mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-03 22:53:58 +08:00
1324 lines
40 KiB
C
1324 lines
40 KiB
C
//-----------------------------------------------------------------------------
|
||
// Jonathan Westhues, Mar 2006
|
||
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
|
||
//
|
||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||
// the license.
|
||
//-----------------------------------------------------------------------------
|
||
// The main application code. This is the first thing called after start.c
|
||
// executes.
|
||
//-----------------------------------------------------------------------------
|
||
#include <stdarg.h>
|
||
#include <inttypes.h>
|
||
#include "usb_cdc.h"
|
||
#include "proxmark3.h"
|
||
#include "apps.h"
|
||
#include "util.h"
|
||
#include "printf.h"
|
||
#include "string.h"
|
||
#include "legicrf.h"
|
||
#include "lfsampling.h"
|
||
#include "BigBuf.h"
|
||
#include "mifareutil.h"
|
||
|
||
#ifdef WITH_LCD
|
||
#include "LCD.h"
|
||
#endif
|
||
|
||
#ifdef WITH_SMARTCARD
|
||
#include "smartcard.h"
|
||
#endif
|
||
|
||
|
||
//=============================================================================
|
||
// A buffer where we can queue things up to be sent through the FPGA, for
|
||
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
|
||
// is the order in which they go out on the wire.
|
||
//=============================================================================
|
||
|
||
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
|
||
uint8_t ToSend[TOSEND_BUFFER_SIZE];
|
||
int ToSendMax = -1;
|
||
static int ToSendBit;
|
||
struct common_area common_area __attribute__((section(".commonarea")));
|
||
|
||
void ToSendReset(void) {
|
||
ToSendMax = -1;
|
||
ToSendBit = 8;
|
||
}
|
||
|
||
void ToSendStuffBit(int b) {
|
||
if(ToSendBit >= 8) {
|
||
ToSendMax++;
|
||
ToSend[ToSendMax] = 0;
|
||
ToSendBit = 0;
|
||
}
|
||
|
||
if(b)
|
||
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
|
||
|
||
ToSendBit++;
|
||
|
||
if(ToSendMax >= sizeof(ToSend)) {
|
||
ToSendBit = 0;
|
||
DbpString("ToSendStuffBit overflowed!");
|
||
}
|
||
}
|
||
|
||
void PrintToSendBuffer(void) {
|
||
DbpString("Printing ToSendBuffer:");
|
||
Dbhexdump(ToSendMax, ToSend, 0);
|
||
}
|
||
|
||
void print_result(char *name, uint8_t *buf, size_t len) {
|
||
uint8_t *p = buf;
|
||
|
||
if ( len % 16 == 0 ) {
|
||
for(; p-buf < len; p += 16)
|
||
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
||
name,
|
||
p-buf,
|
||
len,
|
||
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
|
||
);
|
||
}
|
||
else {
|
||
for(; p-buf < len; p += 8)
|
||
Dbprintf("[%s:%d/%d] %02x %02x %02x %02x %02x %02x %02x %02x",
|
||
name,
|
||
p-buf,
|
||
len,
|
||
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
|
||
}
|
||
}
|
||
|
||
//=============================================================================
|
||
// Debug print functions, to go out over USB, to the usual PC-side client.
|
||
//=============================================================================
|
||
|
||
void DbpStringEx(char *str, uint32_t cmd) {
|
||
byte_t len = strlen(str);
|
||
cmd_send(CMD_DEBUG_PRINT_STRING, len, cmd, 0, (byte_t*)str, len);
|
||
}
|
||
|
||
void DbpString(char *str) {
|
||
DbpStringEx(str, 0);
|
||
}
|
||
|
||
#if 0
|
||
void DbpIntegers(int x1, int x2, int x3) {
|
||
cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
|
||
}
|
||
#endif
|
||
void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
|
||
// should probably limit size here; oh well, let's just use a big buffer
|
||
char output_string[128] = {0x00};
|
||
va_list ap;
|
||
va_start(ap, fmt);
|
||
kvsprintf(fmt, output_string, 10, ap);
|
||
va_end(ap);
|
||
|
||
DbpStringEx(output_string, cmd);
|
||
}
|
||
|
||
void Dbprintf(const char *fmt, ...) {
|
||
// should probably limit size here; oh well, let's just use a big buffer
|
||
char output_string[128] = {0x00};
|
||
va_list ap;
|
||
|
||
va_start(ap, fmt);
|
||
kvsprintf(fmt, output_string, 10, ap);
|
||
va_end(ap);
|
||
|
||
DbpString(output_string);
|
||
}
|
||
|
||
// prints HEX & ASCII
|
||
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
|
||
int l=0, i;
|
||
char ascii[9];
|
||
|
||
while (len > 0) {
|
||
|
||
l = (len > 8) ? 8 : len;
|
||
|
||
memcpy(ascii, d, l);
|
||
ascii[l] = 0;
|
||
|
||
// filter safe ascii
|
||
for (i=0; i<l; i++) {
|
||
if (ascii[i] < 32 || ascii[i] > 126) {
|
||
ascii[i] = '.';
|
||
}
|
||
}
|
||
|
||
if (bAsci)
|
||
Dbprintf("%-8s %*D", ascii, l, d, " ");
|
||
else
|
||
Dbprintf("%*D", l, d, " ");
|
||
|
||
len -= 8;
|
||
d += 8;
|
||
}
|
||
}
|
||
|
||
//-----------------------------------------------------------------------------
|
||
// Read an ADC channel and block till it completes, then return the result
|
||
// in ADC units (0 to 1023). Also a routine to average 32 samples and
|
||
// return that.
|
||
//-----------------------------------------------------------------------------
|
||
static uint16_t ReadAdc(int ch) {
|
||
|
||
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
|
||
// AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
|
||
// of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
|
||
//
|
||
// The maths are:
|
||
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
|
||
//
|
||
// v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
|
||
|
||
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
||
AT91C_BASE_ADC->ADC_MR =
|
||
ADC_MODE_PRESCALE(63) // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
|
||
| ADC_MODE_STARTUP_TIME(1) // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
|
||
| ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
|
||
|
||
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
|
||
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
||
|
||
while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
|
||
|
||
return (AT91C_BASE_ADC->ADC_CDR[ch] & 0x3FF);
|
||
}
|
||
|
||
// was static - merlok
|
||
uint16_t AvgAdc(int ch) {
|
||
uint16_t a = 0;
|
||
for(uint8_t i = 0; i < 32; i++)
|
||
a += ReadAdc(ch);
|
||
|
||
//division by 32
|
||
return (a + 15) >> 5;
|
||
}
|
||
|
||
void MeasureAntennaTuning(void) {
|
||
|
||
uint8_t LF_Results[256];
|
||
uint32_t i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
|
||
uint32_t v_lf125 = 0, v_lf134 = 0, v_hf = 0; // in mV
|
||
|
||
memset(LF_Results, 0, sizeof(LF_Results));
|
||
LED_B_ON();
|
||
|
||
/*
|
||
* Sweeps the useful LF range of the proxmark from
|
||
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
|
||
* read the voltage in the antenna, the result left
|
||
* in the buffer is a graph which should clearly show
|
||
* the resonating frequency of your LF antenna
|
||
* ( hopefully around 95 if it is tuned to 125kHz!)
|
||
*/
|
||
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
||
SpinDelay(50);
|
||
|
||
for (i = 255; i >= 19; i--) {
|
||
WDT_HIT();
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
|
||
SpinDelay(20);
|
||
adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
|
||
if (i == 95)
|
||
v_lf125 = adcval; // voltage at 125Khz
|
||
if (i == 89)
|
||
v_lf134 = adcval; // voltage at 134Khz
|
||
|
||
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
|
||
if(LF_Results[i] > peak) {
|
||
peakv = adcval;
|
||
peakf = i;
|
||
peak = LF_Results[i];
|
||
}
|
||
}
|
||
|
||
LED_A_ON();
|
||
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
||
SpinDelay(50);
|
||
v_hf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
||
|
||
// RDV40 will hit the roof, try other ADC channel used in that hardware revision.
|
||
if ( v_hf > MAX_ADC_HF_VOLTAGE-300 ) {
|
||
v_hf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
|
||
}
|
||
|
||
uint64_t arg0 = v_lf134;
|
||
arg0 <<= 32;
|
||
arg0 |= v_lf125;
|
||
|
||
uint64_t arg2 = peakv;
|
||
arg2 <<= 32;
|
||
arg2 |= peakf;
|
||
|
||
cmd_send(CMD_MEASURED_ANTENNA_TUNING, arg0, v_hf, arg2, LF_Results, 256);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
LEDsoff();
|
||
}
|
||
|
||
void MeasureAntennaTuningHf(void) {
|
||
uint16_t volt = 0; // in mV
|
||
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
||
SpinDelay(50);
|
||
volt = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
||
bool use_high = ( volt > MAX_ADC_HF_VOLTAGE-300 );
|
||
|
||
while( !BUTTON_PRESS() ){
|
||
SpinDelay(20);
|
||
if ( !use_high ) {
|
||
volt = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
||
} else {
|
||
volt = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
|
||
}
|
||
DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%u mV / %5u V", volt, (uint16_t)(volt/1000));
|
||
}
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("\n[+] cancelled");
|
||
}
|
||
|
||
void ReadMem(int addr) {
|
||
const uint8_t *data = ((uint8_t *)addr);
|
||
|
||
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
|
||
}
|
||
|
||
/* osimage version information is linked in */
|
||
extern struct version_information version_information;
|
||
/* bootrom version information is pointed to from _bootphase1_version_pointer */
|
||
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
|
||
void SendVersion(void) {
|
||
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
|
||
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
|
||
|
||
/* Try to find the bootrom version information. Expect to find a pointer at
|
||
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
|
||
* pointer, then use it.
|
||
*/
|
||
char *bootrom_version = *(char**)&_bootphase1_version_pointer;
|
||
|
||
strncat(VersionString, " [ ARM ]\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
||
|
||
if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
|
||
strcat(VersionString, "bootrom version information appears invalid\n");
|
||
} else {
|
||
FormatVersionInformation(temp, sizeof(temp), " bootrom: ", bootrom_version);
|
||
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
||
}
|
||
|
||
FormatVersionInformation(temp, sizeof(temp), " os: ", &version_information);
|
||
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
||
|
||
strncat(VersionString, " [ FPGA ]\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
||
|
||
FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
|
||
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
||
|
||
FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
|
||
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
||
|
||
// Send Chip ID and used flash memory
|
||
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
|
||
uint32_t compressed_data_section_size = common_area.arg1;
|
||
cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
|
||
}
|
||
|
||
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
|
||
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
|
||
void printUSBSpeed(void) {
|
||
Dbprintf("USB Speed:");
|
||
Dbprintf(" Sending USB packets to client...");
|
||
|
||
#define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
|
||
uint8_t *test_data = BigBuf_get_addr();
|
||
uint32_t end_time;
|
||
|
||
uint32_t start_time = end_time = GetTickCount();
|
||
uint32_t bytes_transferred = 0;
|
||
|
||
LED_B_ON();
|
||
while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
|
||
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
|
||
end_time = GetTickCount();
|
||
bytes_transferred += USB_CMD_DATA_SIZE;
|
||
}
|
||
LED_B_OFF();
|
||
|
||
Dbprintf(" Time elapsed............%dms", end_time - start_time);
|
||
Dbprintf(" Bytes transferred.......%d", bytes_transferred);
|
||
Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", 1000 * bytes_transferred / (end_time - start_time));
|
||
}
|
||
|
||
/**
|
||
* Prints runtime information about the PM3.
|
||
**/
|
||
void SendStatus(void) {
|
||
BigBuf_print_status();
|
||
Fpga_print_status();
|
||
Flashmem_print_status();
|
||
#ifdef WITH_SMARTCARD
|
||
SmartCard_print_status();
|
||
#endif
|
||
#ifdef WITH_LF
|
||
printConfig(); //LF Sampling config
|
||
#endif
|
||
printUSBSpeed();
|
||
Dbprintf("Various");
|
||
Dbprintf(" MF_DBGLEVEL.............%d", MF_DBGLEVEL);
|
||
Dbprintf(" ToSendMax...............%d", ToSendMax);
|
||
Dbprintf(" ToSendBit...............%d", ToSendBit);
|
||
Dbprintf(" ToSend BUFFERSIZE.......%d", TOSEND_BUFFER_SIZE);
|
||
printStandAloneModes();
|
||
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
||
}
|
||
|
||
// Show some leds in a pattern to identify StandAlone mod is running
|
||
void StandAloneMode(void) {
|
||
|
||
DbpString("Stand-alone mode! No PC necessary.");
|
||
// Oooh pretty -- notify user we're in elite samy mode now
|
||
LED(LED_RED, 200);
|
||
LED(LED_ORANGE, 200);
|
||
LED(LED_GREEN, 200);
|
||
LED(LED_ORANGE, 200);
|
||
LED(LED_RED, 200);
|
||
LED(LED_ORANGE, 200);
|
||
LED(LED_GREEN, 200);
|
||
LED(LED_ORANGE, 200);
|
||
LED(LED_RED, 200);
|
||
}
|
||
// detection of which Standalone Modes is installed
|
||
// (iceman)
|
||
void printStandAloneModes(void) {
|
||
|
||
DbpString("Installed StandAlone Mods");
|
||
|
||
#if defined(WITH_LF_ICERUN)
|
||
DbpString(" LF sniff/clone/simulation - aka IceRun (iceman)");
|
||
#endif
|
||
#if defined(WITH_HF_YOUNG)
|
||
DbpString(" HF Mifare sniff/simulation - (Craig Young)");
|
||
#endif
|
||
#if defined(WITH_LF_SAMYRUN)
|
||
DbpString(" LF HID26 standalone - aka SamyRun (Samy Kamkar)");
|
||
#endif
|
||
#if defined(WITH_LF_PROXBRUTE)
|
||
DbpString(" LF HID ProxII bruteforce - aka Proxbrute (Brad Antoniewicz)");
|
||
#endif
|
||
#if defined(WITH_LF_HIDBRUTE)
|
||
DbpString(" LF HID corporate 1000 bruteforce - (Federico dotta & Maurizio Agazzini)");
|
||
#endif
|
||
#if defined(WITH_HF_MATTYRUN)
|
||
DbpString(" HF Mifare sniff/clone - aka MattyRun (Mat<61>as A. R<> Medina)");
|
||
#endif
|
||
#if defined(WITH_HF_COLIN)
|
||
DbpString(" HF Mifare ultra fast sniff/sim/clone - aka VIGIKPWN (Colin Brigato)");
|
||
#endif
|
||
|
||
//DbpString("Running ");
|
||
//Dbprintf(" Is Device attached to USB| %s", USB_ATTACHED() ? "Yes" : "No");
|
||
//Dbprintf(" Is USB_reconnect value | %d", GetUSBreconnect() );
|
||
//Dbprintf(" Is USB_configured value | %d", GetUSBconfigured() );
|
||
|
||
//.. add your own standalone detection based on with compiler directive you are used.
|
||
// don't "reuse" the already taken ones, this will make things easier when trying to detect the different modes
|
||
// 2017-08-06 must adapt the makefile and have individual compilation flags for all mods
|
||
//
|
||
}
|
||
|
||
/*
|
||
OBJECTIVE
|
||
Listen and detect an external reader. Determine the best location
|
||
for the antenna.
|
||
|
||
INSTRUCTIONS:
|
||
Inside the ListenReaderField() function, there is two mode.
|
||
By default, when you call the function, you will enter mode 1.
|
||
If you press the PM3 button one time, you will enter mode 2.
|
||
If you press the PM3 button a second time, you will exit the function.
|
||
|
||
DESCRIPTION OF MODE 1:
|
||
This mode just listens for an external reader field and lights up green
|
||
for HF and/or red for LF. This is the original mode of the detectreader
|
||
function.
|
||
|
||
DESCRIPTION OF MODE 2:
|
||
This mode will visually represent, using the LEDs, the actual strength of the
|
||
current compared to the maximum current detected. Basically, once you know
|
||
what kind of external reader is present, it will help you spot the best location to place
|
||
your antenna. You will probably not get some good results if there is a LF and a HF reader
|
||
at the same place! :-)
|
||
|
||
LIGHT SCHEME USED:
|
||
*/
|
||
static const char LIGHT_SCHEME[] = {
|
||
0x0, /* ---- | No field detected */
|
||
0x1, /* X--- | 14% of maximum current detected */
|
||
0x2, /* -X-- | 29% of maximum current detected */
|
||
0x4, /* --X- | 43% of maximum current detected */
|
||
0x8, /* ---X | 57% of maximum current detected */
|
||
0xC, /* --XX | 71% of maximum current detected */
|
||
0xE, /* -XXX | 86% of maximum current detected */
|
||
0xF, /* XXXX | 100% of maximum current detected */
|
||
};
|
||
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
|
||
|
||
void ListenReaderField(int limit) {
|
||
#define LF_ONLY 1
|
||
#define HF_ONLY 2
|
||
#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
|
||
|
||
uint16_t lf_av, lf_av_new, lf_baseline = 0, lf_max;
|
||
uint16_t hf_av, hf_av_new, hf_baseline = 0, hf_max;
|
||
uint16_t mode = 1, display_val, display_max, i;
|
||
|
||
// switch off FPGA - we don't want to measure our own signal
|
||
// 20180315 - iceman, why load this before and then turn off?
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
|
||
LEDsoff();
|
||
|
||
lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
|
||
|
||
if (limit != HF_ONLY) {
|
||
Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
|
||
lf_baseline = lf_av;
|
||
}
|
||
|
||
hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
|
||
|
||
// iceman, useless, since we are measuring readerfield, not our field. My tests shows a max of 20v from a reader.
|
||
// RDV40 will hit the roof, try other ADC channel used in that hardware revision.
|
||
bool use_high = ( ((MAX_ADC_HF_VOLTAGE * hf_max) >> 10) > MAX_ADC_HF_VOLTAGE-300 );
|
||
if ( use_high ) {
|
||
hf_av = hf_max = AvgAdc(ADC_CHAN_HF_RDV40);
|
||
}
|
||
|
||
if (limit != LF_ONLY) {
|
||
Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
|
||
hf_baseline = hf_av;
|
||
}
|
||
|
||
for(;;) {
|
||
// Switch modes with button
|
||
if (BUTTON_PRESS()) {
|
||
SpinDelay(500);
|
||
switch (mode) {
|
||
case 1:
|
||
mode = 2;
|
||
DbpString("Signal Strength Mode");
|
||
break;
|
||
case 2:
|
||
default:
|
||
DbpString("Stopped");
|
||
LEDsoff();
|
||
return;
|
||
break;
|
||
}
|
||
}
|
||
WDT_HIT();
|
||
|
||
if (limit != HF_ONLY) {
|
||
if(mode == 1) {
|
||
if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
|
||
LED_D_ON();
|
||
else
|
||
LED_D_OFF();
|
||
}
|
||
|
||
lf_av_new = AvgAdc(ADC_CHAN_LF);
|
||
// see if there's a significant change
|
||
if (ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
|
||
Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
|
||
lf_av = lf_av_new;
|
||
if (lf_av > lf_max)
|
||
lf_max = lf_av;
|
||
}
|
||
}
|
||
|
||
if (limit != LF_ONLY) {
|
||
if (mode == 1){
|
||
if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
|
||
LED_B_ON();
|
||
else
|
||
LED_B_OFF();
|
||
}
|
||
|
||
hf_av_new = (use_high) ? AvgAdc(ADC_CHAN_HF_RDV40) : AvgAdc(ADC_CHAN_HF);
|
||
|
||
// see if there's a significant change
|
||
if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
|
||
Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
|
||
hf_av = hf_av_new;
|
||
if (hf_av > hf_max)
|
||
hf_max = hf_av;
|
||
}
|
||
}
|
||
|
||
if (mode == 2) {
|
||
if (limit == LF_ONLY) {
|
||
display_val = lf_av;
|
||
display_max = lf_max;
|
||
} else if (limit == HF_ONLY) {
|
||
display_val = hf_av;
|
||
display_max = hf_max;
|
||
} else { /* Pick one at random */
|
||
if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
|
||
display_val = hf_av;
|
||
display_max = hf_max;
|
||
} else {
|
||
display_val = lf_av;
|
||
display_max = lf_max;
|
||
}
|
||
}
|
||
for (i=0; i<LIGHT_LEN; i++) {
|
||
if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
|
||
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
|
||
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
|
||
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
|
||
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void UsbPacketReceived(uint8_t *packet, int len) {
|
||
UsbCommand *c = (UsbCommand *)packet;
|
||
|
||
//Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
|
||
|
||
switch(c->cmd) {
|
||
#ifdef WITH_LF
|
||
case CMD_SET_LF_SAMPLING_CONFIG:
|
||
setSamplingConfig((sample_config *) c->d.asBytes);
|
||
break;
|
||
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: {
|
||
uint32_t bits = SampleLF(c->arg[0], c->arg[1]);
|
||
cmd_send(CMD_ACK, bits, 0, 0, 0, 0);
|
||
break;
|
||
}
|
||
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
||
ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_LF_SNOOP_RAW_ADC_SAMPLES: {
|
||
uint32_t bits = SnoopLF();
|
||
cmd_send(CMD_ACK, bits, 0, 0, 0, 0);
|
||
break;
|
||
}
|
||
case CMD_HID_DEMOD_FSK: {
|
||
uint32_t high, low;
|
||
CmdHIDdemodFSK(c->arg[0], &high, &low, 1);
|
||
break;
|
||
}
|
||
case CMD_HID_SIM_TAG:
|
||
CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
|
||
break;
|
||
case CMD_FSK_SIM_TAG:
|
||
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_ASK_SIM_TAG:
|
||
CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_PSK_SIM_TAG:
|
||
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_HID_CLONE_TAG:
|
||
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
|
||
break;
|
||
case CMD_IO_DEMOD_FSK: {
|
||
uint32_t high, low;
|
||
CmdIOdemodFSK(c->arg[0], &high, &low, 1);
|
||
break;
|
||
}
|
||
case CMD_IO_CLONE_TAG:
|
||
CopyIOtoT55x7(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_EM410X_DEMOD: {
|
||
uint32_t high;
|
||
uint64_t low;
|
||
CmdEM410xdemod(c->arg[0], &high, &low, 1);
|
||
break;
|
||
}
|
||
case CMD_EM410X_WRITE_TAG:
|
||
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_READ_TI_TYPE:
|
||
ReadTItag();
|
||
break;
|
||
case CMD_WRITE_TI_TYPE:
|
||
WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
|
||
break;
|
||
case CMD_SIMULATE_TAG_125K:
|
||
LED_A_ON();
|
||
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
|
||
LED_A_OFF();
|
||
break;
|
||
case CMD_LF_SIMULATE_BIDIR:
|
||
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_INDALA_CLONE_TAG:
|
||
CopyIndala64toT55x7(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_INDALA_CLONE_TAG_L:
|
||
CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
|
||
break;
|
||
case CMD_T55XX_READ_BLOCK:
|
||
T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_T55XX_WRITE_BLOCK:
|
||
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
|
||
break;
|
||
case CMD_T55XX_WAKEUP:
|
||
T55xxWakeUp(c->arg[0]);
|
||
break;
|
||
case CMD_T55XX_RESET_READ:
|
||
T55xxResetRead();
|
||
break;
|
||
case CMD_PCF7931_READ:
|
||
ReadPCF7931();
|
||
break;
|
||
case CMD_PCF7931_WRITE:
|
||
WritePCF7931(c->d.asBytes[0], c->d.asBytes[1], c->d.asBytes[2], c->d.asBytes[3], c->d.asBytes[4], c->d.asBytes[5], c->d.asBytes[6], c->d.asBytes[9],
|
||
c->d.asBytes[7] - 128, c->d.asBytes[8] - 128, c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_EM4X_READ_WORD:
|
||
EM4xReadWord(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_EM4X_WRITE_WORD:
|
||
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_AWID_DEMOD_FSK: {
|
||
uint32_t high, low;
|
||
// Set realtime AWID demodulation
|
||
CmdAWIDdemodFSK(c->arg[0], &high, &low, 1);
|
||
break;
|
||
}
|
||
case CMD_VIKING_CLONE_TAG:
|
||
CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_COTAG:
|
||
Cotag(c->arg[0]);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_HITAG
|
||
case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
|
||
SnoopHitag(c->arg[0]);
|
||
break;
|
||
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
|
||
SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
|
||
break;
|
||
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
|
||
ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
|
||
break;
|
||
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
|
||
SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
|
||
break;
|
||
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
|
||
check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
|
||
break;
|
||
case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
|
||
ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
|
||
break;
|
||
case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
|
||
if ((hitag_function)c->arg[0] < 10) {
|
||
WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
|
||
} else if ((hitag_function)c->arg[0] >= 10) {
|
||
WriterHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes, c->arg[2]);
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_ISO15693
|
||
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
|
||
AcquireRawAdcSamplesIso15693();
|
||
break;
|
||
case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
|
||
RecordRawAdcSamplesIso15693();
|
||
break;
|
||
case CMD_ISO_15693_COMMAND:
|
||
DirectTag15693Command(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_ISO_15693_FIND_AFI:
|
||
BruteforceIso15693Afi(c->arg[0]);
|
||
break;
|
||
case CMD_READER_ISO_15693:
|
||
ReaderIso15693(c->arg[0]);
|
||
break;
|
||
case CMD_SIMTAG_ISO_15693:
|
||
SimTagIso15693(c->arg[0], c->d.asBytes);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_LEGICRF
|
||
case CMD_SIMULATE_TAG_LEGIC_RF:
|
||
LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_WRITER_LEGIC_RF:
|
||
LegicRfWriter( c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_READER_LEGIC_RF:
|
||
LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_LEGIC_INFO:
|
||
LegicRfInfo();
|
||
break;
|
||
case CMD_LEGIC_ESET:
|
||
//-----------------------------------------------------------------------------
|
||
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
|
||
// involved in dealing with emulator memory. But if it is called later, it might
|
||
// destroy the Emulator Memory.
|
||
//-----------------------------------------------------------------------------
|
||
// arg0 = offset
|
||
// arg1 = num of bytes
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
emlSet(c->d.asBytes, c->arg[0], c->arg[1]);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_ISO14443b
|
||
case CMD_READ_SRI_TAG:
|
||
ReadSTMemoryIso14443b(c->arg[0]);
|
||
break;
|
||
case CMD_SNOOP_ISO_14443B:
|
||
SniffIso14443b();
|
||
break;
|
||
case CMD_SIMULATE_TAG_ISO_14443B:
|
||
SimulateIso14443bTag(c->arg[0]);
|
||
break;
|
||
case CMD_ISO_14443B_COMMAND:
|
||
//SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
||
SendRawCommand14443B_Ex(c);
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_FELICA
|
||
case CMD_FELICA_COMMAND:
|
||
felica_sendraw(c);
|
||
break;
|
||
case CMD_FELICA_LITE_SIM:
|
||
felica_sim_lite(c->arg[0]);
|
||
break;
|
||
case CMD_FELICA_SNOOP:
|
||
felica_sniff(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_FELICA_LITE_DUMP:
|
||
felica_dump_lite_s();
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_ISO14443a
|
||
case CMD_SNOOP_ISO_14443a:
|
||
SniffIso14443a(c->arg[0]);
|
||
break;
|
||
case CMD_READER_ISO_14443a:
|
||
ReaderIso14443a(c);
|
||
break;
|
||
case CMD_SIMULATE_TAG_ISO_14443a:
|
||
SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
|
||
break;
|
||
case CMD_ANTIFUZZ_ISO_14443a:
|
||
iso14443a_antifuzz(c->arg[0]);
|
||
break;
|
||
case CMD_EPA_PACE_COLLECT_NONCE:
|
||
EPA_PACE_Collect_Nonce(c);
|
||
break;
|
||
case CMD_EPA_PACE_REPLAY:
|
||
EPA_PACE_Replay(c);
|
||
break;
|
||
case CMD_READER_MIFARE:
|
||
ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
|
||
break;
|
||
case CMD_MIFARE_READBL:
|
||
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFAREU_READBL:
|
||
MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFAREUC_AUTH:
|
||
MifareUC_Auth(c->arg[0],c->d.asBytes);
|
||
break;
|
||
case CMD_MIFAREU_READCARD:
|
||
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFAREUC_SETPWD:
|
||
MifareUSetPwd(c->arg[0], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_READSC:
|
||
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_WRITEBL:
|
||
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
//case CMD_MIFAREU_WRITEBL_COMPAT:
|
||
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
|
||
//break;
|
||
case CMD_MIFAREU_WRITEBL:
|
||
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
|
||
MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_ACQUIRE_NONCES:
|
||
MifareAcquireNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_NESTED:
|
||
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_CHKKEYS: {
|
||
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
}
|
||
case CMD_MIFARE_CHKKEYS_FAST: {
|
||
MifareChkKeys_fast(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
}
|
||
case CMD_SIMULATE_MIFARE_CARD:
|
||
Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
|
||
// emulator
|
||
case CMD_MIFARE_SET_DBGMODE:
|
||
MifareSetDbgLvl(c->arg[0]);
|
||
break;
|
||
case CMD_MIFARE_EML_MEMCLR:
|
||
MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_EML_MEMSET:
|
||
MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_EML_MEMGET:
|
||
MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_EML_CARDLOAD:
|
||
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
|
||
// Work with "magic Chinese" card
|
||
case CMD_MIFARE_CSETBLOCK:
|
||
MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_CGETBLOCK:
|
||
MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_CIDENT:
|
||
MifareCIdent();
|
||
break;
|
||
// mifare sniffer
|
||
// case CMD_MIFARE_SNIFFER:
|
||
//SniffMifare(c->arg[0]);
|
||
// break;
|
||
case CMD_MIFARE_SETMOD:
|
||
MifareSetMod(c->arg[0], c->d.asBytes);
|
||
break;
|
||
//mifare desfire
|
||
case CMD_MIFARE_DESFIRE_READBL:
|
||
break;
|
||
case CMD_MIFARE_DESFIRE_WRITEBL:
|
||
break;
|
||
case CMD_MIFARE_DESFIRE_AUTH1:
|
||
MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_DESFIRE_AUTH2:
|
||
//MifareDES_Auth2(c->arg[0],c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_DES_READER:
|
||
//readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_DESFIRE_INFO:
|
||
MifareDesfireGetInformation();
|
||
break;
|
||
case CMD_MIFARE_DESFIRE:
|
||
MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_MIFARE_COLLECT_NONCES:
|
||
break;
|
||
case CMD_MIFARE_NACK_DETECT:
|
||
DetectNACKbug();
|
||
break;
|
||
#endif
|
||
|
||
#ifdef WITH_ICLASS
|
||
// Makes use of ISO14443a FPGA Firmware
|
||
case CMD_SNOOP_ICLASS:
|
||
SniffIClass();
|
||
break;
|
||
case CMD_SIMULATE_TAG_ICLASS:
|
||
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
||
break;
|
||
case CMD_READER_ICLASS:
|
||
ReaderIClass(c->arg[0]);
|
||
break;
|
||
case CMD_READER_ICLASS_REPLAY:
|
||
ReaderIClass_Replay(c->arg[0], c->d.asBytes);
|
||
break;
|
||
case CMD_ICLASS_EML_MEMSET:
|
||
//iceman, should call FPGADOWNLOAD before, since it corrupts BigBuf
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
emlSet(c->d.asBytes, c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_ICLASS_WRITEBLOCK:
|
||
iClass_WriteBlock(c->arg[0], c->d.asBytes);
|
||
break;
|
||
case CMD_ICLASS_READCHECK: // auth step 1
|
||
iClass_ReadCheck(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_ICLASS_READBLOCK:
|
||
iClass_ReadBlk(c->arg[0]);
|
||
break;
|
||
case CMD_ICLASS_AUTHENTICATION: //check
|
||
iClass_Authentication(c->d.asBytes);
|
||
break;
|
||
case CMD_ICLASS_CHECK_KEYS:
|
||
iClass_Authentication_fast(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
case CMD_ICLASS_DUMP:
|
||
iClass_Dump(c->arg[0], c->arg[1]);
|
||
break;
|
||
case CMD_ICLASS_CLONE:
|
||
iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
|
||
break;
|
||
#endif
|
||
#ifdef WITH_HFSNOOP
|
||
case CMD_HF_SNIFFER:
|
||
HfSnoop(c->arg[0], c->arg[1]);
|
||
break;
|
||
#endif
|
||
|
||
case CMD_BUFF_CLEAR:
|
||
BigBuf_Clear();
|
||
break;
|
||
|
||
case CMD_MEASURE_ANTENNA_TUNING:
|
||
MeasureAntennaTuning();
|
||
break;
|
||
|
||
case CMD_MEASURE_ANTENNA_TUNING_HF:
|
||
MeasureAntennaTuningHf();
|
||
break;
|
||
|
||
case CMD_LISTEN_READER_FIELD:
|
||
ListenReaderField(c->arg[0]);
|
||
break;
|
||
|
||
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
SpinDelay(200);
|
||
LED_D_OFF(); // LED D indicates field ON or OFF
|
||
break;
|
||
#ifdef WITH_LF
|
||
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
|
||
LED_B_ON();
|
||
uint8_t *mem = BigBuf_get_addr();
|
||
bool isok = false;
|
||
size_t len = 0;
|
||
uint32_t startidx = c->arg[0];
|
||
uint32_t numofbytes = c->arg[1];
|
||
// arg0 = startindex
|
||
// arg1 = length bytes to transfer
|
||
// arg2 = BigBuf tracelen
|
||
//Dbprintf("transfer to client parameters: %" PRIu32 " | %" PRIu32 " | %" PRIu32, startidx, numofbytes, c->arg[2]);
|
||
|
||
for(size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
||
len = MIN( (numofbytes - i), USB_CMD_DATA_SIZE);
|
||
isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), mem + startidx + i, len);
|
||
if (!isok)
|
||
Dbprintf("transfer to client failed :: | bytes between %d - %d", i, len);
|
||
}
|
||
// Trigger a finish downloading signal with an ACK frame
|
||
// iceman, when did sending samplingconfig array got attached here?!?
|
||
// arg0 = status of download transfer
|
||
// arg1 = RFU
|
||
// arg2 = tracelen?
|
||
// asbytes = samplingconfig array
|
||
cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
|
||
LED_B_OFF();
|
||
break;
|
||
}
|
||
#endif
|
||
case CMD_UPLOAD_SIM_SAMPLES_125K: {
|
||
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
|
||
// to be able to use this one for uploading data to device
|
||
// arg1 = 0 upload for LF usage
|
||
// 1 upload for HF usage
|
||
#define FPGA_LF 1
|
||
if ( c->arg[1] == FPGA_LF )
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
else
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
|
||
uint8_t *mem = BigBuf_get_addr();
|
||
memcpy( mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
|
||
cmd_send(CMD_ACK,1,0,0,0,0);
|
||
break;
|
||
}
|
||
case CMD_DOWNLOAD_EML_BIGBUF: {
|
||
LED_B_ON();
|
||
uint8_t *mem = BigBuf_get_EM_addr();
|
||
bool isok = false;
|
||
size_t len = 0;
|
||
uint32_t startidx = c->arg[0];
|
||
uint32_t numofbytes = c->arg[1];
|
||
|
||
// arg0 = startindex
|
||
// arg1 = length bytes to transfer
|
||
// arg2 = RFU
|
||
//Dbprintf("transfer to client parameters: %" PRIu32 " | %" PRIu32 " | %" PRIu32, startidx, numofbytes, c->arg[2]);
|
||
|
||
for (size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
||
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
||
isok = cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, 0, mem + startidx + i, len);
|
||
if (!isok)
|
||
Dbprintf("transfer to client failed :: | bytes between %d - %d", i, len);
|
||
}
|
||
// Trigger a finish downloading signal with an ACK frame
|
||
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
||
LED_B_OFF();
|
||
break;
|
||
}
|
||
case CMD_READ_MEM:
|
||
ReadMem(c->arg[0]);
|
||
break;
|
||
#ifdef WITH_FLASH
|
||
case CMD_READ_FLASH_MEM: {
|
||
|
||
LED_B_ON();
|
||
uint16_t isok = 0;
|
||
size_t len = 0;
|
||
uint32_t startidx = c->arg[0];
|
||
uint16_t numofbytes = c->arg[1];
|
||
|
||
Dbprintf("FlashMem read | %d - %d", startidx, numofbytes);
|
||
|
||
uint8_t *mem = BigBuf_malloc(USB_CMD_DATA_SIZE);
|
||
|
||
for(size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
||
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
||
|
||
Dbprintf("FlashMem reading | %d | %d | %d", startidx + i, i, len);
|
||
|
||
isok = Flash_ReadData(startidx + i, mem, len);
|
||
if ( isok == len ) {
|
||
print_result("Chunk: ", mem, len);
|
||
} else {
|
||
Dbprintf("FlashMem reading failed | %d | %d", len, isok);
|
||
break;
|
||
}
|
||
}
|
||
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
||
LED_B_OFF();
|
||
break;
|
||
}
|
||
case CMD_WRITE_FLASH_MEM: {
|
||
LED_B_ON();
|
||
uint32_t startidx = c->arg[0];
|
||
uint16_t len = c->arg[1];
|
||
uint16_t res = Flash_WriteData(startidx, c->d.asBytes, len);
|
||
uint8_t isok = (res == len) ? 1 : 0;
|
||
cmd_send(CMD_ACK, isok, 0, 0, 0, 0);
|
||
LED_B_OFF();
|
||
break;
|
||
}
|
||
case CMD_UPLOAD_FLASH_MEM:
|
||
LED_B_ON();
|
||
|
||
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
||
LED_B_OFF();
|
||
break;
|
||
case CMD_DOWNLOAND_FLASH_MEM: {
|
||
|
||
LED_B_ON();
|
||
uint8_t *mem = BigBuf_malloc(USB_CMD_DATA_SIZE);
|
||
bool isok = false;
|
||
size_t len = 0;
|
||
uint32_t startidx = c->arg[0];
|
||
uint32_t numofbytes = c->arg[1];
|
||
// arg0 = startindex
|
||
// arg1 = length bytes to transfer
|
||
// arg2 = RFU
|
||
//Dbprintf("transfer to client parameters: %" PRIu32 " | %" PRIu32 " | %" PRIu32, startidx, numofbytes, c->arg[2]);
|
||
|
||
for (size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
||
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
||
|
||
isok = Flash_ReadData(startidx + i, mem, len);
|
||
if (!isok )
|
||
Dbprintf("reading flash memory failed :: | bytes between %d - %d", i, len);
|
||
|
||
isok = cmd_send(CMD_DOWNLOADED_FLASHMEM, i, len, 0, mem, len);
|
||
if (!isok)
|
||
Dbprintf("transfer to client failed :: | bytes between %d - %d", i, len);
|
||
}
|
||
|
||
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
||
LED_B_OFF();
|
||
break;
|
||
}
|
||
#endif
|
||
case CMD_SET_LF_DIVISOR:
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
|
||
break;
|
||
|
||
case CMD_SET_ADC_MUX:
|
||
switch(c->arg[0]) {
|
||
case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
|
||
case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
|
||
case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
|
||
case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
|
||
}
|
||
break;
|
||
|
||
case CMD_VERSION:
|
||
SendVersion();
|
||
break;
|
||
case CMD_STATUS:
|
||
SendStatus();
|
||
break;
|
||
case CMD_PING:
|
||
cmd_send(CMD_ACK,0,0,0,0,0);
|
||
break;
|
||
#ifdef WITH_LCD
|
||
case CMD_LCD_RESET:
|
||
LCDReset();
|
||
break;
|
||
case CMD_LCD:
|
||
LCDSend(c->arg[0]);
|
||
break;
|
||
#endif
|
||
case CMD_SETUP_WRITE:
|
||
case CMD_FINISH_WRITE:
|
||
case CMD_HARDWARE_RESET:
|
||
usb_disable();
|
||
|
||
// (iceman) why this wait?
|
||
SpinDelay(1000);
|
||
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
||
// We're going to reset, and the bootrom will take control.
|
||
for(;;) {}
|
||
break;
|
||
|
||
case CMD_START_FLASH:
|
||
if(common_area.flags.bootrom_present) {
|
||
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
|
||
}
|
||
usb_disable();
|
||
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
||
// We're going to flash, and the bootrom will take control.
|
||
for(;;) {}
|
||
break;
|
||
|
||
case CMD_DEVICE_INFO: {
|
||
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
|
||
if (common_area.flags.bootrom_present) {
|
||
dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
|
||
}
|
||
cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
|
||
break;
|
||
}
|
||
default:
|
||
Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
|
||
break;
|
||
}
|
||
}
|
||
|
||
void __attribute__((noreturn)) AppMain(void) {
|
||
|
||
SpinDelay(100);
|
||
clear_trace();
|
||
|
||
if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
|
||
/* Initialize common area */
|
||
memset(&common_area, 0, sizeof(common_area));
|
||
common_area.magic = COMMON_AREA_MAGIC;
|
||
common_area.version = 1;
|
||
}
|
||
common_area.flags.osimage_present = 1;
|
||
|
||
LEDsoff();
|
||
|
||
usb_enable();
|
||
|
||
// The FPGA gets its clock from us from PCK0 output, so set that up.
|
||
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
|
||
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
|
||
AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
|
||
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
|
||
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
|
||
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
|
||
|
||
// Reset SPI
|
||
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
|
||
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // errata says it needs twice to be correctly set.
|
||
|
||
// Reset SSC
|
||
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
||
|
||
// Configure MUX
|
||
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
||
|
||
// Load the FPGA image, which we have stored in our flash.
|
||
// (the HF version by default)
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
||
|
||
StartTickCount();
|
||
|
||
#ifdef WITH_LCD
|
||
LCDInit();
|
||
#endif
|
||
|
||
#ifdef WITH_SMARTCARD
|
||
SmartCard_init();
|
||
#endif
|
||
|
||
byte_t rx[sizeof(UsbCommand)];
|
||
|
||
for(;;) {
|
||
WDT_HIT();
|
||
|
||
// Check if there is a usb packet available
|
||
if ( cmd_receive( (UsbCommand*)rx ) )
|
||
UsbPacketReceived(rx, sizeof(UsbCommand) );
|
||
|
||
#ifdef WITH_SMARTCARD
|
||
SMART_CARD_ServiceSmartCard();
|
||
#endif
|
||
// Press button for one second to enter a possible standalone mode
|
||
if (BUTTON_HELD(1000) > 0) {
|
||
|
||
/*
|
||
* So this is the trigger to execute a standalone mod. Generic entrypoint by following the standalone/standalone.h headerfile
|
||
* All standalone mod "main loop" should be the RunMod() function.
|
||
* Since the standalone is either LF or HF, the somewhat bisarr defines below exists.
|
||
*/
|
||
#if defined (WITH_LF) && ( defined (WITH_LF_SAMYRUN) || defined (WITH_LF_HIDBRUTE) || defined (WITH_LF_PROXBRUTE) )
|
||
RunMod();
|
||
#endif
|
||
|
||
#if defined (WITH_ISO14443a) && ( defined (WITH_HF_YOUNG) || defined(WITH_HF_COLIN) || defined(WITH_HF_MATTYRUN) )
|
||
RunMod();
|
||
#endif
|
||
|
||
// when here, we are no longer in standalone mode.
|
||
// reseting the variables which keeps track of usb re-attached/configured
|
||
//SetUSBreconnect(0);
|
||
//SetUSBconfigured(0);
|
||
}
|
||
}
|
||
}
|