proxmark3/client/src/cmdhw.c

996 lines
31 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hardware commands
// low-level hardware control
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "cmdparser.h" // command_t
#include "cliparser.h"
#include "comms.h"
#include "usart_defs.h"
#include "ui.h"
#include "cmdhw.h"
#include "cmddata.h"
#include "commonutil.h"
#include "pm3_cmd.h"
static int CmdHelp(const char *Cmd);
static void lookupChipID(uint32_t iChipID, uint32_t mem_used) {
char asBuff[120];
memset(asBuff, 0, sizeof(asBuff));
uint32_t mem_avail = 0;
PrintAndLogEx(NORMAL, "\n [ " _YELLOW_("Hardware") " ]");
switch (iChipID) {
case 0x270B0A40:
sprintf(asBuff, "AT91SAM7S512 Rev A");
break;
case 0x270B0A4F:
sprintf(asBuff, "AT91SAM7S512 Rev B");
break;
case 0x270D0940:
sprintf(asBuff, "AT91SAM7S256 Rev A");
break;
case 0x270B0941:
sprintf(asBuff, "AT91SAM7S256 Rev B");
break;
case 0x270B0942:
sprintf(asBuff, "AT91SAM7S256 Rev C");
break;
case 0x270B0943:
sprintf(asBuff, "AT91SAM7S256 Rev D");
break;
case 0x270C0740:
sprintf(asBuff, "AT91SAM7S128 Rev A");
break;
case 0x270A0741:
sprintf(asBuff, "AT91SAM7S128 Rev B");
break;
case 0x270A0742:
sprintf(asBuff, "AT91SAM7S128 Rev C");
break;
case 0x270A0743:
sprintf(asBuff, "AT91SAM7S128 Rev D");
break;
case 0x27090540:
sprintf(asBuff, "AT91SAM7S64 Rev A");
break;
case 0x27090543:
sprintf(asBuff, "AT91SAM7S64 Rev B");
break;
case 0x27090544:
sprintf(asBuff, "AT91SAM7S64 Rev C");
break;
case 0x27080342:
sprintf(asBuff, "AT91SAM7S321 Rev A");
break;
case 0x27080340:
sprintf(asBuff, "AT91SAM7S32 Rev A");
break;
case 0x27080341:
sprintf(asBuff, "AT91SAM7S32 Rev B");
break;
case 0x27050241:
sprintf(asBuff, "AT9SAM7S161 Rev A");
break;
case 0x27050240:
sprintf(asBuff, "AT91SAM7S16 Rev A");
break;
}
PrintAndLogEx(NORMAL, " --= uC: %s", asBuff);
switch ((iChipID & 0xE0) >> 5) {
case 1:
sprintf(asBuff, "ARM946ES");
break;
case 2:
sprintf(asBuff, "ARM7TDMI");
break;
case 4:
sprintf(asBuff, "ARM920T");
break;
case 5:
sprintf(asBuff, "ARM926EJS");
break;
}
PrintAndLogEx(NORMAL, " --= Embedded Processor: %s", asBuff);
switch ((iChipID & 0xF00) >> 8) {
case 0:
mem_avail = 0;
break;
case 1:
mem_avail = 8;
break;
case 2:
mem_avail = 16;
break;
case 3:
mem_avail = 32;
break;
case 5:
mem_avail = 64;
break;
case 7:
mem_avail = 128;
break;
case 9:
mem_avail = 256;
break;
case 10:
mem_avail = 512;
break;
case 12:
mem_avail = 1024;
break;
case 14:
mem_avail = 2048;
break;
}
uint32_t mem_left = 0;
if (mem_avail > 0)
mem_left = (mem_avail * 1024) - mem_used;
PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Size: %uK bytes, Used: %u bytes (%2.0f%%) Free: %u bytes (%2.0f%%)",
mem_avail,
mem_used,
mem_avail == 0 ? 0.0f : (float)mem_used / (mem_avail * 1024) * 100,
mem_left,
mem_avail == 0 ? 0.0f : (float)mem_left / (mem_avail * 1024) * 100
);
switch ((iChipID & 0xF000) >> 12) {
case 0:
sprintf(asBuff, "None");
break;
case 1:
sprintf(asBuff, "8K bytes");
break;
case 2:
sprintf(asBuff, "16K bytes");
break;
case 3:
sprintf(asBuff, "32K bytes");
break;
case 5:
sprintf(asBuff, "64K bytes");
break;
case 7:
sprintf(asBuff, "128K bytes");
break;
case 9:
sprintf(asBuff, "256K bytes");
break;
case 10:
sprintf(asBuff, "512K bytes");
break;
case 12:
sprintf(asBuff, "1024K bytes");
break;
case 14:
sprintf(asBuff, "2048K bytes");
break;
}
PrintAndLogEx(NORMAL, " --= Second Nonvolatile Program Memory Size: %s", asBuff);
switch ((iChipID & 0xF0000) >> 16) {
case 1:
sprintf(asBuff, "1K bytes");
break;
case 2:
sprintf(asBuff, "2K bytes");
break;
case 3:
sprintf(asBuff, "6K bytes");
break;
case 4:
sprintf(asBuff, "112K bytes");
break;
case 5:
sprintf(asBuff, "4K bytes");
break;
case 6:
sprintf(asBuff, "80K bytes");
break;
case 7:
sprintf(asBuff, "160K bytes");
break;
case 8:
sprintf(asBuff, "8K bytes");
break;
case 9:
sprintf(asBuff, "16K bytes");
break;
case 10:
sprintf(asBuff, "32K bytes");
break;
case 11:
sprintf(asBuff, "64K bytes");
break;
case 12:
sprintf(asBuff, "128K bytes");
break;
case 13:
sprintf(asBuff, "256K bytes");
break;
case 14:
sprintf(asBuff, "96K bytes");
break;
case 15:
sprintf(asBuff, "512K bytes");
break;
}
PrintAndLogEx(NORMAL, " --= Internal SRAM Size: %s", asBuff);
switch ((iChipID & 0xFF00000) >> 20) {
case 0x19:
sprintf(asBuff, "AT91SAM9xx Series");
break;
case 0x29:
sprintf(asBuff, "AT91SAM9XExx Series");
break;
case 0x34:
sprintf(asBuff, "AT91x34 Series");
break;
case 0x37:
sprintf(asBuff, "CAP7 Series");
break;
case 0x39:
sprintf(asBuff, "CAP9 Series");
break;
case 0x3B:
sprintf(asBuff, "CAP11 Series");
break;
case 0x40:
sprintf(asBuff, "AT91x40 Series");
break;
case 0x42:
sprintf(asBuff, "AT91x42 Series");
break;
case 0x55:
sprintf(asBuff, "AT91x55 Series");
break;
case 0x60:
sprintf(asBuff, "AT91SAM7Axx Series");
break;
case 0x61:
sprintf(asBuff, "AT91SAM7AQxx Series");
break;
case 0x63:
sprintf(asBuff, "AT91x63 Series");
break;
case 0x70:
sprintf(asBuff, "AT91SAM7Sxx Series");
break;
case 0x71:
sprintf(asBuff, "AT91SAM7XCxx Series");
break;
case 0x72:
sprintf(asBuff, "AT91SAM7SExx Series");
break;
case 0x73:
sprintf(asBuff, "AT91SAM7Lxx Series");
break;
case 0x75:
sprintf(asBuff, "AT91SAM7Xxx Series");
break;
case 0x92:
sprintf(asBuff, "AT91x92 Series");
break;
case 0xF0:
sprintf(asBuff, "AT75Cxx Series");
break;
}
PrintAndLogEx(NORMAL, " --= Architecture Identifier: %s", asBuff);
switch ((iChipID & 0x70000000) >> 28) {
case 0:
sprintf(asBuff, "ROM");
break;
case 1:
sprintf(asBuff, "ROMless or on-chip Flash");
break;
case 2:
sprintf(asBuff, "Embedded Flash Memory");
break;
case 3:
sprintf(asBuff, "ROM and Embedded Flash Memory\nNVPSIZ is ROM size\nNVPSIZ2 is Flash size");
break;
case 4:
sprintf(asBuff, "SRAM emulating ROM");
break;
}
PrintAndLogEx(NORMAL, " --= Nonvolatile Program Memory Type: %s", asBuff);
}
static int CmdDbg(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw dbg",
"Set device side debug level output.\n"
"Note: option -4, this option may cause malfunction itself",
"hw dbg -1\n"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("0", NULL, "no debug messages"),
arg_lit0("1", NULL, "error messages"),
arg_lit0("2", NULL, "plus information messages"),
arg_lit0("3", NULL, "plus debug messages"),
arg_lit0("4", NULL, "print even debug messages in timing critical functions"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool lv0 = arg_get_lit(ctx, 1);
bool lv1 = arg_get_lit(ctx, 2);
bool lv2 = arg_get_lit(ctx, 3);
bool lv3 = arg_get_lit(ctx, 3);
bool lv4 = arg_get_lit(ctx, 4);
CLIParserFree(ctx);
if ((lv0 + lv1 + lv2 + lv3 + lv4) > 1) {
PrintAndLogEx(INFO, "Can only set one debug level");
return PM3_EINVARG;
}
uint8_t dbg = 0;
if (lv0)
dbg = 0;
else if (lv1)
dbg = 1;
else if (lv2)
dbg = 2;
else if (lv3)
dbg = 3;
else if (lv4)
dbg = 4;
SendCommandNG(CMD_SET_DBGMODE, &dbg, sizeof(dbg));
return PM3_SUCCESS;
}
static int CmdDetectReader(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw detectreader",
"Start to detect presences of reader field",
"hw detectreader -L\n"
);
void *argtable[] = {
arg_param_begin,
arg_lit0("L", "LF", "detect low frequence 125/134 kHz"),
arg_lit0("H", "HF", "detect high frequence 13.56 MHZ"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool lf = arg_get_lit(ctx, 1);
bool hf = arg_get_lit(ctx, 2);
CLIParserFree(ctx);
if ((lf + hf) > 1) {
PrintAndLogEx(INFO, "Can only set one frequence");
return PM3_EINVARG;
}
uint8_t arg = 0;
if (lf)
arg = 1;
else if (hf)
arg = 2;
PrintAndLogEx(INFO, "press pm3 button to change modes and finally exit");
clearCommandBuffer();
SendCommandNG(CMD_LISTEN_READER_FIELD, (uint8_t *)&arg, sizeof(arg));
return PM3_SUCCESS;
}
// ## FPGA Control
static int CmdFPGAOff(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw fpgaoff",
"Turn of fpga and antenna field",
"hw fpgaoff\n"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
clearCommandBuffer();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return PM3_SUCCESS;
}
static int CmdLCD(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw lcd",
"Send command/data to LCD",
"hw lcd -r AA -c 03 -> sends 0xAA three times"
);
void *argtable[] = {
arg_param_begin,
arg_int1("r", "raw", "<hex>", "data "),
arg_int1("c", "cnt", "<dec>", "number of times to send"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
int r_len = 0;
uint8_t raw[1] = {0};
CLIGetHexWithReturn(ctx, 1, raw, &r_len);
int j = arg_get_int(ctx, 2);
if (j < 1) {
PrintAndLogEx(WARNING, "Count must be larger than zero");
return PM3_EINVARG;
}
while (j--) {
clearCommandBuffer();
SendCommandMIX(CMD_LCD, raw[0], 0, 0, NULL, 0);
}
return PM3_SUCCESS;
}
static int CmdLCDReset(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw lcdreset",
"Hardware reset LCD",
"hw lcdreset\n"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
clearCommandBuffer();
SendCommandNG(CMD_LCD_RESET, NULL, 0);
return PM3_SUCCESS;
}
static int CmdReadmem(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw readmem",
"Read memory at decimal address from ARM chip flash.",
"hw readmem -a 10000"
);
void *argtable[] = {
arg_param_begin,
arg_u64_1("a", "adr", "<dec>", "address to read"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint32_t address = arg_get_u32(ctx, 1);
CLIParserFree(ctx);
clearCommandBuffer();
SendCommandNG(CMD_READ_MEM, (uint8_t *)&address, sizeof(address));
return PM3_SUCCESS;
}
static int CmdReset(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw reset",
"Reset the Proxmark3 device.",
"hw reset"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
clearCommandBuffer();
SendCommandNG(CMD_HARDWARE_RESET, NULL, 0);
PrintAndLogEx(INFO, "Proxmark3 has been reset.");
return PM3_SUCCESS;
}
/*
* Sets the divisor for LF frequency clock: lets the user choose any LF frequency below
* 600kHz.
*/
static int CmdSetDivisor(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw setlfdivisor",
"Drive LF antenna at 12 MHz / (divisor + 1).",
"hw setlfdivisor -d 88"
);
void *argtable[] = {
arg_param_begin,
arg_u64_1("d", "div", "<dec>", "19 - 255 divisor value (def 95)"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint8_t arg = arg_get_u32_def(ctx, 1, 95);
CLIParserFree(ctx);
if (arg < 19) {
PrintAndLogEx(ERR, "Divisor must be between" _YELLOW_("19") " and " _YELLOW_("255"));
return PM3_EINVARG;
}
// 12 000 000 (12MHz)
clearCommandBuffer();
SendCommandNG(CMD_LF_SET_DIVISOR, (uint8_t *)&arg, sizeof(arg));
PrintAndLogEx(SUCCESS, "Divisor set, expected " _YELLOW_("%.1f")" kHz", ((double)12000 / (arg + 1)));
return PM3_SUCCESS;
}
static int CmdSetMux(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw setmux",
"Set the ADC mux to a specific value",
"hw setmux --hiraw -> set HIGH RAW"
);
void *argtable[] = {
arg_param_begin,
arg_lit0(NULL, "lopkd", "low peak"),
arg_lit0(NULL, "loraw", "low raw"),
arg_lit0(NULL, "hipkd", "high peak"),
arg_lit0(NULL, "hiraw", "high raw"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool lopkd = arg_get_lit(ctx, 1);
bool loraw = arg_get_lit(ctx, 2);
bool hipkd = arg_get_lit(ctx, 3);
bool hiraw = arg_get_lit(ctx, 4);
CLIParserFree(ctx);
if ((lopkd + loraw + hipkd + hiraw) > 1) {
PrintAndLogEx(INFO, "Can only set one mux");
return PM3_EINVARG;
}
uint8_t arg = 0;
if (lopkd)
arg = 0;
else if (loraw)
arg = 1;
else if (hipkd)
arg = 2;
else if (hiraw)
arg = 3;
clearCommandBuffer();
SendCommandNG(CMD_SET_ADC_MUX, (uint8_t *)&arg, sizeof(arg));
return PM3_SUCCESS;
}
static int CmdStandalone(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw standalone",
"Start standalone mode",
"hw standalone -> start \n"
"hw standalone -a 1 -> start and send arg 1"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("a", "arg", "<dec>", "argument byte"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint8_t arg = arg_get_u32(ctx, 1);
CLIParserFree(ctx);
clearCommandBuffer();
SendCommandNG(CMD_STANDALONE, (uint8_t *)&arg, sizeof(arg));
return PM3_SUCCESS;
}
static int CmdTune(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw tune",
"Measure antenna tuning",
"hw tune"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
return CmdTuneSamples(Cmd);
}
static int CmdVersion(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw version",
"Show version information about the connected Proxmark3",
"hw version"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
pm3_version(true, false);
return PM3_SUCCESS;
}
static int CmdStatus(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw status",
"Show runtime status information about the connected Proxmark3",
"hw status"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
clearCommandBuffer();
PacketResponseNG resp;
SendCommandNG(CMD_STATUS, NULL, 0);
if (WaitForResponseTimeout(CMD_STATUS, &resp, 2000) == false) {
PrintAndLogEx(WARNING, "Status command timeout. Communication speed test timed out");
return PM3_ETIMEOUT;
}
return PM3_SUCCESS;
}
int handle_tearoff(tearoff_params_t *params, bool verbose) {
if (params == NULL)
return PM3_EINVARG;
clearCommandBuffer();
SendCommandNG(CMD_SET_TEAROFF, (uint8_t *)params, sizeof(tearoff_params_t));
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_SET_TEAROFF, &resp, 500) == false) {
PrintAndLogEx(WARNING, "Tear-off command timeout.");
return PM3_ETIMEOUT;
}
if (resp.status == PM3_SUCCESS) {
if (params->delay_us > 0 && verbose)
PrintAndLogEx(INFO, "Tear-off hook configured with delay of " _GREEN_("%i us"), params->delay_us);
if (params->on && verbose)
PrintAndLogEx(INFO, "Tear-off hook " _GREEN_("enabled"));
if (params->off && verbose)
PrintAndLogEx(INFO, "Tear-off hook " _RED_("disabled"));
} else if (verbose)
PrintAndLogEx(WARNING, "Tear-off command failed.");
return resp.status;
}
static int CmdTearoff(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw tearoff",
"Configure a tear-off hook for the next write command supporting tear-off\n"
"After having been triggered by a write command, the tear-off hook is deactivated\n"
"Delay (in us) must be between 1 and 43000 (43ms). Precision is about 1/3us.",
"hw tearoff --delay 1200 --> define delay of 1200us\n"
"hw tearoff --on --> (re)activate a previously defined delay\n"
"hw tearoff --off --> deactivate a previously activated but not yet triggered hook\n");
void *argtable[] = {
arg_param_begin,
arg_int0(NULL, "delay", "<dec>", "Delay in us before triggering tear-off, must be between 1 and 43000"),
arg_lit0(NULL, "on", "Activate tear-off hook"),
arg_lit0(NULL, "off", "Deactivate tear-off hook"),
arg_lit0("s", "silent", "less verbose output"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, false);
tearoff_params_t params;
int delay = arg_get_int_def(ctx, 1, -1);
params.on = arg_get_lit(ctx, 2);
params.off = arg_get_lit(ctx, 3);
bool silent = arg_get_lit(ctx, 4);
CLIParserFree(ctx);
if (delay != -1) {
if ((delay < 1) || (delay > 43000)) {
PrintAndLogEx(WARNING, "You can't set delay out of 1..43000 range!");
return PM3_EINVARG;
}
} else {
delay = 0; // will be ignored by ARM
}
params.delay_us = delay;
if (params.on && params.off) {
PrintAndLogEx(WARNING, "You can't set both --on and --off!");
return PM3_EINVARG;
}
return handle_tearoff(&params, !silent);
}
static int CmdTia(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw tia",
"Trigger a Timing Interval Acquisition to re-adjust the RealTimeCounter divider",
"hw tia"
);
void *argtable[] = {
arg_param_begin,
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIParserFree(ctx);
PrintAndLogEx(INFO, "Triggering new Timing Interval Acquisition (TIA)...");
clearCommandBuffer();
SendCommandNG(CMD_TIA, NULL, 0);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_TIA, &resp, 2000) == false) {
PrintAndLogEx(WARNING, "TIA command timeout. You probably need to unplug the Proxmark3.");
return PM3_ETIMEOUT;
}
PrintAndLogEx(INFO, "TIA done.");
return PM3_SUCCESS;
}
static int CmdPing(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw ping",
"Test if the Proxmark3 is responsive",
"hw ping\n"
"hw ping --len 32"
);
void *argtable[] = {
arg_param_begin,
arg_u64_0("l", "len", "<dec>", "length of payload to send"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
uint32_t len = arg_get_u32(ctx, 1);
CLIParserFree(ctx);
if (len > PM3_CMD_DATA_SIZE)
len = PM3_CMD_DATA_SIZE;
if (len) {
PrintAndLogEx(INFO, "Ping sent with payload len " _YELLOW_("%d"), len);
} else {
PrintAndLogEx(INFO, "Ping sent");
}
clearCommandBuffer();
PacketResponseNG resp;
uint8_t data[PM3_CMD_DATA_SIZE] = {0};
for (uint16_t i = 0; i < len; i++)
data[i] = i & 0xFF;
SendCommandNG(CMD_PING, data, len);
if (WaitForResponseTimeout(CMD_PING, &resp, 1000)) {
if (len) {
bool error = (memcmp(data, resp.data.asBytes, len) != 0);
PrintAndLogEx((error) ? ERR : SUCCESS, "Ping response " _GREEN_("received") " and content is %s", error ? _RED_("NOT ok") : _GREEN_("OK"));
} else {
PrintAndLogEx(SUCCESS, "Ping response " _GREEN_("received"));
}
} else
PrintAndLogEx(WARNING, "Ping response " _RED_("timeout"));
return PM3_SUCCESS;
}
static int CmdConnect(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hw connect",
"Connects to a Proxmark3 device via specified serial port.\n"
"Baudrate here is only for physical UART or UART-BT, NOT for USB-CDC or blue shark add-on",
"hw connect -p "SERIAL_PORT_EXAMPLE_H"\n"
"hw connect -p "SERIAL_PORT_EXAMPLE_H" -b 115200"
);
void *argtable[] = {
arg_param_begin,
arg_str0("p", "port", NULL, "Serial port to connect to, else retry the last used one"),
arg_u64_0("b", "baud", "<dec>", "Baudrate"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int p_len = FILE_PATH_SIZE;
char port[FILE_PATH_SIZE] = {0};
CLIGetStrWithReturn(ctx, 1, (uint8_t *)port, &p_len);
uint32_t baudrate = arg_get_u32_def(ctx, 2, USART_BAUD_RATE);
CLIParserFree(ctx);
if (baudrate == 0) {
PrintAndLogEx(WARNING, "Baudrate can't be zero");
return PM3_EINVARG;
}
// default back to previous used serial port
if (strlen(port) == 0) {
if (strlen(conn.serial_port_name) == 0) {
PrintAndLogEx(WARNING, "Must specify a serial port");
return PM3_EINVARG;
}
memcpy(port, conn.serial_port_name, sizeof(port));
}
if (session.pm3_present) {
CloseProxmark(session.current_device);
}
// 10 second timeout
OpenProxmark(&session.current_device, port, false, 10, false, baudrate);
if (session.pm3_present && (TestProxmark(session.current_device) != PM3_SUCCESS)) {
PrintAndLogEx(ERR, _RED_("ERROR:") " cannot communicate with the Proxmark3\n");
CloseProxmark(session.current_device);
return PM3_ENOTTY;
}
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"-------------", CmdHelp, AlwaysAvailable, "----------------------- " _CYAN_("Hardware") " -----------------------"},
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"connect", CmdConnect, AlwaysAvailable, "Connect Proxmark3 to serial port"},
{"dbg", CmdDbg, IfPm3Present, "Set Proxmark3 debug level"},
{"detectreader", CmdDetectReader, IfPm3Present, "Detect external reader field"},
{"fpgaoff", CmdFPGAOff, IfPm3Present, "Set FPGA off"},
{"lcd", CmdLCD, IfPm3Lcd, "Send command/data to LCD"},
{"lcdreset", CmdLCDReset, IfPm3Lcd, "Hardware reset LCD"},
{"ping", CmdPing, IfPm3Present, "Test if the Proxmark3 is responsive"},
{"readmem", CmdReadmem, IfPm3Present, "Read memory at decimal address from flash"},
{"reset", CmdReset, IfPm3Present, "Reset the Proxmark3"},
{"setlfdivisor", CmdSetDivisor, IfPm3Present, "Drive LF antenna at 12MHz / (divisor + 1)"},
{"setmux", CmdSetMux, IfPm3Present, "Set the ADC mux to a specific value"},
{"standalone", CmdStandalone, IfPm3Present, "Jump to the standalone mode"},
{"status", CmdStatus, IfPm3Present, "Show runtime status information about the connected Proxmark3"},
{"tearoff", CmdTearoff, IfPm3Present, "Program a tearoff hook for the next command supporting tearoff"},
{"tia", CmdTia, IfPm3Present, "Trigger a Timing Interval Acquisition to re-adjust the RealTimeCounter divider"},
{"tune", CmdTune, IfPm3Present, "Measure antenna tuning"},
{"version", CmdVersion, IfPm3Present, "Show version information about the connected Proxmark3"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdHW(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
void pm3_version(bool verbose, bool oneliner) {
#if defined(__MINGW64__)
# define PM3CLIENTCOMPILER "MinGW-w64 "
#elif defined(__MINGW32__)
# define PM3CLIENTCOMPILER "MinGW "
#elif defined(__clang__)
# define PM3CLIENTCOMPILER "Clang/LLVM "
#elif defined(__GNUC__) || defined(__GNUG__)
# define PM3CLIENTCOMPILER "GCC "
#else
# define PM3CLIENTCOMPILER "unknown compiler "
#endif
#if defined(__APPLE__) || defined(__MACH__)
# define PM3HOSTOS " OS:OSX"
#elif defined(__ANDROID__) || defined(ANDROID)
// must be tested before __linux__
# define PM3HOSTOS " OS:Android"
#elif defined(__linux__)
# define PM3HOSTOS " OS:Linux"
#elif defined(__FreeBSD__)
# define PM3HOSTOS " OS:FreeBSD"
#elif defined(__NetBSD__)
# define PM3HOSTOS " OS:NetBSD"
#elif defined(__OpenBSD__)
# define PM3HOSTOS " OS:OpenBSD"
#elif defined(__CYGWIN__)
# define PM3HOSTOS " OS:Cygwin"
#elif defined(_WIN64) || defined(__WIN64__)
// must be tested before _WIN32
# define PM3HOSTOS " OS:Windows (64b)"
#elif defined(_WIN32) || defined(__WIN32__)
# define PM3HOSTOS " OS:Windows (32b)"
#else
# define PM3HOSTOS " OS:unknown"
#endif
#if defined(__x86_64__)
# define PM3HOSTARCH " ARCH:x86_64"
#elif defined(__i386__)
# define PM3HOSTARCH " ARCH:x86"
#elif defined(__aarch64__)
# define PM3HOSTARCH " ARCH:aarch64"
#elif defined(__arm__)
# define PM3HOSTARCH " ARCH:arm"
#elif defined(__powerpc64__)
# define PM3HOSTARCH " ARCH:powerpc64"
#elif defined(__mips__)
# define PM3HOSTARCH " ARCH:mips"
#else
# define PM3HOSTARCH " ARCH:unknown"
#endif
if (oneliner) {
// For "proxmark3 -v", simple printf, avoid logging
char temp[PM3_CMD_DATA_SIZE - 12]; // same limit as for ARM image
FormatVersionInformation(temp, sizeof(temp), "Client: ", &version_information);
PrintAndLogEx(NORMAL, "%s compiled with " PM3CLIENTCOMPILER __VERSION__ PM3HOSTOS PM3HOSTARCH "\n", temp);
return;
}
if (!verbose)
return;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_VERSION, NULL, 0);
if (WaitForResponseTimeout(CMD_VERSION, &resp, 1000)) {
char temp[PM3_CMD_DATA_SIZE - 12]; // same limit as for ARM image
PrintAndLogEx(NORMAL, "\n [ " _CYAN_("Proxmark3 RFID instrument") " ]");
PrintAndLogEx(NORMAL, "\n [ " _YELLOW_("CLIENT") " ]");
FormatVersionInformation(temp, sizeof(temp), " client: ", &version_information);
PrintAndLogEx(NORMAL, "%s", temp);
PrintAndLogEx(NORMAL, " compiled with " PM3CLIENTCOMPILER __VERSION__ PM3HOSTOS PM3HOSTARCH);
PrintAndLogEx(NORMAL, "\n [ " _YELLOW_("PROXMARK3") " ]");
if (IfPm3Rdv4Fw() == false) {
PrintAndLogEx(NORMAL, " firmware.................. %s", _YELLOW_("PM3GENERIC"));
if (IfPm3FpcUsartHost()) {
PrintAndLogEx(NORMAL, " FPC USART for BT add-on... %s", _GREEN_("present"));
}
} else {
PrintAndLogEx(NORMAL, " firmware.................. %s", _YELLOW_("PM3RDV4"));
PrintAndLogEx(NORMAL, " external flash............ %s", IfPm3Flash() ? _GREEN_("present") : _YELLOW_("absent"));
PrintAndLogEx(NORMAL, " smartcard reader.......... %s", IfPm3Smartcard() ? _GREEN_("present") : _YELLOW_("absent"));
PrintAndLogEx(NORMAL, " FPC USART for BT add-on... %s", IfPm3FpcUsartHost() ? _GREEN_("present") : _YELLOW_("absent"));
}
if (IfPm3FpcUsartDevFromUsb()) {
PrintAndLogEx(NORMAL, " FPC USART for developer... %s", _GREEN_("present"));
}
PrintAndLogEx(NORMAL, "");
struct p {
uint32_t id;
uint32_t section_size;
uint32_t versionstr_len;
char versionstr[PM3_CMD_DATA_SIZE - 12];
} PACKED;
struct p *payload = (struct p *)&resp.data.asBytes;
PrintAndLogEx(NORMAL, payload->versionstr);
lookupChipID(payload->id, payload->section_size);
}
PrintAndLogEx(NORMAL, "\n");
}