c", &clk, &invert, &maxErr, &maxLen, &amp);
amplify = amp == 'a';
if (clk == 1) {
invert = 1;
clk = 0;
}
if (invert != 0 && invert != 1) {
PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert);
return PM3_EINVARG;
}
return ASKDemod_ext(clk, invert, maxErr, maxLen, amplify, true, false, 0, &st);
}
int AutoCorrelate(const int *in, int *out, size_t len, size_t window, bool SaveGrph, bool verbose) {
// sanity check
if (window > len) window = len;
if (verbose) PrintAndLogEx(INFO, "performing " _YELLOW_("%zu") " correlations", GraphTraceLen - window);
//test
double autocv = 0.0; // Autocovariance value
size_t correlation = 0;
int lastmax = 0;
// in, len, 4000
double mean = compute_mean(in, len);
// Computed variance
double variance = compute_variance(in, len);
int *correl_buf = calloc(MAX_GRAPH_TRACE_LEN, sizeof(int));
for (size_t i = 0; i < len - window; ++i) {
for (size_t j = 0; j < (len - i); j++) {
autocv += (in[j] - mean) * (in[j + i] - mean);
}
autocv = (1.0 / (len - i)) * autocv;
correl_buf[i] = autocv;
// Computed autocorrelation value to be returned
// Autocorrelation is autocovariance divided by variance
double ac_value = autocv / variance;
// keep track of which distance is repeating.
if (ac_value > 1) {
correlation = i - lastmax;
lastmax = i;
}
}
//
int hi = 0, idx = 0;
int distance = 0, hi_1 = 0, idx_1 = 0;
for (size_t i = 0; i <= len; ++i) {
if (correl_buf[i] > hi) {
hi = correl_buf[i];
idx = i;
}
}
for (size_t i = idx + 1; i <= window; ++i) {
if (correl_buf[i] > hi_1) {
hi_1 = correl_buf[i];
idx_1 = i;
}
}
int foo = ABS(hi - hi_1);
int bar = (int)((int)((hi + hi_1) / 2) * 0.04);
if (verbose && foo < bar) {
distance = idx_1 - idx;
PrintAndLogEx(SUCCESS, "possible visible correlation "_YELLOW_("%4d") " samples", distance);
} else if (verbose && (correlation > 1)) {
PrintAndLogEx(SUCCESS, "possible correlation " _YELLOW_("%4zu") " samples", correlation);
} else {
PrintAndLogEx(FAILED, "no repeating pattern found, try increasing window size");
}
int retval = correlation;
if (SaveGrph) {
//GraphTraceLen = GraphTraceLen - window;
memcpy(out, correl_buf, len * sizeof(int));
if (distance > 0) {
setClockGrid(distance, idx);
retval = distance;
} else
setClockGrid(correlation, idx);
CursorCPos = idx_1;
CursorDPos = idx_1 + retval;
DemodBufferLen = 0;
RepaintGraphWindow();
}
free(correl_buf);
return retval;
}
static int CmdAutoCorr(const char *Cmd) {
uint32_t window = 4000;
uint8_t cmdp = 0;
bool updateGrph = false;
bool errors = false;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_data_autocorr();
case 'g':
updateGrph = true;
cmdp++;
break;
case 'w':
window = param_get32ex(Cmd, cmdp + 1, 4000, 10);
if (window >= GraphTraceLen) {
PrintAndLogEx(WARNING, "window must be smaller than trace (%zu samples)", GraphTraceLen);
errors = true;
}
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) return usage_data_autocorr();
AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, window, updateGrph, true);
return PM3_SUCCESS;
}
static int CmdBitsamples(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
int cnt = 0;
uint8_t got[12288];
if (!GetFromDevice(BIG_BUF, got, sizeof(got), 0, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return PM3_ETIMEOUT;
}
for (size_t j = 0; j < ARRAYLEN(got); j++) {
for (uint8_t k = 0; k < 8; k++) {
if (got[j] & (1 << (7 - k)))
GraphBuffer[cnt++] = 1;
else
GraphBuffer[cnt++] = 0;
}
}
GraphTraceLen = cnt;
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdBuffClear(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_data_buffclear();
clearCommandBuffer();
SendCommandNG(CMD_BUFF_CLEAR, NULL, 0);
ClearGraph(true);
return PM3_SUCCESS;
}
static int CmdDecimate(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data decimate",
"Performs decimation, by reducing samples N times in the grapbuf. Good for PSK\n",
"data decimate\n"
"data decimate 4"
);
void *argtable[] = {
arg_param_begin,
arg_int0(NULL, NULL, "<dec>", "factor to reduce sample set (default 2)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int n = arg_get_int_def(ctx, 1, 2);
CLIParserFree(ctx);
for (size_t i = 0; i < (GraphTraceLen / n); ++i)
GraphBuffer[i] = GraphBuffer[i * n];
GraphTraceLen /= n;
PrintAndLogEx(SUCCESS, "decimated by " _GREEN_("%u"), n);
RepaintGraphWindow();
return PM3_SUCCESS;
}
/**
* Undecimate - I'd call it 'interpolate', but we'll save that
* name until someone does an actual interpolation command, not just
* blindly repeating samples
* @param Cmd
* @return
*/
static int CmdUndecimate(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data undecimate",
"Performs un-decimation, by repeating each sample N times in the graphbuf",
"data undecimate\n"
"data undecimate 4\n"
);
void *argtable[] = {
arg_param_begin,
arg_int0(NULL, NULL, "<dec>", "factor to repeat each sample (default 2)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int factor = arg_get_int_def(ctx, 1, 2);
CLIParserFree(ctx);
//We have memory, don't we?
int swap[MAX_GRAPH_TRACE_LEN] = {0};
uint32_t g_index = 0, s_index = 0;
while (g_index < GraphTraceLen && s_index + factor < MAX_GRAPH_TRACE_LEN) {
int count = 0;
for (count = 0; count < factor && s_index + count < MAX_GRAPH_TRACE_LEN; count++) {
swap[s_index + count] = (
(double)(factor - count) / (factor - 1)) * GraphBuffer[g_index] +
((double)count / factor) * GraphBuffer[g_index + 1]
;
}
s_index += count;
g_index++;
}
memcpy(GraphBuffer, swap, s_index * sizeof(int));
GraphTraceLen = s_index;
RepaintGraphWindow();
return PM3_SUCCESS;
}
//by marshmellow
//shift graph zero up or down based on input + or -
static int CmdGraphShiftZero(const char *Cmd) {
int shift = 0;
//set options from parameters entered with the command
sscanf(Cmd, "%i", &shift);
for (size_t i = 0; i < GraphTraceLen; i++) {
int shiftedVal = GraphBuffer[i] + shift;
if (shiftedVal > 127)
shiftedVal = 127;
else if (shiftedVal < -127)
shiftedVal = -127;
GraphBuffer[i] = shiftedVal;
}
CmdNorm("");
return PM3_SUCCESS;
}
int AskEdgeDetect(const int *in, int *out, int len, int threshold) {
int last = 0;
for (int i = 1; i < len; i++) {
if (in[i] - in[i - 1] >= threshold) //large jump up
last = 127;
else if (in[i] - in[i - 1] <= -1 * threshold) //large jump down
last = -127;
out[i - 1] = last;
}
return PM3_SUCCESS;
}
//by marshmellow
//use large jumps in read samples to identify edges of waves and then amplify that wave to max
//similar to dirtheshold, threshold commands
//takes a threshold length which is the measured length between two samples then determines an edge
static int CmdAskEdgeDetect(const char *Cmd) {
int thresLen = 25;
int ans = 0;
sscanf(Cmd, "%i", &thresLen);
ans = AskEdgeDetect(GraphBuffer, GraphBuffer, GraphTraceLen, thresLen);
RepaintGraphWindow();
return ans;
}
/* Print our clock rate */
// uses data from graphbuffer
// adjusted to take char parameter for type of modulation to find the clock - by marshmellow.
static int CmdDetectClockRate(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h')
return usage_data_detectclock();
int clock1 = 0;
switch (cmdp) {
case 'a' :
clock1 = GetAskClock(Cmd + 1, true);
break;
case 'f' :
clock1 = GetFskClock("", true);
break;
case 'n' :
clock1 = GetNrzClock("", true);
break;
case 'p' :
clock1 = GetPskClock("", true);
break;
default :
PrintAndLogEx(NORMAL, "Please specify a valid modulation to detect the clock of - see option h for help");
break;
}
RepaintGraphWindow();
return clock1;
}
static char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert) {
static char fType[8];
memset(fType, 0x00, 8);
char *fskType = fType;
if (fchigh == 10 && fclow == 8) {
if (invert)
memcpy(fskType, "FSK2a", 5);
else
memcpy(fskType, "FSK2", 4);
} else if (fchigh == 8 && fclow == 5) {
if (invert)
memcpy(fskType, "FSK1", 4);
else
memcpy(fskType, "FSK1a", 5);
} else {
memcpy(fskType, "FSK??", 5);
}
return fskType;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
int FSKrawDemod(uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow, bool verbose) {
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
if (getSignalProperties()->isnoise)
return PM3_ESOFT;
uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t));
if (bits == NULL) {
return PM3_EMALLOC;
}
size_t BitLen = getFromGraphBuf(bits);
if (BitLen == 0) {
free(bits);
return PM3_ESOFT;
}
//get field clock lengths
if (!fchigh || !fclow) {
uint16_t fcs = countFC(bits, BitLen, true);
if (!fcs) {
fchigh = 10;
fclow = 8;
} else {
fchigh = (fcs >> 8) & 0x00FF;
fclow = fcs & 0x00FF;
}
}
//get bit clock length
if (!rfLen) {
int firstClockEdge = 0; //todo - align grid on graph with this...
rfLen = detectFSKClk(bits, BitLen, fchigh, fclow, &firstClockEdge);
if (!rfLen) rfLen = 50;
}
int startIdx = 0;
int size = fskdemod(bits, BitLen, rfLen, invert, fchigh, fclow, &startIdx);
if (size > 0) {
setDemodBuff(bits, size, 0);
setClockGrid(rfLen, startIdx);
// Now output the bitstream to the scrollback by line of 16 bits
if (verbose || g_debugMode) {
PrintAndLogEx(DEBUG, "DEBUG: (FSKrawDemod) Using Clock:%u, invert:%u, fchigh:%u, fclow:%u", rfLen, invert, fchigh, fclow);
PrintAndLogEx(NORMAL, "%s decoded bitstream:", GetFSKType(fchigh, fclow, invert));
printDemodBuff();
}
goto out;
} else {
PrintAndLogEx(DEBUG, "no FSK data found");
}
out:
free(bits);
return PM3_SUCCESS;
}
//by marshmellow
//fsk raw demod and print binary
//takes 4 arguments - Clock, invert, fchigh, fclow
//defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a))
static int CmdFSKrawdemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 20 || cmdp == 'h') return usage_data_rawdemod_fs();
uint8_t rfLen, invert, fchigh, fclow;
//set defaults
//set options from parameters entered with the command
rfLen = param_get8(Cmd, 0);
invert = param_get8(Cmd, 1);
fchigh = param_get8(Cmd, 2);
fclow = param_get8(Cmd, 3);
if (strlen(Cmd) > 0 && strlen(Cmd) <= 2) {
if (rfLen == 1) {
invert = 1; //if invert option only is used
rfLen = 0;
}
}
return FSKrawDemod(rfLen, invert, fchigh, fclow, true);
}
//by marshmellow
//attempt to psk1 demod graph buffer
int PSKDemod(int clk, int invert, int maxErr, bool verbose) {
if (getSignalProperties()->isnoise)
return PM3_ESOFT;
uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t));
if (bits == NULL) {
return PM3_EMALLOC;
}
size_t bitlen = getFromGraphBuf(bits);
if (bitlen == 0) {
free(bits);
return PM3_ESOFT;
}
int startIdx = 0;
int errCnt = pskRawDemod_ext(bits, &bitlen, &clk, &invert, &startIdx);
if (errCnt > maxErr) {
if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Too many errors found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, bitlen, errCnt);
free(bits);
return PM3_ESOFT;
}
if (errCnt < 0 || bitlen < 16) { //throw away static - allow 1 and -1 (in case of threshold command first)
if (g_debugMode || verbose) PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) no data found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, bitlen, errCnt);
free(bits);
return PM3_ESOFT;
}
if (verbose || g_debugMode) {
PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) Using Clock:%d, invert:%d, Bits Found:%zu", clk, invert, bitlen);
if (errCnt > 0) {
PrintAndLogEx(DEBUG, "DEBUG: (PSKdemod) errors during Demoding (shown as 7 in bit stream): %d", errCnt);
}
}
//prime demod buffer for output
setDemodBuff(bits, bitlen, 0);
setClockGrid(clk, startIdx);
free(bits);
return PM3_SUCCESS;
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate nrz only
// prints binary found and saves in demodbuffer for further commands
int NRZrawDemod(int clk, int invert, int maxErr, bool verbose) {
int errCnt = 0, clkStartIdx = 0;
if (getSignalProperties()->isnoise)
return PM3_ESOFT;
uint8_t *bits = calloc(MAX_GRAPH_TRACE_LEN, sizeof(uint8_t));
if (bits == NULL) {
return PM3_EMALLOC;
}
size_t BitLen = getFromGraphBuf(bits);
if (BitLen == 0) {
free(bits);
return PM3_ESOFT;
}
errCnt = nrzRawDemod(bits, &BitLen, &clk, &invert, &clkStartIdx);
if (errCnt > maxErr) {
PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Too many errors found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, BitLen, errCnt);
free(bits);
return PM3_ESOFT;
}
if (errCnt < 0 || BitLen < 16) { //throw away static - allow 1 and -1 (in case of threshold command first)
PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) no data found, clk: %d, invert: %d, numbits: %zu, errCnt: %d", clk, invert, BitLen, errCnt);
free(bits);
return PM3_ESOFT;
}
if (verbose || g_debugMode) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %zu", clk, invert, BitLen);
//prime demod buffer for output
setDemodBuff(bits, BitLen, 0);
setClockGrid(clk, clkStartIdx);
if (errCnt > 0 && (verbose || g_debugMode)) PrintAndLogEx(DEBUG, "DEBUG: (NRZrawDemod) Errors during Demoding (shown as 7 in bit stream): %d", errCnt);
if (verbose || g_debugMode) {
PrintAndLogEx(NORMAL, "NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
free(bits);
return PM3_SUCCESS;
}
static int CmdNRZrawDemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_nr();
int invert = 0, clk = 0, maxErr = 100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk == 1) {
invert = 1;
clk = 0;
}
if (invert != 0 && invert != 1) {
PrintAndLogEx(WARNING, "(NRZrawDemod) Invalid argument: %s", Cmd);
return PM3_EINVARG;
}
return NRZrawDemod(clk, invert, maxErr, true);
}
// by marshmellow
// takes 3 arguments - clock, invert, maxErr as integers
// attempts to demodulate psk only
// prints binary found and saves in demodbuffer for further commands
int CmdPSK1rawDemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_p1();
int clk = 0, invert = 0, maxErr = 100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk == 1) {
invert = 1;
clk = 0;
}
if (invert != 0 && invert != 1) {
PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert);
return PM3_EINVARG;
}
int ans = PSKDemod(clk, invert, maxErr, true);
//output
if (ans != PM3_SUCCESS) {
if (g_debugMode) PrintAndLogEx(ERR, "Error demoding: %d", ans);
return PM3_ESOFT;
}
PrintAndLogEx(NORMAL, "PSK1 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return PM3_SUCCESS;
}
// by marshmellow
// takes same args as cmdpsk1rawdemod
static int CmdPSK2rawDemod(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) > 16 || cmdp == 'h') return usage_data_rawdemod_p2();
int clk = 0, invert = 0, maxErr = 100;
sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr);
if (clk == 1) {
invert = 1;
clk = 0;
}
if (invert != 0 && invert != 1) {
PrintAndLogEx(WARNING, "Invalid value for invert: %i", invert);
return PM3_EINVARG;
}
int ans = PSKDemod(clk, invert, maxErr, true);
if (ans != PM3_SUCCESS) {
if (g_debugMode) PrintAndLogEx(ERR, "Error demoding: %d", ans);
return PM3_ESOFT;
}
psk1TOpsk2(DemodBuffer, DemodBufferLen);
PrintAndLogEx(NORMAL, "PSK2 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return PM3_SUCCESS;
}
// by marshmellow - combines all raw demod functions into one menu command
static int CmdRawDemod(const char *Cmd) {
int ans = 0;
if (strlen(Cmd) > 35 || strlen(Cmd) < 2)
return usage_data_rawdemod();
str_lower((char *)Cmd);
if (str_startswith(Cmd, "fs") || Cmd[0] == 'f') ans = CmdFSKrawdemod(Cmd + 2);
else if (str_startswith(Cmd, "ab")) ans = Cmdaskbiphdemod(Cmd + 2);
else if (str_startswith(Cmd, "am")) ans = Cmdaskmandemod(Cmd + 2);
else if (str_startswith(Cmd, "ar")) ans = Cmdaskrawdemod(Cmd + 2);
else if (str_startswith(Cmd, "nr") || Cmd[0] == 'n') ans = CmdNRZrawDemod(Cmd + 2);
else if (str_startswith(Cmd, "p1") || Cmd[0] == 'p') ans = CmdPSK1rawDemod(Cmd + 2);
else if (str_startswith(Cmd, "p2")) ans = CmdPSK2rawDemod(Cmd + 2);
else PrintAndLogEx(WARNING, "Unknown modulation entered - see help ('h') for parameter structure");
return ans;
}
void setClockGrid(uint32_t clk, int offset) {
g_DemodStartIdx = offset;
g_DemodClock = clk;
if (clk == 0 && offset == 0)
PrintAndLogEx(DEBUG, "DEBUG: (setClockGrid) clear settings");
else
PrintAndLogEx(DEBUG, "DEBUG: (setClockGrid) demodoffset %d, clk %d", offset, clk);
if (offset > clk) offset %= clk;
if (offset < 0) offset += clk;
if (offset > GraphTraceLen || offset < 0) return;
if (clk < 8 || clk > GraphTraceLen) {
GridLocked = false;
GridOffset = 0;
PlotGridX = 0;
PlotGridXdefault = 0;
RepaintGraphWindow();
} else {
GridLocked = true;
GridOffset = offset;
PlotGridX = clk;
PlotGridXdefault = clk;
RepaintGraphWindow();
}
}
int CmdGrid(const char *Cmd) {
sscanf(Cmd, "%lf %lf", &PlotGridX, &PlotGridY);
PlotGridXdefault = PlotGridX;
PlotGridYdefault = PlotGridY;
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdSetGraphMarkers(const char *Cmd) {
sscanf(Cmd, "%i %i", &CursorCPos, &CursorDPos);
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdHexsamples(const char *Cmd) {
uint32_t requested = 0;
uint32_t offset = 0;
char string_buf[25];
char *string_ptr = string_buf;
uint8_t got[pm3_capabilities.bigbuf_size];
sscanf(Cmd, "%u %u", &requested, &offset);
/* if no args send something */
if (requested == 0)
requested = 8;
if (requested > pm3_capabilities.bigbuf_size)
requested = pm3_capabilities.bigbuf_size;
if (offset + requested > sizeof(got)) {
PrintAndLogEx(NORMAL, "Tried to read past end of buffer, <bytes> + <offset> > %d", pm3_capabilities.bigbuf_size);
return PM3_EINVARG;
}
if (!GetFromDevice(BIG_BUF, got, requested, offset, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return PM3_ESOFT;
}
uint8_t i = 0;
for (uint32_t j = 0; j < requested; j++) {
i++;
string_ptr += sprintf(string_ptr, "%02x ", got[j]);
if (i == 8) {
*(string_ptr - 1) = '\0'; // remove the trailing space
PrintAndLogEx(NORMAL, "%s", string_buf);
string_buf[0] = '\0';
string_ptr = string_buf;
i = 0;
}
if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes
*(string_ptr - 1) = '\0';
PrintAndLogEx(NORMAL, "%s", string_buf);
string_buf[0] = '\0';
}
}
return PM3_SUCCESS;
}
static int CmdHide(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
HideGraphWindow();
return PM3_SUCCESS;
}
//zero mean GraphBuffer
int CmdHpf(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
removeSignalOffset(bits, size);
// push it back to graph
setGraphBuf(bits, size);
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(bits, size);
RepaintGraphWindow();
return PM3_SUCCESS;
}
static bool _headBit(BitstreamOut *stream) {
int bytepos = stream->position >> 3; // divide by 8
int bitpos = (stream->position++) & 7; // mask out 00000111
return (*(stream->buffer + bytepos) >> (7 - bitpos)) & 1;
}
static uint8_t getByte(uint8_t bits_per_sample, BitstreamOut *b) {
uint8_t val = 0;
for (int i = 0 ; i < bits_per_sample; i++)
val |= (_headBit(b) << (7 - i));
return val;
}
int getSamples(uint32_t n, bool verbose) {
return getSamplesEx(0, n, verbose);
}
int getSamplesEx(uint32_t start, uint32_t end, bool verbose) {
if (end < start) {
PrintAndLogEx(WARNING, "error, end (%u) is smaller than start (%u)", end, start);
return PM3_EINVARG;
}
//If we get all but the last byte in bigbuf,
// we don't have to worry about remaining trash
// in the last byte in case the bits-per-sample
// does not line up on byte boundaries
uint8_t got[pm3_capabilities.bigbuf_size - 1];
memset(got, 0x00, sizeof(got));
uint32_t n = end - start;
if (n <= 0 || n > pm3_capabilities.bigbuf_size - 1)
n = pm3_capabilities.bigbuf_size - 1;
if (verbose)
PrintAndLogEx(INFO, "Reading " _YELLOW_("%u") " bytes from device memory", n);
PacketResponseNG response;
if (!GetFromDevice(BIG_BUF, got, n, start, NULL, 0, &response, 10000, true)) {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return PM3_ETIMEOUT;
}
if (verbose) PrintAndLogEx(SUCCESS, "Data fetched");
uint8_t bits_per_sample = 8;
//Old devices without this feature would send 0 at arg[0]
if (response.oldarg[0] > 0) {
sample_config *sc = (sample_config *) response.data.asBytes;
if (verbose) PrintAndLogEx(INFO, "Samples @ " _YELLOW_("%d") " bits/smpl, decimation 1:%d ", sc->bits_per_sample, sc->decimation);
bits_per_sample = sc->bits_per_sample;
}
if (bits_per_sample < 8) {
if (verbose) PrintAndLogEx(INFO, "Unpacking...");
BitstreamOut bout = { got, bits_per_sample * n, 0};
uint32_t j = 0;
for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) {
uint8_t sample = getByte(bits_per_sample, &bout);
GraphBuffer[j] = ((int) sample) - 127;
}
GraphTraceLen = j;
if (verbose) PrintAndLogEx(INFO, "Unpacked %d samples", j);
} else {
for (uint32_t j = 0; j < n; j++) {
GraphBuffer[j] = ((int)got[j]) - 127;
}
GraphTraceLen = n;
}
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(bits, size);
setClockGrid(0, 0);
DemodBufferLen = 0;
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdSamples(const char *Cmd) {
int n = strtol(Cmd, NULL, 0);
return getSamples(n, false);
}
int CmdTuneSamples(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
#define NON_VOLTAGE 1000
#define LF_UNUSABLE_V 2000
#define LF_MARGINAL_V 10000
#define HF_UNUSABLE_V 3000
#define HF_MARGINAL_V 5000
#define ANTENNA_ERROR 1.00 // current algo has 3% error margin.
// hide demod plot line
DemodBufferLen = 0;
setClockGrid(0, 0);
RepaintGraphWindow();
int timeout = 0;
int timeout_max = 20;
PrintAndLogEx(INFO, "Measuring antenna characteristics, please wait...");
clearCommandBuffer();
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING, NULL, 0);
PacketResponseNG resp;
PrintAndLogEx(INPLACE, "% 3i", timeout_max - timeout);
while (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING, &resp, 500)) {
fflush(stdout);
if (timeout >= timeout_max) {
PrintAndLogEx(WARNING, "\nNo response from Proxmark3. Aborting...");
return PM3_ETIMEOUT;
}
timeout++;
PrintAndLogEx(INPLACE, "% 3i", timeout_max - timeout);
}
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(WARNING, "Antenna tuning failed");
return PM3_ESOFT;
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "---------- " _CYAN_("LF Antenna") " ----------");
// in mVolt
struct p {
uint32_t v_lf134;
uint32_t v_lf125;
uint32_t v_lfconf;
uint32_t v_hf;
uint32_t peak_v;
uint32_t peak_f;
int divisor;
uint8_t results[256];
} PACKED;
struct p *package = (struct p *)resp.data.asBytes;
if (package->v_lf125 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lf125 * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(LF_DIVISOR_125));
if (package->v_lf134 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lf134 * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(LF_DIVISOR_134));
if (package->v_lfconf > NON_VOLTAGE && package->divisor > 0 && package->divisor != LF_DIVISOR_125 && package->divisor != LF_DIVISOR_134)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %.2f kHz", (package->v_lfconf * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(package->divisor));
if (package->peak_v > NON_VOLTAGE && package->peak_f > 0)
PrintAndLogEx(SUCCESS, "LF optimal: %5.2f V - %6.2f kHz", (package->peak_v * ANTENNA_ERROR) / 1000.0, LF_DIV2FREQ(package->peak_f));
const double vdd_rdv4 = 9000;
const double vdd_other = 5400; // Empirical measures in mV
double vdd = IfPm3Rdv4Fw() ? vdd_rdv4 : vdd_other;
if (package->peak_v > NON_VOLTAGE && package->peak_f > 0) {
// Q measure with Q=f/delta_f
double v_3db_scaled = (double)(package->peak_v * 0.707) / 512; // /512 == >>9
uint32_t s2 = 0, s4 = 0;
for (int i = 1; i < 256; i++) {
if ((s2 == 0) && (package->results[i] > v_3db_scaled)) {
s2 = i;
}
if ((s2 != 0) && (package->results[i] < v_3db_scaled)) {
s4 = i;
break;
}
}
double lfq1 = 0;
if (s4 != 0) { // we got all our points of interest
double a = package->results[s2 - 1];
double b = package->results[s2];
double f1 = LF_DIV2FREQ(s2 - 1 + (v_3db_scaled - a) / (b - a));
double c = package->results[s4 - 1];
double d = package->results[s4];
double f2 = LF_DIV2FREQ(s4 - 1 + (c - v_3db_scaled) / (c - d));
lfq1 = LF_DIV2FREQ(package->peak_f) / (f1 - f2);
PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by frequency bandwidth measurement", lfq1);
}
// Q measure with Vlr=Q*(2*Vdd/pi)
double lfq2 = (double)package->peak_v * 3.14 / 2 / vdd;
PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by peak voltage measurement", lfq2);
// cross-check results
if (lfq1 > 3) {
double approx_vdd = (double)package->peak_v * 3.14 / 2 / lfq1;
if ((approx_vdd > (vdd_rdv4 + vdd_other) / 2) && (! IfPm3Rdv4Fw()))
PrintAndLogEx(WARNING, "Contradicting measures seem to indicate you're running a " _YELLOW_("PM3_OTHER firmware on a RDV4") ", please check your setup");
if ((approx_vdd < (vdd_rdv4 + vdd_other) / 2) && (IfPm3Rdv4Fw()))
PrintAndLogEx(WARNING, "Contradicting measures seem to indicate you're running a " _YELLOW_("PM3_RDV4 firmware on a non-RDV4") ", please check your setup");
}
}
char judgement[20];
memset(judgement, 0, sizeof(judgement));
// LF evaluation
if (package->peak_v < LF_UNUSABLE_V)
sprintf(judgement, _RED_("UNUSABLE"));
else if (package->peak_v < LF_MARGINAL_V)
sprintf(judgement, _YELLOW_("MARGINAL"));
else
sprintf(judgement, _GREEN_("OK"));
PrintAndLogEx((package->peak_v < LF_UNUSABLE_V) ? WARNING : SUCCESS, "LF antenna is %s", judgement);
PrintAndLogEx(INFO, "---------- " _CYAN_("HF Antenna") " ----------");
// HF evaluation
if (package->v_hf > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "HF antenna: %5.2f V - 13.56 MHz", (package->v_hf * ANTENNA_ERROR) / 1000.0);
memset(judgement, 0, sizeof(judgement));
if (package->v_hf >= HF_UNUSABLE_V) {
// Q measure with Vlr=Q*(2*Vdd/pi)
double hfq = (double)package->v_hf * 3.14 / 2 / vdd;
PrintAndLogEx(SUCCESS, "Approx. Q factor (*): %.1lf by peak voltage measurement", hfq);
}
if (package->v_hf < HF_UNUSABLE_V)
sprintf(judgement, _RED_("UNUSABLE"));
else if (package->v_hf < HF_MARGINAL_V)
sprintf(judgement, _YELLOW_("MARGINAL"));
else
sprintf(judgement, _GREEN_("OK"));
PrintAndLogEx((package->v_hf < HF_UNUSABLE_V) ? WARNING : SUCCESS, "HF antenna is %s", judgement);
PrintAndLogEx(NORMAL, "\n(*) Q factor must be measured without tag on the antenna");
// graph LF measurements
// even here, these values has 3% error.
uint16_t test1 = 0;
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = package->results[i] - 128;
test1 += package->results[i];
}
if (test1 > 0) {
PrintAndLogEx(SUCCESS, "\nDisplaying LF tuning graph. Divisor %d (blue) is %.2f kHz, %d (red) is %.2f kHz.\n\n",
LF_DIVISOR_134, LF_DIV2FREQ(LF_DIVISOR_134), LF_DIVISOR_125, LF_DIV2FREQ(LF_DIVISOR_125));
GraphTraceLen = 256;
CursorCPos = LF_DIVISOR_125;
CursorDPos = LF_DIVISOR_134;
ShowGraphWindow();
RepaintGraphWindow();
} else {
PrintAndLogEx(FAILED, "\nNot showing LF tuning graph since all values is zero.\n\n");
}
return PM3_SUCCESS;
}
static int CmdLoad(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data load",
"This command loads the contents of a pm3 file into graph window\n",
"data load -f myfilename"
);
void *argtable[] = {
arg_param_begin,
arg_strx0("f", "file", "<filename>", "file to load"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
int fnlen = 0;
char filename[FILE_PATH_SIZE] = {0};
CLIParamStrToBuf(arg_get_str(ctx, 1), (uint8_t *)filename, FILE_PATH_SIZE, &fnlen);
CLIParserFree(ctx);
char *path = NULL;
if (searchFile(&path, TRACES_SUBDIR, filename, ".pm3", true) != PM3_SUCCESS) {
if (searchFile(&path, TRACES_SUBDIR, filename, "", false) != PM3_SUCCESS) {
return PM3_EFILE;
}
}
FILE *f = fopen(path, "r");
if (!f) {
PrintAndLogEx(WARNING, "couldn't open '%s'", path);
free(path);
return PM3_EFILE;
}
free(path);
GraphTraceLen = 0;
char line[80];
while (fgets(line, sizeof(line), f)) {
GraphBuffer[GraphTraceLen] = atoi(line);
GraphTraceLen++;
if (GraphTraceLen >= MAX_GRAPH_TRACE_LEN)
break;
}
fclose(f);
PrintAndLogEx(SUCCESS, "loaded " _YELLOW_("%zu") " samples", GraphTraceLen);
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
removeSignalOffset(bits, size);
setGraphBuf(bits, size);
computeSignalProperties(bits, size);
setClockGrid(0, 0);
DemodBufferLen = 0;
RepaintGraphWindow();
return PM3_SUCCESS;
}
// trim graph from the end
int CmdLtrim(const char *Cmd) {
uint32_t ds = strtoul(Cmd, NULL, 10);
// sanitycheck
if (GraphTraceLen <= ds) return PM3_ESOFT;
for (uint32_t i = ds; i < GraphTraceLen; ++i)
GraphBuffer[i - ds] = GraphBuffer[i];
GraphTraceLen -= ds;
g_DemodStartIdx -= ds;
RepaintGraphWindow();
return PM3_SUCCESS;
}
// trim graph from the beginning
static int CmdRtrim(const char *Cmd) {
uint32_t ds = strtoul(Cmd, NULL, 10);
// sanitycheck
if (GraphTraceLen <= ds) return PM3_ESOFT;
GraphTraceLen = ds;
RepaintGraphWindow();
return PM3_SUCCESS;
}
// trim graph (middle) piece
static int CmdMtrim(const char *Cmd) {
uint32_t start = 0, stop = 0;
sscanf(Cmd, "%u %u", &start, &stop);
if (start > GraphTraceLen || stop > GraphTraceLen || start >= stop)
return PM3_ESOFT;
// leave start position sample
start++;
GraphTraceLen = stop - start;
for (uint32_t i = 0; i < GraphTraceLen; i++)
GraphBuffer[i] = GraphBuffer[start + i];
return PM3_SUCCESS;
}
int CmdNorm(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
int max = INT_MIN, min = INT_MAX;
// Find local min, max
for (uint32_t i = 10; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] > max) max = GraphBuffer[i];
if (GraphBuffer[i] < min) min = GraphBuffer[i];
}
if (max != min) {
for (uint32_t i = 0; i < GraphTraceLen; ++i) {
GraphBuffer[i] = ((long)(GraphBuffer[i] - ((max + min) / 2)) * 256) / (max - min);
//marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work
}
}
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(bits, size);
RepaintGraphWindow();
return PM3_SUCCESS;
}
int CmdPlot(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
ShowGraphWindow();
return PM3_SUCCESS;
}
int CmdSave(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data save",
"Save trace from graph window , i.e. the GraphBuffer\n"
"This is a text file with number -127 to 127. With the option `w` you can save it as wave file\n"
"Filename should be without file extension",
"data save -f myfilename -> save graph buffer to file\n"
"data save --wave -f myfilename -> save graph buffer to wave file"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("w", "wave", "save as wave format (.wav)"),
arg_str1("f", "file", "<fn w/o ext>", "save file name"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
bool as_wave = arg_get_lit(ctx, 1);
int fnlen = 0;
char filename[FILE_PATH_SIZE] = {0};
// CLIGetStrWithReturn(ctx, 2, (uint8_t *)filename, &fnlen);
CLIParamStrToBuf(arg_get_str(ctx, 2), (uint8_t *)filename, FILE_PATH_SIZE, &fnlen);
CLIParserFree(ctx);
if (as_wave)
return saveFileWAVE(filename, GraphBuffer, GraphTraceLen);
else
return saveFilePM3(filename, GraphBuffer, GraphTraceLen);
}
static int CmdTimeScale(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data timescale",
"Set cursor display timescale.\n"
"Setting the timescale makes the differential `dt` reading between the yellow and purple markers meaningful.\n"
"once the timescale is set, the differential reading between brackets can become a time duration.",
"data timescale --sr 125 -u ms -> for LF sampled at 125 kHz. Reading will be in milliseconds\n"
"data timescale --sr 1.695 -u us -> for HF sampled at 16 * fc/128. Reading will be in microseconds\n"
"data timescale --sr 16 -u ETU -> for HF with 16 samples per ETU (fc/128). Reading will be in ETUs"
);
void *argtable[] = {
arg_param_begin,
arg_dbl1(NULL, "sr", "<float>", "sets timescale factor according to sampling rate"),
arg_str0("u", "unit", "<string>", "time unit to display (max 10 chars)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
CursorScaleFactor = arg_get_dbl_def(ctx, 1, 1);
if (CursorScaleFactor <= 0) {
PrintAndLogEx(FAILED, "bad, can't have negative or zero timescale factor");
CursorScaleFactor = 1;
}
int len = 0;
CursorScaleFactorUnit[0] = '\x00';
CLIParamStrToBuf(arg_get_str(ctx, 2), (uint8_t *)CursorScaleFactorUnit, sizeof(CursorScaleFactorUnit), &len);
CLIParserFree(ctx);
RepaintGraphWindow();
return PM3_SUCCESS;
}
int directionalThreshold(const int *in, int *out, size_t len, int8_t up, int8_t down) {
int lastValue = in[0];
// Will be changed at the end, but init 0 as we adjust to last samples
// value if no threshold kicks in.
out[0] = 0;
for (size_t i = 1; i < len; ++i) {
// Apply first threshold to samples heading up
if (in[i] >= up && in[i] > lastValue) {
lastValue = out[i]; // Buffer last value as we overwrite it.
out[i] = 1;
}
// Apply second threshold to samples heading down
else if (in[i] <= down && in[i] < lastValue) {
lastValue = out[i]; // Buffer last value as we overwrite it.
out[i] = -1;
} else {
lastValue = out[i]; // Buffer last value as we overwrite it.
out[i] = out[i - 1];
}
}
// Align with first edited sample.
out[0] = out[1];
return PM3_SUCCESS;
}
static int CmdDirectionalThreshold(const char *Cmd) {
int8_t up = param_get8(Cmd, 0);
int8_t down = param_get8(Cmd, 1);
PrintAndLogEx(INFO, "Applying Up Threshold: %d, Down Threshold: %d\n", up, down);
directionalThreshold(GraphBuffer, GraphBuffer, GraphTraceLen, up, down);
// set signal properties low/high/mean/amplitude and isnoice detection
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
// set signal properties low/high/mean/amplitude and is_noice detection
computeSignalProperties(bits, size);
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdZerocrossings(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
// Zero-crossings aren't meaningful unless the signal is zero-mean.
CmdHpf("");
int sign = 1, zc = 0, lastZc = 0;
for (uint32_t i = 0; i < GraphTraceLen; ++i) {
if (GraphBuffer[i] * sign >= 0) {
// No change in sign, reproduce the previous sample count.
zc++;
GraphBuffer[i] = lastZc;
} else {
// Change in sign, reset the sample count.
sign = -sign;
GraphBuffer[i] = lastZc;
if (sign > 0) {
lastZc = zc;
zc = 0;
}
}
}
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(bits, size);
RepaintGraphWindow();
return PM3_SUCCESS;
}
/**
* @brief Utility for conversion via cmdline.
* @param Cmd
* @return
*/
static int Cmdbin2hex(const char *Cmd) {
int bg = 0, en = 0;
if (param_getptr(Cmd, &bg, &en, 0))
return usage_data_bin2hex();
//Number of digits supplied as argument
size_t length = en - bg + 1;
size_t bytelen = (length + 7) / 8;
uint8_t *arr = (uint8_t *) calloc(bytelen, sizeof(uint8_t));
memset(arr, 0, bytelen);
BitstreamOut bout = { arr, 0, 0 };
for (; bg <= en; bg++) {
char c = Cmd[bg];
if (c == '1')
pushBit(&bout, 1);
else if (c == '0')
pushBit(&bout, 0);
else
PrintAndLogEx(NORMAL, "Ignoring '%c'", c);
}
if (bout.numbits % 8 != 0)
PrintAndLogEx(NORMAL, "[padded with %d zeroes]", 8 - (bout.numbits % 8));
PrintAndLogEx(NORMAL, "%s", sprint_hex(arr, bytelen));
free(arr);
return PM3_SUCCESS;
}
static int Cmdhex2bin(const char *Cmd) {
int bg = 0, en = 0;
if (param_getptr(Cmd, &bg, &en, 0)) return usage_data_hex2bin();
while (bg <= en) {
char x = Cmd[bg++];
// capitalize
if (x >= 'a' && x <= 'f')
x -= 32;
// convert to numeric value
if (x >= '0' && x <= '9')
x -= '0';
else if (x >= 'A' && x <= 'F')
x -= 'A' - 10;
else
continue;
for (int i = 0 ; i < 4 ; ++i)
PrintAndLogEx(NORMAL, "%d" NOLF, (x >> (3 - i)) & 1);
}
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
/* // example of FSK2 RF/50 Tones
static const int LowTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, -1, -1, -1, -1, -1
};
static const int HighTone[] = {
1, 1, 1, 1, 1, -1, -1, -1, -1, // note one extra 1 to padd due to 50/8 remainder (1/2 the remainder)
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1,
1, 1, 1, 1, -1, -1, -1, -1, -1, // note one extra -1 to padd due to 50/8 remainder
};
*/
static void GetHiLoTone(int *LowTone, int *HighTone, int clk, int LowToneFC, int HighToneFC) {
int i, j = 0;
int Left_Modifier = ((clk % LowToneFC) % 2) + ((clk % LowToneFC) / 2);
int Right_Modifier = (clk % LowToneFC) / 2;
//int HighToneMod = clk mod HighToneFC;
int LeftHalfFCCnt = (LowToneFC % 2) + (LowToneFC / 2); //truncate
int FCs_per_clk = clk / LowToneFC;
// need to correctly split up the clock to field clocks.
// First attempt uses modifiers on each end to make up for when FCs don't evenly divide into Clk
// start with LowTone
// set extra 1 modifiers to make up for when FC doesn't divide evenly into Clk
for (i = 0; i < Left_Modifier; i++) {
LowTone[i] = 1;
}
// loop # of field clocks inside the main clock
for (i = 0; i < (FCs_per_clk); i++) {
// loop # of samples per field clock
for (j = 0; j < LowToneFC; j++) {
LowTone[(i * LowToneFC) + Left_Modifier + j] = (j < LeftHalfFCCnt) ? 1 : -1;
}
}
int k;
// add last -1 modifiers
for (k = 0; k < Right_Modifier; k++) {
LowTone[((i - 1) * LowToneFC) + Left_Modifier + j + k] = -1;
}
// now do hightone
Left_Modifier = ((clk % HighToneFC) % 2) + ((clk % HighToneFC) / 2);
Right_Modifier = (clk % HighToneFC) / 2;
LeftHalfFCCnt = (HighToneFC % 2) + (HighToneFC / 2); //truncate
FCs_per_clk = clk / HighToneFC;
for (i = 0; i < Left_Modifier; i++) {
HighTone[i] = 1;
}
// loop # of field clocks inside the main clock
for (i = 0; i < (FCs_per_clk); i++) {
// loop # of samples per field clock
for (j = 0; j < HighToneFC; j++) {
HighTone[(i * HighToneFC) + Left_Modifier + j] = (j < LeftHalfFCCnt) ? 1 : -1;
}
}
// add last -1 modifiers
for (k = 0; k < Right_Modifier; k++) {
PrintAndLogEx(NORMAL, "(i-1)*HighToneFC+lm+j+k %i", ((i - 1) * HighToneFC) + Left_Modifier + j + k);
HighTone[((i - 1) * HighToneFC) + Left_Modifier + j + k] = -1;
}
if (g_debugMode == 2) {
for (i = 0; i < clk; i++) {
PrintAndLogEx(NORMAL, "Low: %i, High: %i", LowTone[i], HighTone[i]);
}
}
}
//old CmdFSKdemod adapted by marshmellow
//converts FSK to clear NRZ style wave. (or demodulates)
static int FSKToNRZ(int *data, size_t *dataLen, uint8_t clk, uint8_t LowToneFC, uint8_t HighToneFC) {
uint8_t ans = 0;
if (clk == 0 || LowToneFC == 0 || HighToneFC == 0) {
int firstClockEdge = 0;
ans = fskClocks((uint8_t *) &LowToneFC, (uint8_t *) &HighToneFC, (uint8_t *) &clk, &firstClockEdge);
if (g_debugMode > 1) {
PrintAndLogEx(NORMAL, "DEBUG FSKtoNRZ: detected clocks: fc_low %i, fc_high %i, clk %i, firstClockEdge %i, ans %u", LowToneFC, HighToneFC, clk, firstClockEdge, ans);
}
}
// currently only know fsk modulations with field clocks < 10 samples and > 4 samples. filter out to remove false positives (and possibly destroying ask/psk modulated waves...)
if (ans == 0 || clk == 0 || LowToneFC == 0 || HighToneFC == 0 || LowToneFC > 10 || HighToneFC < 4) {
if (g_debugMode > 1) {
PrintAndLogEx(NORMAL, "DEBUG FSKtoNRZ: no fsk clocks found");
}
return PM3_ESOFT;
}
int LowTone[clk];
int HighTone[clk];
GetHiLoTone(LowTone, HighTone, clk, LowToneFC, HighToneFC);
// loop through ([all samples] - clk)
for (size_t i = 0; i < *dataLen - clk; ++i) {
int lowSum = 0, highSum = 0;
// sum all samples together starting from this sample for [clk] samples for each tone (multiply tone value with sample data)
for (size_t j = 0; j < clk; ++j) {
lowSum += LowTone[j] * data[i + j];
highSum += HighTone[j] * data[i + j];
}
// get abs( [average sample value per clk] * 100 ) (or a rolling average of sorts)
lowSum = abs(100 * lowSum / clk);
highSum = abs(100 * highSum / clk);
// save these back to buffer for later use
data[i] = (highSum << 16) | lowSum;
}
// now we have the abs( [average sample value per clk] * 100 ) for each tone
// loop through again [all samples] - clk - 16
// note why 16??? is 16 the largest FC? changed to LowToneFC as that should be the > fc
for (size_t i = 0; i < *dataLen - clk - LowToneFC; ++i) {
int lowTot = 0, highTot = 0;
// sum a field clock width of abs( [average sample values per clk] * 100) for each tone
for (size_t j = 0; j < LowToneFC; ++j) { //10 for fsk2
lowTot += (data[i + j] & 0xffff);
}
for (size_t j = 0; j < HighToneFC; j++) { //8 for fsk2
highTot += (data[i + j] >> 16);
}
// subtract the sum of lowTone averages by the sum of highTone averages as it
// and write back the new graph value
data[i] = lowTot - highTot;
}
// update dataLen to what we put back to the data sample buffer
*dataLen -= (clk + LowToneFC);
return PM3_SUCCESS;
}
static int CmdFSKToNRZ(const char *Cmd) {
// take clk, fc_low, fc_high
// blank = auto;
bool errors = false;
char cmdp = 0;
int clk = 0, fc_low = 10, fc_high = 8;
while (param_getchar(Cmd, cmdp) != 0x00) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_data_fsktonrz();
case 'c':
clk = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'f':
fc_high = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'l':
fc_low = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if (errors) break;
}
//Validations
if (errors) return usage_data_fsktonrz();
setClockGrid(0, 0);
DemodBufferLen = 0;
int ans = FSKToNRZ(GraphBuffer, &GraphTraceLen, clk, fc_low, fc_high);
CmdNorm("");
RepaintGraphWindow();
return ans;
}
static int CmdDataIIR(const char *Cmd) {
uint8_t k = param_get8(Cmd, 0);
//iceIIR_Butterworth(GraphBuffer, GraphTraceLen);
iceSimple_Filter(GraphBuffer, GraphTraceLen, k);
uint8_t bits[GraphTraceLen];
size_t size = getFromGraphBuf(bits);
// set signal properties low/high/mean/amplitude and is_noise detection
computeSignalProperties(bits, size);
RepaintGraphWindow();
return PM3_SUCCESS;
}
static int CmdDataNDEF(const char *Cmd) {
#ifndef MAX_NDEF_LEN
#define MAX_NDEF_LEN 2048
#endif
CLIParserContext *ctx;
CLIParserInit(&ctx, "data ndef",
"Decode and print NFC Data Exchange Format (NDEF)",
"data ndef -d 9101085402656e48656c6c6f5101085402656e576f726c64\n"
"data ndef -d 0103d020240203e02c040300fe\n"
);
void *argtable[] = {
arg_param_begin,
arg_strx0("d", "data", "<hex>", "NDEF data to decode"),
arg_lit0("v", "verbose", "verbose mode"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
int datalen = 0;
uint8_t data[MAX_NDEF_LEN] = {0};
CLIGetHexWithReturn(ctx, 1, data, &datalen);
bool verbose = arg_get_lit(ctx, 2);
CLIParserFree(ctx);
if (datalen == 0)
return PM3_EINVARG;
int res = NDEFDecodeAndPrint(data, datalen, verbose);
if (res != PM3_SUCCESS) {
PrintAndLogEx(INFO, "Trying to parse NDEF records w/o NDEF header");
res = NDEFRecordsDecodeAndPrint(data, datalen);
}
return res;
}
typedef struct {
t55xx_modulation modulation;
int bitrate;
int carrier;
uint8_t fc1;
uint8_t fc2;
} lf_modulation_t;
static int print_modulation(lf_modulation_t b) {
PrintAndLogEx(INFO, " Modulation.... " _GREEN_("%s"), GetSelectedModulationStr(b.modulation));
PrintAndLogEx(INFO, " Bit clock..... " _GREEN_("RF/%d"), b.bitrate);
switch (b.modulation) {
case DEMOD_PSK1:
case DEMOD_PSK2:
case DEMOD_PSK3:
PrintAndLogEx(SUCCESS, " Carrier rate.. %d", b.carrier);
break;
case DEMOD_FSK:
case DEMOD_FSK1:
case DEMOD_FSK1a:
case DEMOD_FSK2:
case DEMOD_FSK2a:
PrintAndLogEx(SUCCESS, " Field Clocks.. FC/%u, FC/%u", b.fc1, b.fc2);
break;
case DEMOD_NRZ:
case DEMOD_ASK:
case DEMOD_BI:
case DEMOD_BIa:
default:
break;
}
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int try_detect_modulation(void) {
lf_modulation_t tests[6];
int clk = 0, firstClockEdge = 0;
uint8_t hits = 0, ans = 0;
uint8_t fc1 = 0, fc2 = 0;
bool st = false;
ans = fskClocks(&fc1, &fc2, (uint8_t *)&clk, &firstClockEdge);
if (ans && ((fc1 == 10 && fc2 == 8) || (fc1 == 8 && fc2 == 5))) {
if ((FSKrawDemod(0, 0, 0, 0, false) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_FSK;
if (fc1 == 8 && fc2 == 5) {
tests[hits].modulation = DEMOD_FSK1a;
} else if (fc1 == 10 && fc2 == 8) {
tests[hits].modulation = DEMOD_FSK2;
}
tests[hits].bitrate = clk;
tests[hits].fc1 = fc1;
tests[hits].fc2 = fc2;
++hits;
}
} else {
clk = GetAskClock("", false);
if (clk > 0) {
// 0 = auto clock
// 0 = no invert
// 1 = maxError 1
// 0 = max len
// false = no amplify
// false = no verbose
// false = no emSearch
// 1 = Ask/Man
// st = true
if ((ASKDemod_ext(0, 0, 1, 0, false, false, false, 1, &st) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_ASK;
tests[hits].bitrate = clk;
++hits;
}
// "0 0 1 " == clock auto, invert true, maxError 1.
// false = no verbose
// false = no emSearch
// 1 = Ask/Man
// st = true
// ASK / biphase
if ((ASKbiphaseDemod(0, 0, 0, 2, false) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_BI;
tests[hits].bitrate = clk;
++hits;
}
// ASK / Diphase
if ((ASKbiphaseDemod(0, 0, 1, 2, false) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_BIa;
tests[hits].bitrate = clk;
++hits;
}
}
clk = GetNrzClock("", false);
if ((NRZrawDemod(0, 0, 1, false) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_NRZ;
tests[hits].bitrate = clk;
++hits;
}
clk = GetPskClock("", false);
if (clk > 0) {
// allow undo
save_restoreGB(GRAPH_SAVE);
// skip first 160 samples to allow antenna to settle in (psk gets inverted occasionally otherwise)
CmdLtrim("160");
if ((PSKDemod(0, 0, 6, false) == PM3_SUCCESS)) {
tests[hits].modulation = DEMOD_PSK1;
tests[hits].bitrate = clk;
++hits;
// get psk carrier
tests[hits].carrier = GetPskCarrier(false);
}
//undo trim samples
save_restoreGB(GRAPH_RESTORE);
}
}
if (hits) {
PrintAndLogEx(SUCCESS, "Found [%d] possible matches for modulation.", hits);
for (int i = 0; i < hits; ++i) {
PrintAndLogEx(INFO, "--[%d]---------------", i + 1);
print_modulation(tests[i]);
}
return PM3_SUCCESS;
} else {
PrintAndLogEx(INFO, "Signal doesn't match");
return PM3_ESOFT;
}
}
static int CmdDataModulationSearch(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "data modulation",
"search LF signal after clock and modulation\n",
"data modulation"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
return try_detect_modulation();
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("Modulation") "-------------------------"},
{"biphaserawdecode", CmdBiphaseDecodeRaw, AlwaysAvailable, "Biphase decode bin stream in DemodBuffer"},
{"detectclock", CmdDetectClockRate, AlwaysAvailable, "Detect ASK, FSK, NRZ, PSK clock rate of wave in GraphBuffer"},
{"fsktonrz", CmdFSKToNRZ, AlwaysAvailable, "Convert fsk2 to nrz wave for alternate fsk demodulating (for weak fsk)"},
{"manrawdecode", Cmdmandecoderaw, AlwaysAvailable, "Manchester decode binary stream in DemodBuffer"},
{"modulation", CmdDataModulationSearch, AlwaysAvailable, "Identify LF signal for clock and modulation"},
{"rawdemod", CmdRawDemod, AlwaysAvailable, "Demodulate the data in the GraphBuffer and output binary"},
{"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("Graph") "-------------------------"},
{"askedgedetect", CmdAskEdgeDetect, AlwaysAvailable, "[threshold] Adjust Graph for manual ASK demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"},
{"autocorr", CmdAutoCorr, AlwaysAvailable, "Autocorrelation over window"},
{"dirthreshold", CmdDirectionalThreshold, AlwaysAvailable, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{"decimate", CmdDecimate, AlwaysAvailable, "Decimate samples"},
{"undecimate", CmdUndecimate, AlwaysAvailable, "Un-decimate samples"},
{"hide", CmdHide, AlwaysAvailable, "Hide graph window"},
{"hpf", CmdHpf, AlwaysAvailable, "Remove DC offset from trace"},
{"iir", CmdDataIIR, AlwaysAvailable, "apply IIR buttersworth filter on plotdata"},
{"grid", CmdGrid, AlwaysAvailable, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"ltrim", CmdLtrim, AlwaysAvailable, "<samples> -- Trim samples from left of trace"},
{"mtrim", CmdMtrim, AlwaysAvailable, "<start> <stop> -- Trim out samples from the specified start to the specified stop"},
{"norm", CmdNorm, AlwaysAvailable, "Normalize max/min to +/-128"},
{"plot", CmdPlot, AlwaysAvailable, "Show graph window (hit 'h' in window for keystroke help)"},
{"rtrim", CmdRtrim, AlwaysAvailable, "<location to end trace> -- Trim samples from right of trace"},
{"setgraphmarkers", CmdSetGraphMarkers, AlwaysAvailable, "[orange_marker] [blue_marker] (in graph window)"},
{"shiftgraphzero", CmdGraphShiftZero, AlwaysAvailable, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"timescale", CmdTimeScale, AlwaysAvailable, "Set a timescale to get a differential reading between the yellow and purple markers as time duration\n"},
{"zerocrossings", CmdZerocrossings, AlwaysAvailable, "Count time between zero-crossings"},
{"convertbitstream", CmdConvertBitStream, AlwaysAvailable, "Convert GraphBuffer's 0/1 values to 127 / -127"},
{"getbitstream", CmdGetBitStream, AlwaysAvailable, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"},
{"-----------", CmdHelp, AlwaysAvailable, "------------------------- " _CYAN_("General") "-------------------------"},
{"bin2hex", Cmdbin2hex, AlwaysAvailable, "Converts binary to hexadecimal"},
{"bitsamples", CmdBitsamples, IfPm3Present, "Get raw samples as bitstring"},
{"clear", CmdBuffClear, AlwaysAvailable, "Clears bigbuf on deviceside and graph window"},
{"hexsamples", CmdHexsamples, IfPm3Present, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hex2bin", Cmdhex2bin, AlwaysAvailable, "Converts hexadecimal to binary"},
{"load", CmdLoad, AlwaysAvailable, "Load contents of file into graph window"},
{"ndef", CmdDataNDEF, AlwaysAvailable, "Decode NDEF records"},
{"print", CmdPrintDemodBuff, AlwaysAvailable, "print the data in the DemodBuffer"},
{"samples", CmdSamples, IfPm3Present, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"},
{"save", CmdSave, AlwaysAvailable, "Save signal trace data (from graph window)"},
{"setdebugmode", CmdSetDebugMode, AlwaysAvailable, "<0|1|2> -- Set Debugging Level on client side"},
{"tune", CmdTuneSamples, IfPm3Present, "Measure tuning of device antenna. Results shown in graph window"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdData(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}