proxmark3/armsrc/fpgaloader.c
2012-12-04 23:39:18 +00:00

431 lines
14 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, April 2006
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to load the FPGA image, and then to configure the FPGA's major
// mode once it is configured.
//-----------------------------------------------------------------------------
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "string.h"
//-----------------------------------------------------------------------------
// Set up the Serial Peripheral Interface as master
// Used to write the FPGA config word
// May also be used to write to other SPI attached devices like an LCD
//-----------------------------------------------------------------------------
void SetupSpi(int mode)
{
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock
// Disable PIO control of the following pins, allows use by the SPI peripheral
AT91C_BASE_PIOA->PIO_PDR =
GPIO_NCS0 |
GPIO_NCS2 |
GPIO_MISO |
GPIO_MOSI |
GPIO_SPCK;
AT91C_BASE_PIOA->PIO_ASR =
GPIO_NCS0 |
GPIO_MISO |
GPIO_MOSI |
GPIO_SPCK;
AT91C_BASE_PIOA->PIO_BSR = GPIO_NCS2;
//enable the SPI Peripheral clock
AT91C_BASE_PMC->PMC_PCER = (1<<AT91C_ID_SPI);
// Enable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIEN;
switch (mode) {
case SPI_FPGA_MODE:
AT91C_BASE_SPI->SPI_MR =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
AT91C_BASE_SPI->SPI_CSR[0] =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 8 << 4) | // Bits per Transfer (16 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
case SPI_LCD_MODE:
AT91C_BASE_SPI->SPI_MR =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
AT91C_BASE_SPI->SPI_CSR[2] =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 1 << 4) | // Bits per Transfer (9 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
default: // Disable SPI
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS;
break;
}
}
//-----------------------------------------------------------------------------
// Set up the synchronous serial port, with the one set of options that we
// always use when we are talking to the FPGA. Both RX and TX are enabled.
//-----------------------------------------------------------------------------
void FpgaSetupSsc(void)
{
// First configure the GPIOs, and get ourselves a clock.
AT91C_BASE_PIOA->PIO_ASR =
GPIO_SSC_FRAME |
GPIO_SSC_DIN |
GPIO_SSC_DOUT |
GPIO_SSC_CLK;
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC);
// Now set up the SSC proper, starting from a known state.
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
// RX clock comes from TX clock, RX starts when TX starts, data changes
// on RX clock rising edge, sampled on falling edge
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
// 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
// pulse, no output sync, start on positive-going edge of sync
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
// clock comes from TK pin, no clock output, outputs change on falling
// edge of TK, start on rising edge of TF
AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5);
// tx framing is the same as the rx framing
AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR;
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
}
//-----------------------------------------------------------------------------
// Set up DMA to receive samples from the FPGA. We will use the PDC, with
// a single buffer as a circular buffer (so that we just chain back to
// ourselves, not to another buffer). The stuff to manipulate those buffers
// is in apps.h, because it should be inlined, for speed.
//-----------------------------------------------------------------------------
bool FpgaSetupSscDma(uint8_t *buf, int len)
{
if (buf == NULL) {
return false;
}
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf;
AT91C_BASE_PDC_SSC->PDC_RCR = len;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf;
AT91C_BASE_PDC_SSC->PDC_RNCR = len;
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN;
return true;
}
static void DownloadFPGA_byte(unsigned char w)
{
#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
SEND_BIT(7);
SEND_BIT(6);
SEND_BIT(5);
SEND_BIT(4);
SEND_BIT(3);
SEND_BIT(2);
SEND_BIT(1);
SEND_BIT(0);
}
// Download the fpga image starting at FpgaImage and with length FpgaImageLen bytes
// If bytereversal is set: reverse the byte order in each 4-byte word
static void DownloadFPGA(const char *FpgaImage, int FpgaImageLen, int bytereversal)
{
int i=0;
AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_ON;
AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON;
HIGH(GPIO_FPGA_ON); // ensure everything is powered on
SpinDelay(50);
LED_D_ON();
// These pins are inputs
AT91C_BASE_PIOA->PIO_ODR =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// PIO controls the following pins
AT91C_BASE_PIOA->PIO_PER =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// Enable pull-ups
AT91C_BASE_PIOA->PIO_PPUER =
GPIO_FPGA_NINIT |
GPIO_FPGA_DONE;
// setup initial logic state
HIGH(GPIO_FPGA_NPROGRAM);
LOW(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_DIN);
// These pins are outputs
AT91C_BASE_PIOA->PIO_OER =
GPIO_FPGA_NPROGRAM |
GPIO_FPGA_CCLK |
GPIO_FPGA_DIN;
// enter FPGA configuration mode
LOW(GPIO_FPGA_NPROGRAM);
SpinDelay(50);
HIGH(GPIO_FPGA_NPROGRAM);
i=100000;
// wait for FPGA ready to accept data signal
while ((i) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT ) ) ) {
i--;
}
// crude error indicator, leave both red LEDs on and return
if (i==0){
LED_C_ON();
LED_D_ON();
return;
}
if(bytereversal) {
/* This is only supported for uint32_t aligned images */
if( ((int)FpgaImage % sizeof(uint32_t)) == 0 ) {
i=0;
while(FpgaImageLen-->0)
DownloadFPGA_byte(FpgaImage[(i++)^0x3]);
/* Explanation of the magic in the above line:
* i^0x3 inverts the lower two bits of the integer i, counting backwards
* for each 4 byte increment. The generated sequence of (i++)^3 is
* 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 etc. pp.
*/
}
} else {
while(FpgaImageLen-->0)
DownloadFPGA_byte(*FpgaImage++);
}
// continue to clock FPGA until ready signal goes high
i=100000;
while ( (i--) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE ) ) ) {
HIGH(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_CCLK);
}
// crude error indicator, leave both red LEDs on and return
if (i==0){
LED_C_ON();
LED_D_ON();
return;
}
LED_D_OFF();
}
static char *bitparse_headers_start;
static char *bitparse_bitstream_end;
static int bitparse_initialized;
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
* After that the format is 1 byte section type (ASCII character), 2 byte length
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
*/
static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};
static int bitparse_init(void * start_address, void *end_address)
{
bitparse_initialized = 0;
if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) {
return 0; /* Not matched */
} else {
bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header);
bitparse_bitstream_end= (char*)end_address;
bitparse_initialized = 1;
return 1;
}
}
int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length)
{
char *pos = bitparse_headers_start;
int result = 0;
if(!bitparse_initialized) return 0;
while(pos < bitparse_bitstream_end) {
char current_name = *pos++;
unsigned int current_length = 0;
if(current_name < 'a' || current_name > 'e') {
/* Strange section name, abort */
break;
}
current_length = 0;
switch(current_name) {
case 'e':
/* Four byte length field */
current_length += (*pos++) << 24;
current_length += (*pos++) << 16;
default: /* Fall through, two byte length field */
current_length += (*pos++) << 8;
current_length += (*pos++) << 0;
}
if(current_name != 'e' && current_length > 255) {
/* Maybe a parse error */
break;
}
if(current_name == section_name) {
/* Found it */
*section_start = pos;
*section_length = current_length;
result = 1;
break;
}
pos += current_length; /* Skip section */
}
return result;
}
//-----------------------------------------------------------------------------
// Find out which FPGA image format is stored in flash, then call DownloadFPGA
// with the right parameters to download the image
//-----------------------------------------------------------------------------
extern char _binary_fpga_bit_start, _binary_fpga_bit_end;
void FpgaDownloadAndGo(void)
{
/* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
*/
if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {
/* Successfully initialized the .bit parser. Find the 'e' section and
* send its contents to the FPGA.
*/
char *bitstream_start;
unsigned int bitstream_length;
if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {
DownloadFPGA(bitstream_start, bitstream_length, 0);
return; /* All done */
}
}
/* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF
* 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits
* = 10,524 uint32_t, stored as uint32_t e.g. little-endian in memory, but each DWORD
* is still to be transmitted in MSBit first order. Set the invert flag to indicate
* that the DownloadFPGA function should invert every 4 byte sequence when doing
* the bytewise download.
*/
if( *(uint32_t*)0x102000 == 0xFFFFFFFF && *(uint32_t*)0x102004 == 0xAA995566 )
DownloadFPGA((char*)0x102000, 10524*4, 1);
}
void FpgaGatherVersion(char *dst, int len)
{
char *fpga_info;
unsigned int fpga_info_len;
dst[0] = 0;
if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) {
strncat(dst, "FPGA image: legacy image without version information", len-1);
} else {
strncat(dst, "FPGA image built", len-1);
/* USB packets only have 48 bytes data payload, so be terse */
#if 0
if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " from ", len-1);
strncat(dst, fpga_info, len-1);
}
if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " for ", len-1);
strncat(dst, fpga_info, len-1);
}
#endif
if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " on ", len-1);
strncat(dst, fpga_info, len-1);
}
if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " at ", len-1);
strncat(dst, fpga_info, len-1);
}
}
}
//-----------------------------------------------------------------------------
// Send a 16 bit command/data pair to the FPGA.
// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
// where C is the 4 bit command and D is the 12 bit data
//-----------------------------------------------------------------------------
void FpgaSendCommand(uint16_t cmd, uint16_t v)
{
SetupSpi(SPI_FPGA_MODE);
while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete
AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data
}
//-----------------------------------------------------------------------------
// Write the FPGA setup word (that determines what mode the logic is in, read
// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
// avoid changing this function's occurence everywhere in the source code.
//-----------------------------------------------------------------------------
void FpgaWriteConfWord(uint8_t v)
{
FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
}
//-----------------------------------------------------------------------------
// Set up the CMOS switches that mux the ADC: four switches, independently
// closable, but should only close one at a time. Not an FPGA thing, but
// the samples from the ADC always flow through the FPGA.
//-----------------------------------------------------------------------------
void SetAdcMuxFor(uint32_t whichGpio)
{
AT91C_BASE_PIOA->PIO_OER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
AT91C_BASE_PIOA->PIO_PER =
GPIO_MUXSEL_HIPKD |
GPIO_MUXSEL_LOPKD |
GPIO_MUXSEL_LORAW |
GPIO_MUXSEL_HIRAW;
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_HIRAW);
LOW(GPIO_MUXSEL_LORAW);
LOW(GPIO_MUXSEL_LOPKD);
HIGH(whichGpio);
}