mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-10 10:11:58 +08:00
c9a10631de
Both `hf mfdes auth` and `hf mfdes chk` now support Key Diversification for AN10922 and as special treat, Gallagher issued cards. For `hf mfdes auth`: ``` -d, --kdf <kdf> Key Derivation Function (KDF) (0=None, 1=AN10922, 2=Gallagher) -i, --kdfi <kdfi> KDF input (HEX 1-31 bytes) ``` And for `hf mfdes chk`: ``` -f, --kdf <kdf> Key Derivation Function (KDF) (0=None, 1=AN10922, Gallagher) -i, --kdfi <kdfi> KDF input (HEX 1-31 bytes) ``` Examples: - `hf mfdes auth -a 2081f4 -m 3 -t 4 -d 2 -n 2 -k 00112233445566778899aabbccddeeff` Will diversify the key for key `2` on AID `2081F4` for Gallagher issued cards - `hf mfdes chk -f 1 -i 00112233 -d mfdes_default_keys` Will read in all the default keys from the dictionary, and diversify them using AN10922 with the input data `00112233` - `hf mfdes chk -f 2 -d mfdes_default_keys` Will read in all the default keys from the dictionary, and diversify them using AN10922 but with input data generated from the card's UID, AID and key number.
531 lines
16 KiB
C
531 lines
16 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2019 iceman <iceman at iuse.se>
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Generator commands
|
|
//-----------------------------------------------------------------------------
|
|
#include "generator.h"
|
|
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
#include <stdlib.h>
|
|
#include <sys/types.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include "commonutil.h" //BSWAP_16
|
|
#include "common.h" //BSWAP_32/64
|
|
#include "util.h"
|
|
#include "pm3_cmd.h"
|
|
#include "ui.h"
|
|
#include "mbedtls/sha1.h"
|
|
|
|
// Implemetation tips:
|
|
// For each implementation of the algos, I recommend adding a self test for easy "simple unit" tests when Travic CI / Appveyour runs.
|
|
// See special note for MFC based algos.
|
|
|
|
//------------------------------------
|
|
// MFU/NTAG PWD/PACK generation stuff
|
|
// Italian transport system
|
|
// Amiibo
|
|
// Lego Dimension
|
|
// XYZ 3D printing
|
|
// Vinglock
|
|
//------------------------------------
|
|
static void transform_D(uint8_t *ru) {
|
|
|
|
const uint32_t c_D[] = {
|
|
0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8,
|
|
0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9,
|
|
0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79,
|
|
0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20,
|
|
0x5728B869, 0x30726D5A
|
|
};
|
|
|
|
//Transform
|
|
uint8_t i;
|
|
uint8_t p = 0;
|
|
uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++];
|
|
uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++];
|
|
for (i = 0; i < 12; i += 2) {
|
|
uint32_t tempA = v1 ^ v2;
|
|
uint32_t t1 = PM3_ROTL(tempA, v2 & 0x1F) + c_D[p++];
|
|
uint32_t tempB = v2 ^ t1;
|
|
uint32_t t2 = PM3_ROTL(tempB, t1 & 0x1F) + c_D[p++];
|
|
tempA = t1 ^ t2;
|
|
v1 = PM3_ROTL(tempA, t2 & 0x1F) + c_D[p++];
|
|
tempB = t2 ^ v1;
|
|
v2 = PM3_ROTL(tempB, v1 & 0x1F) + c_D[p++];
|
|
}
|
|
|
|
//Re-use ru
|
|
ru[0] = v1 & 0xFF;
|
|
ru[1] = (v1 >> 8) & 0xFF;
|
|
ru[2] = (v1 >> 16) & 0xFF;
|
|
ru[3] = (v1 >> 24) & 0xFF;
|
|
ru[4] = v2 & 0xFF;
|
|
ru[5] = (v2 >> 8) & 0xFF;
|
|
ru[6] = (v2 >> 16) & 0xFF;
|
|
ru[7] = (v2 >> 24) & 0xFF;
|
|
}
|
|
|
|
// Transport system (IT) pwd generation algo nickname A.
|
|
uint32_t ul_ev1_pwdgenA(uint8_t *uid) {
|
|
|
|
uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32;
|
|
|
|
uint32_t xortable[] = {
|
|
0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3,
|
|
0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7,
|
|
0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC,
|
|
0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0
|
|
};
|
|
|
|
uint8_t entry[] = {0x00, 0x00, 0x00, 0x00};
|
|
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
num_to_bytes(xortable[pos], 4, entry);
|
|
|
|
pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3];
|
|
pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4];
|
|
pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5];
|
|
pwd[3] = entry[3] ^ uid[6];
|
|
|
|
return (uint32_t)bytes_to_num(pwd, 4);
|
|
}
|
|
|
|
// Amiibo pwd generation algo nickname B. (very simple)
|
|
uint32_t ul_ev1_pwdgenB(uint8_t *uid) {
|
|
|
|
uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
pwd[0] = uid[1] ^ uid[3] ^ 0xAA;
|
|
pwd[1] = uid[2] ^ uid[4] ^ 0x55;
|
|
pwd[2] = uid[3] ^ uid[5] ^ 0xAA;
|
|
pwd[3] = uid[4] ^ uid[6] ^ 0x55;
|
|
return (uint32_t)bytes_to_num(pwd, 4);
|
|
}
|
|
|
|
// Lego Dimension pwd generation algo nickname C.
|
|
uint32_t ul_ev1_pwdgenC(uint8_t *uid) {
|
|
uint32_t pwd = 0;
|
|
uint32_t base[] = {
|
|
0xffffffff, 0x28ffffff,
|
|
0x43202963, 0x7279706f,
|
|
0x74686769, 0x47454c20,
|
|
0x3032204f, 0xaaaa3431
|
|
};
|
|
|
|
memcpy(base, uid, 7);
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
pwd = base[i] + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd;
|
|
}
|
|
return BSWAP_32(pwd);
|
|
}
|
|
|
|
// XYZ 3d printing pwd generation algo nickname D.
|
|
uint32_t ul_ev1_pwdgenD(uint8_t *uid) {
|
|
|
|
uint8_t i;
|
|
// rotation offset
|
|
uint8_t r = (uid[1] + uid[3] + uid[5]) & 7;
|
|
|
|
// rotated UID
|
|
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
for (i = 0; i < 7; i++)
|
|
ru[(i + r) & 7] = uid[i];
|
|
|
|
transform_D(ru);
|
|
|
|
// offset
|
|
r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3;
|
|
|
|
// calc key
|
|
uint32_t pwd = 0;
|
|
for (i = 0; i < 4; i++)
|
|
pwd = ru[i + r] + (pwd << 8);
|
|
|
|
return BSWAP_32(pwd);
|
|
}
|
|
|
|
// pack generation for algo 1-3
|
|
uint16_t ul_ev1_packgenA(uint8_t *uid) {
|
|
uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8);
|
|
return pack;
|
|
}
|
|
uint16_t ul_ev1_packgenB(uint8_t *uid) {
|
|
return 0x8080;
|
|
}
|
|
uint16_t ul_ev1_packgenC(uint8_t *uid) {
|
|
return 0xaa55;
|
|
}
|
|
uint16_t ul_ev1_packgenD(uint8_t *uid) {
|
|
uint8_t i;
|
|
//Rotate
|
|
uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset
|
|
uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID
|
|
for (i = 0; i < 7; i++)
|
|
ru[(i + r) & 7] = uid[i];
|
|
|
|
transform_D(ru);
|
|
|
|
//Calc pack
|
|
uint32_t p = 0;
|
|
for (i = 0; i < 8; i++)
|
|
p += ru[i] * 13;
|
|
|
|
p ^= 0x5555;
|
|
return BSWAP_16(p & 0xFFFF);
|
|
}
|
|
|
|
//------------------------------------
|
|
// MFC key generation stuff
|
|
// Each algo implementation should offer two key generation functions.
|
|
// 1. function that returns all keys
|
|
// 2. function that returns one key, target sector | block
|
|
//------------------------------------
|
|
|
|
//------------------------------------
|
|
// MFC keyfile generation stuff
|
|
//------------------------------------
|
|
// Vinglock
|
|
int mfc_algo_ving_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
if (sector > 15) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
*key = 0;
|
|
return PM3_SUCCESS;
|
|
}
|
|
int mfc_algo_ving_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 16; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_ving_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// Yale Doorman
|
|
int mfc_algo_yale_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
if (sector > 15) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
if (keytype > 2) return PM3_EINVARG;
|
|
*key = 0;
|
|
return PM3_SUCCESS;
|
|
}
|
|
int mfc_algo_yale_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 16; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_yale_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// Saflok / Maid UID to key.
|
|
int mfc_algo_saflok_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
if (sector > 15) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
if (keytype > 2) return PM3_EINVARG;
|
|
*key = 0;
|
|
return PM3_SUCCESS;
|
|
}
|
|
int mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 16; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_saflok_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// MIZIP algo
|
|
int mfc_algo_mizip_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
if (sector > 4) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
if (keytype > 2) return PM3_EINVARG;
|
|
|
|
if (sector == 0) {
|
|
// A
|
|
if (keytype == 0)
|
|
*key = 0xA0A1A2A3A4A5U;
|
|
else // B
|
|
*key = 0xB4C132439eef;
|
|
|
|
} else {
|
|
|
|
uint8_t xor[6];
|
|
|
|
if (keytype == 0) {
|
|
|
|
uint64_t xor_tbl_a[] = {
|
|
0x09125a2589e5,
|
|
0xAB75C937922F,
|
|
0xE27241AF2C09,
|
|
0x317AB72F4490,
|
|
};
|
|
|
|
num_to_bytes(xor_tbl_a[sector - 1], 6, xor);
|
|
|
|
*key =
|
|
(uint64_t)(uid[0] ^ xor[0]) << 40 |
|
|
(uint64_t)(uid[1] ^ xor[1]) << 32 |
|
|
(uint64_t)(uid[2] ^ xor[2]) << 24 |
|
|
(uint64_t)(uid[3] ^ xor[3]) << 16 |
|
|
(uint64_t)(uid[0] ^ xor[4]) << 8 |
|
|
(uint64_t)(uid[1] ^ xor[5])
|
|
;
|
|
|
|
} else {
|
|
uint64_t xor_tbl_b[] = {
|
|
0xF12C8453D821,
|
|
0x73E799FE3241,
|
|
0xAA4D137656AE,
|
|
0xB01327272DFD
|
|
};
|
|
|
|
// B
|
|
num_to_bytes(xor_tbl_b[sector - 1], 6, xor);
|
|
|
|
*key =
|
|
(uint64_t)(uid[2] ^ xor[0]) << 40 |
|
|
(uint64_t)(uid[3] ^ xor[1]) << 32 |
|
|
(uint64_t)(uid[0] ^ xor[2]) << 24 |
|
|
(uint64_t)(uid[1] ^ xor[3]) << 16 |
|
|
(uint64_t)(uid[2] ^ xor[4]) << 8 |
|
|
(uint64_t)(uid[3] ^ xor[5])
|
|
;
|
|
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
// returns all Mifare Mini (MFM) 10 keys.
|
|
// keys must have 5*2*6 = 60bytes space
|
|
int mfc_algo_mizip_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 5; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_mizip_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// Disney Infinity algo
|
|
int mfc_algo_di_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
if (sector > 4) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
|
|
uint8_t hash[64];
|
|
uint8_t input[] = {
|
|
0x0A, 0x14, 0xFD, 0x05, 0x07, 0xFF, 0x4B, 0xCD,
|
|
0x02, 0x6B, 0xA8, 0x3F, 0x0A, 0x3B, 0x89, 0xA9,
|
|
uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6],
|
|
0x28, 0x63, 0x29, 0x20, 0x44, 0x69, 0x73, 0x6E,
|
|
0x65, 0x79, 0x20, 0x32, 0x30, 0x31, 0x33
|
|
};
|
|
|
|
mbedtls_sha1(input, sizeof(input), hash);
|
|
|
|
*key = (
|
|
(uint64_t)hash[3] << 40 |
|
|
(uint64_t)hash[2] << 32 |
|
|
(uint64_t)hash[1] << 24 |
|
|
(uint64_t)hash[0] << 16 |
|
|
(uint64_t)hash[7] << 8 |
|
|
hash[6]
|
|
);
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
int mfc_algo_di_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 5; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_di_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// Skylanders
|
|
static uint64_t sky_crc64_like(uint64_t result, uint8_t sector) {
|
|
#define SKY_POLY UINT64_C(0x42f0e1eba9ea3693)
|
|
#define SKY_TOP UINT64_C(0x800000000000)
|
|
result ^= (uint64_t)sector << 40;
|
|
for (int i = 0; i < 8; i++) {
|
|
result = (result & SKY_TOP) ? (result << 1) ^ SKY_POLY : result << 1;
|
|
}
|
|
return result;
|
|
}
|
|
int mfc_algo_sky_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) {
|
|
|
|
#define SKY_KEY_MASK 0xFFFFFFFFFFFF
|
|
|
|
if (sector > 15) return PM3_EINVARG;
|
|
if (key == NULL) return PM3_EINVARG;
|
|
|
|
if (sector == 0 && keytype == 0) {
|
|
*key = 0x4B0B20107CCB;
|
|
return PM3_SUCCESS;
|
|
}
|
|
if (keytype == 1) {
|
|
*key = 0x000000000000;
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// hash UID
|
|
uint64_t hash = 0x9AE903260CC4;
|
|
for (int i = 0; i < 4; i++) {
|
|
hash = sky_crc64_like(hash, uid[i]);
|
|
}
|
|
|
|
uint64_t sectorhash = sky_crc64_like(hash, sector);
|
|
*key = BSWAP_64(sectorhash & SKY_KEY_MASK) >> 16;
|
|
return PM3_SUCCESS;
|
|
}
|
|
int mfc_algo_sky_all(uint8_t *uid, uint8_t *keys) {
|
|
if (keys == NULL) return PM3_EINVARG;
|
|
for (int keytype = 0; keytype < 2; keytype++) {
|
|
for (int sector = 0; sector < 16; sector++) {
|
|
uint64_t key = 0;
|
|
mfc_algo_sky_one(uid, sector, keytype, &key);
|
|
num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6));
|
|
}
|
|
}
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
// LF T55x7 White gun cloner algo
|
|
uint32_t lf_t55xx_white_pwdgen(uint32_t id) {
|
|
uint32_t r1 = rotl(id & 0x000000ec, 8);
|
|
uint32_t r2 = rotl(id & 0x86000000, 16);
|
|
uint32_t pwd = 0x10303;
|
|
pwd += ((id & 0x86ee00ec) ^ r1 ^ r2);
|
|
return pwd;
|
|
}
|
|
|
|
// Gallagher Desfire Key Diversification Input for Cardax Card Data Application
|
|
int mfdes_kdf_input_gallagher(uint8_t *uid, uint8_t uidLen, uint8_t keyNo, uint32_t aid, uint8_t *kdfInputOut, uint8_t *kdfInputLen) {
|
|
if (uid == NULL || (uidLen != 4 && uidLen != 7) || keyNo > 2 || kdfInputOut == NULL || kdfInputLen == NULL) {
|
|
if (g_debugMode) {
|
|
PrintAndLogEx(WARNING, "Invalid arguments");
|
|
}
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
// Verify the AppID is a valid Gallagher AppID
|
|
if ((aid & 0xF0FFFF) != 0x2081F4) {
|
|
if (g_debugMode) {
|
|
PrintAndLogEx(WARNING, "Invalid Gallagher AID %06X", aid);
|
|
}
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
int len = 0;
|
|
// If the keyNo == 1, then omit the UID.
|
|
if (keyNo != 1) {
|
|
if (*kdfInputLen < (4 + uidLen)) {
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
memcpy(kdfInputOut, uid, uidLen);
|
|
len += uidLen;
|
|
} else if (*kdfInputLen < 4) {
|
|
return PM3_EINVARG;
|
|
}
|
|
|
|
kdfInputOut[len++] = keyNo;
|
|
|
|
kdfInputOut[len++] = aid & 0xff;
|
|
kdfInputOut[len++] = (aid >> 8) & 0xff;
|
|
kdfInputOut[len++] = (aid >> 16) & 0xff;
|
|
|
|
*kdfInputLen = len;
|
|
|
|
return PM3_SUCCESS;
|
|
}
|
|
|
|
//------------------------------------
|
|
// Self tests
|
|
//------------------------------------
|
|
int generator_selftest(void) {
|
|
|
|
#define NUM_OF_TEST 6
|
|
|
|
PrintAndLogEx(INFO, "PWD / KEY generator selftest");
|
|
PrintAndLogEx(INFO, "----------------------------");
|
|
|
|
uint8_t testresult = 0;
|
|
|
|
uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10};
|
|
uint32_t pwd1 = ul_ev1_pwdgenA(uid1);
|
|
bool success = (pwd1 == 0x8432EB17);
|
|
if (success)
|
|
testresult++;
|
|
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid1, 7), pwd1, success ? "OK" : "->8432EB17<-");
|
|
|
|
uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81};
|
|
uint32_t pwd2 = ul_ev1_pwdgenB(uid2);
|
|
success = (pwd2 == 0x5fd37eca);
|
|
if (success)
|
|
testresult++;
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid2, 7), pwd2, success ? "OK" : "->5fd37eca<--");
|
|
|
|
uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80};
|
|
uint32_t pwd3 = ul_ev1_pwdgenC(uid3);
|
|
success = (pwd3 == 0x5a349515);
|
|
if (success)
|
|
testresult++;
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid3, 7), pwd3, success ? "OK" : "->5a349515<--");
|
|
|
|
uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80};
|
|
uint32_t pwd4 = ul_ev1_pwdgenD(uid4);
|
|
success = (pwd4 == 0x72B1EC61);
|
|
if (success)
|
|
testresult++;
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid4, 7), pwd4, success ? "OK" : "->72B1EC61<--");
|
|
|
|
// uint8_t uid5[] = {0x11, 0x22, 0x33, 0x44};
|
|
// uint64_t key1 = mfc_algo_a(uid5);
|
|
// success = (key1 == 0xD1E2AA68E39A);
|
|
// PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid5, 4), key1, success ? "OK" : "->D1E2AA68E39A<--");
|
|
|
|
uint8_t uid6[] = {0x74, 0x57, 0xCA, 0xA9};
|
|
uint64_t key6 = 0;
|
|
mfc_algo_sky_one(uid6, 15, 0, &key6);
|
|
success = (key6 == 0x82c7e64bc565);
|
|
if (success)
|
|
testresult++;
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid6, 4), key6, success ? "OK" : "->82C7E64BC565<--");
|
|
|
|
|
|
uint32_t lf_id = lf_t55xx_white_pwdgen(0x00000080);
|
|
success = (lf_id == 0x00018383);
|
|
if (success)
|
|
testresult++;
|
|
PrintAndLogEx(success ? SUCCESS : WARNING, "ID | 0x00000080 | %08"PRIx32 " - %s", lf_id, success ? "OK" : "->00018383<--");
|
|
|
|
PrintAndLogEx(SUCCESS, "------------------- Selftest %s", (testresult == NUM_OF_TEST) ? "OK" : "fail");
|
|
return PM3_SUCCESS;
|
|
}
|
|
|