proxmark3/client/src/cmdhficlass.c

3429 lines
124 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
// Copyright (C) 2019 piwi
// Copyright (C) 2020 Iceman
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency iClass commands
//-----------------------------------------------------------------------------
#include "cmdhficlass.h"
#include <ctype.h>
#include "cliparser.h"
#include "cmdparser.h" // command_t
#include "commonutil.h" // ARRAYLEN
#include "cmdtrace.h"
#include "util_posix.h"
#include "comms.h"
#include "des.h"
#include "loclass/cipherutils.h"
#include "loclass/cipher.h"
#include "loclass/ikeys.h"
#include "loclass/elite_crack.h"
#include "fileutils.h"
#include "protocols.h"
#include "cardhelper.h"
#include "wiegand_formats.h"
#include "wiegand_formatutils.h"
#define NUM_CSNS 9
#define ICLASS_KEYS_MAX 8
#define ICLASS_AUTH_RETRY 10
#define ICLASS_DECRYPTION_BIN "iclass_decryptionkey.bin"
static uint8_t empty[8] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
static int CmdHelp(const char *Cmd);
static uint8_t iClass_Key_Table[ICLASS_KEYS_MAX][8] = {
{ 0xAE, 0xA6, 0x84, 0xA6, 0xDA, 0xB2, 0x32, 0x78 },
{ 0x76, 0x65, 0x54, 0x43, 0x32, 0x21, 0x10, 0x00 },
{ 0x5B, 0x7C, 0x62, 0xC4, 0x91, 0xc1, 0x1b, 0x39 },
{ 0xF0, 0xE1, 0xD2, 0xC3, 0xB4, 0xA5, 0x96, 0x87 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
};
static int usage_hf_iclass_sim(void) {
PrintAndLogEx(NORMAL, "Simulate a iCLASS legacy/standard tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iCLASS sim [h] <option> [CSN]\n");
PrintAndLogEx(NORMAL, "Options");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " 0 <CSN> : simulate the given CSN");
PrintAndLogEx(NORMAL, " 1 : simulate default CSN");
PrintAndLogEx(NORMAL, " 2 : Reader-attack, gather reader responses to extract elite key");
PrintAndLogEx(NORMAL, " 3 : Full simulation using emulator memory (see 'hf iclass eload')");
PrintAndLogEx(NORMAL, " 4 : Reader-attack, adapted for KeyRoll mode, gather reader responses to extract elite key");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass sim 0 031FEC8AF7FF12E0"));
PrintAndLogEx(NORMAL, " -- execute loclass attack online part");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass sim 2"));
PrintAndLogEx(NORMAL, " -- simulate full iCLASS 2k tag");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass eload f hf-iclass-AA162D30F8FF12F1-dump.bin"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass sim 3"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_eload(void) {
PrintAndLogEx(NORMAL, "Loads iCLASS tag dump into emulator memory on device\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass eload [h] f <filename>\n");
PrintAndLogEx(NORMAL, "Options");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " f <filename> : filename of dump");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass eload f hf-iclass-AA162D30F8FF12F1-dump.bin"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_esave(void) {
PrintAndLogEx(NORMAL, "Save emulator memory to file.");
PrintAndLogEx(NORMAL, "if not filename is supplied, CSN will be used.");
PrintAndLogEx(NORMAL, "Number of bytes to download defaults to 256. Other value is 2048\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass esave [h] [f <filename>] [s <num of bytes>]\n");
PrintAndLogEx(NORMAL, "Options");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " f <filename> : filename of dump");
PrintAndLogEx(NORMAL, " s <bytes> : (256|2048) number of bytes to save (default 256)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass esave"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass esave f hf-iclass-dump.bin"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass esave s 2048 f hf-iclass-dump.bin"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_decrypt(void) {
PrintAndLogEx(NORMAL, "3DES decrypt data\n");
PrintAndLogEx(NORMAL, "This is naive implementation, it tries to decrypt every block after block 6.");
PrintAndLogEx(NORMAL, "Correct behaviour would be to decrypt only the application areas where the key is valid,");
PrintAndLogEx(NORMAL, "which is defined by the configuration block.");
PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside");
PrintAndLogEx(NORMAL, "in the resources directory. The file should be 16 bytes binary data\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass decrypt d <enc data> f <tagdump> k <transport key>\n");
PrintAndLogEx(NORMAL, "Options");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " d <encrypted blk> : 16 bytes hex");
PrintAndLogEx(NORMAL, " f <filename> : filename of dump");
PrintAndLogEx(NORMAL, " k <transport key> : 16 bytes hex");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass decrypt f hf-iclass-AA162D30F8FF12F1-dump.bin"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass decrypt f hf-iclass-AA162D30F8FF12F1-dump.bin k 000102030405060708090a0b0c0d0e0f"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass decrypt d 1122334455667788 k 000102030405060708090a0b0c0d0e0f"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_encrypt(void) {
PrintAndLogEx(NORMAL, "3DES encrypt data\n");
PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file " _YELLOW_("'iclass_decryptionkey.bin'") " must reside");
PrintAndLogEx(NORMAL, "in the resources directory. The file should be 16 bytes binary data\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass encrypt d <blockdata> k <transport key>\n");
PrintAndLogEx(NORMAL, "Options");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " d <block data> : 16 bytes hex");
PrintAndLogEx(NORMAL, " k <transport key> : 16 bytes hex");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass encrypt d 0102030405060708"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass encrypt d 0102030405060708 k 00112233445566778899AABBCCDDEEFF"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_dump(void) {
PrintAndLogEx(NORMAL, "Dump all memory from a iCLASS tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass dump f <fileName> k <key> c <creditkey> [e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " f <filename> : specify a filename to save dump to");
PrintAndLogEx(NORMAL, " k <key> : <required> access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c <creditkey>: credit key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, the key is interpreted as raw block 3/4");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass dump k 001122334455667B"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass dump k AAAAAAAAAAAAAAAA c 001122334455667B"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass dump k AAAAAAAAAAAAAAAA e"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass dump k 0"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_clone(void) {
PrintAndLogEx(NORMAL, "Restore data from dumpfile onto a iCLASS tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass clone f <tagfile.bin> b <first block> l <last block> k <KEY> c e|r\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " f <filename> : specify a filename to clone from");
PrintAndLogEx(NORMAL, " b <block> : The first block to clone as 2 hex symbols");
PrintAndLogEx(NORMAL, " l <last blk> : Set the data to write as 16 hex symbols");
PrintAndLogEx(NORMAL, " k <key> : Access key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : If 'c' is specified, the key set is assumed to be the credit key\n");
PrintAndLogEx(NORMAL, " e : If 'e' is specified, elite computations applied to key");
PrintAndLogEx(NORMAL, " r : If 'r' is specified, no computations applied to key (raw)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass clone f hf-iclass-AA162D30F8FF12F1-dump.bin b 06 l 1A k 1122334455667788 e"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass clone f hf-iclass-AA162D30F8FF12F1-dump b 05 l 19 k 0"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass clone f hf-iclass-AA162D30F8FF12F1-dump b 06 l 19 k 0 e"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_writeblock(void) {
PrintAndLogEx(NORMAL, "Write data to a iCLASS tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass wrbl b <block> d <data> k <key> [c|e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " b <block> : The block number as 2 hex symbols");
PrintAndLogEx(NORMAL, " d <data> : set the Data to write as 16 hex symbols");
PrintAndLogEx(NORMAL, " k <key> : access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : credit key assumed\n");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, no computations applied to key (raw)");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass wrbl b 0A d AAAAAAAAAAAAAAAA k 001122334455667B"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass wrbl b 1B d AAAAAAAAAAAAAAAA k 001122334455667B c"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass wrbl b 1B d AAAAAAAAAAAAAAAA k 0"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_readblock(void) {
PrintAndLogEx(NORMAL, "Read a iCLASS block from tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass rdbl b <block> k <key> [c|e|r|v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " b <block> : The block number as 2 hex symbols");
PrintAndLogEx(NORMAL, " k <key> : Access Key as 16 hex symbols or 1 hex to select key from memory");
PrintAndLogEx(NORMAL, " c : credit key assumed\n");
PrintAndLogEx(NORMAL, " e : elite computations applied to key");
PrintAndLogEx(NORMAL, " r : raw, no computations applied to key");
PrintAndLogEx(NORMAL, " v : verbose output");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass rdbl b 06 k 0011223344556677"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass rdbl b 1B k 0011223344556677 c"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass rdbl b 0A k 0"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_view(void) {
PrintAndLogEx(NORMAL, "Print a iCLASS tag dump file\n");
PrintAndLogEx(NORMAL, "Usage: hf iClass view [f <filename>] [s <startblock>] [e <endblock>] [v]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " f <filename> filename of dump");
PrintAndLogEx(NORMAL, " s <startblock> print from this block (default block6)");
PrintAndLogEx(NORMAL, " e <endblock> end printing at this block (default 0, ALL)");
PrintAndLogEx(NORMAL, " v verbose output");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass view f hf-iclass-AA162D30F8FF12F1-dump.bin"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass view s 1 f hf-iclass-AA162D30F8FF12F1-dump.bin"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_calc_newkey(void) {
PrintAndLogEx(NORMAL, "Calculate new key for updating\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass calc_newkey o <old key> n <new key> s [csn] e\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " o <old key> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLogEx(NORMAL, " n <new key> : *specify a key as 16 hex symbols or a key number as 1 symbol");
PrintAndLogEx(NORMAL, " s <csn> : specify a card Serial number to diversify the key (if omitted will attempt to read a csn)");
PrintAndLogEx(NORMAL, " e : specify new key as elite calc");
PrintAndLogEx(NORMAL, " ee : specify old and new key as elite calc");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " -- e key to e key given csn");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass calcnewkey o 1122334455667788 n 2233445566778899 s deadbeafdeadbeaf ee"));
PrintAndLogEx(NORMAL, " -- std key to e key read csn");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass calcnewkey o 1122334455667788 n 2233445566778899 e"));
PrintAndLogEx(NORMAL, " -- std to std read csn");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass calcnewkey o 1122334455667788 n 2233445566778899"));
PrintAndLogEx(NORMAL, "\nNOTE: * = required");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_managekeys(void) {
PrintAndLogEx(NORMAL, "Manage iCLASS Keys in client memory:\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass managekeys n [keynbr] k [key] f [filename] s l p\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : Show this help");
PrintAndLogEx(NORMAL, " n <keynbr> : specify the keyNbr to set in memory");
PrintAndLogEx(NORMAL, " k <key> : set a key in memory");
PrintAndLogEx(NORMAL, " f <filename> : specify a filename to use with load or save operations");
PrintAndLogEx(NORMAL, " s : save keys in memory to file specified by filename");
PrintAndLogEx(NORMAL, " l : load keys to memory from file specified by filename");
PrintAndLogEx(NORMAL, " p : print keys loaded into memory\n");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " -- set key");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass managekeys n 0 k 1122334455667788"));
PrintAndLogEx(NORMAL, " -- save key file");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass managekeys f mykeys.bin s"));
PrintAndLogEx(NORMAL, " -- load key file");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass managekeys f mykeys.bin l"));
PrintAndLogEx(NORMAL, " -- print keys");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass managekeys p"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_reader(void) {
PrintAndLogEx(NORMAL, "Act as a iCLASS reader. Look for iCLASS tags until Enter or the pm3 button is pressed\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass reader [h] [1]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " 1 read only 1 tag");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass reader 1"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_replay(void) {
PrintAndLogEx(NORMAL, "Replay a collected mac message\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass replay [h] <mac>\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " <mac> Mac bytes to replay (8 hexsymbols)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass replay 00112233"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_loclass(void) {
PrintAndLogEx(NORMAL, "Execute the offline part of loclass attack");
PrintAndLogEx(NORMAL, " An iclass dumpfile is assumed to consist of an arbitrary number of");
PrintAndLogEx(NORMAL, " malicious CSNs, and their protocol responses");
PrintAndLogEx(NORMAL, " The binary format of the file is expected to be as follows: ");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>");
PrintAndLogEx(NORMAL, " ... totalling N*24 bytes\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass loclass [h] [t [l]] [f <filename>]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " t Perform self-test");
PrintAndLogEx(NORMAL, " t l Perform self-test, including long ones");
PrintAndLogEx(NORMAL, " f <filename> Bruteforce iclass dumpfile");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass loclass f iclass-dump.bin"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass loclass t"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_chk(void) {
PrintAndLogEx(NORMAL, "Checkkeys loads a dictionary text file with 8byte hex keys to test authenticating against a iClass tag\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass chk [h|e|r] [f (*.dic)]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys");
PrintAndLogEx(NORMAL, " r raw");
PrintAndLogEx(NORMAL, " e elite");
PrintAndLogEx(NORMAL, " c credit key (if not use, default is debit)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass chk f dictionaries/iclass_default_keys.dic"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass chk f dictionaries/iclass_default_keys.dic e"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_lookup(void) {
PrintAndLogEx(NORMAL, "Lookup keys takes some sniffed trace data and tries to verify what key was used against a dictionary file\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass lookup [h|e|r] [f (*.dic)] [u <csn>] [p <epurse>] [m <macs>]\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys");
PrintAndLogEx(NORMAL, " u CSN");
PrintAndLogEx(NORMAL, " p EPURSE");
PrintAndLogEx(NORMAL, " m macs");
PrintAndLogEx(NORMAL, " r raw");
PrintAndLogEx(NORMAL, " e elite");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f dictionaries/iclass_default_keys.dic"));
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f dictionaries/iclass_default_keys.dic e"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_hf_iclass_permutekey(void) {
PrintAndLogEx(NORMAL, "Permute function from 'heart of darkness' paper.\n");
PrintAndLogEx(NORMAL, "Usage: hf iclass permute [h] <r|f> <bytes>\n");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h Show this help");
PrintAndLogEx(NORMAL, " r reverse permuted key");
PrintAndLogEx(NORMAL, " f permute key");
PrintAndLogEx(NORMAL, " <bytes> input bytes");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_("\thf iclass permute r 0123456789abcdef"));
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
typedef enum {
None = 0,
DES,
RFU,
TRIPLEDES
} BLOCK79ENCRYPTION;
static inline uint32_t leadingzeros(uint64_t a) {
#if defined __GNUC__
return __builtin_clzll(a);
#else
return 0;
#endif
}
static inline uint32_t countones(uint64_t a) {
#if defined __GNUC__
return __builtin_popcountll(a);
#else
return 0;
#endif
}
// iclass card descriptors
const char * card_types[] = {
"PicoPass 16K / 16", // 000
"PicoPass 32K with current book 16K / 16", // 001
"Unknown Card Type!", // 010
"Unknown Card Type!", // 011
"PicoPass 2K", // 100
"Unknown Card Type!", // 101
"PicoPass 16K / 2", // 110
"PicoPass 32K with current book 16K / 2", // 111
};
uint8_t card_app2_limit[] = {
0xff,
0xff,
0xff,
0xff,
0x1f,
0xff,
0xff,
0xff,
};
static uint8_t isset(uint8_t val, uint8_t mask) {
return (val & mask);
}
static uint8_t notset(uint8_t val, uint8_t mask) {
return !(val & mask);
}
static uint8_t get_pagemap(const picopass_hdr *hdr) {
return (hdr->conf.fuses & (FUSE_CRYPT0 | FUSE_CRYPT1)) >> 3;
}
static void fuse_config(const picopass_hdr *hdr) {
uint8_t fuses = hdr->conf.fuses;
if (isset(fuses, FUSE_FPERS))
PrintAndLogEx(SUCCESS, " Mode: " _GREEN_("Personalization (programmable)"));
else
PrintAndLogEx(SUCCESS, " Mode: " _YELLOW_("Application (locked)"));
if (isset(fuses, FUSE_CODING1)) {
PrintAndLogEx(SUCCESS, "Coding: RFU");
} else {
if (isset(fuses, FUSE_CODING0))
PrintAndLogEx(SUCCESS, "Coding: " _YELLOW_("ISO 14443-2 B / 15693"));
else
PrintAndLogEx(SUCCESS, "Coding: " _YELLOW_("ISO 14443-B only"));
}
uint8_t pagemap = get_pagemap(hdr);
switch (pagemap) {
case 0x0:
PrintAndLogEx(INFO, " Crypt: No auth possible. Read only if RA is enabled");
break;
case 0x1:
PrintAndLogEx(SUCCESS, " Crypt: Non secured page");
break;
case 0x2:
PrintAndLogEx(INFO, " Crypt: Secured page, keys locked");
break;
case 0x03:
PrintAndLogEx(SUCCESS, " Crypt: Secured page, " _GREEN_("keys not locked"));
break;
}
if (isset(fuses, FUSE_RA))
PrintAndLogEx(SUCCESS, " RA: Read access enabled");
else
PrintAndLogEx(INFO, " RA: Read access not enabled");
PrintAndLogEx(INFO,
"App limit " _YELLOW_("0x%02X") ", OTP " _YELLOW_("0x%02X%02X") ", Block write lock " _YELLOW_("0x%02X")
, hdr->conf.app_limit
, hdr->conf.otp[1]
, hdr->conf.otp[0]
, hdr->conf.block_writelock
);
PrintAndLogEx(INFO,
" Chip " _YELLOW_("0x%02X") ", Mem " _YELLOW_("0x%02X") ", EAS " _YELLOW_("0x%02X") ", Fuses " _YELLOW_("0x%02X")
, hdr->conf.chip_config
, hdr->conf.mem_config
, hdr->conf.eas
, hdr->conf.fuses
);
}
static void getMemConfig(uint8_t mem_cfg, uint8_t chip_cfg, uint8_t *app_areas, uint8_t *kb) {
// mem-bit 5, mem-bit 7, chip-bit 4: defines chip type
uint8_t k16 = isset(mem_cfg, 0x80);
//uint8_t k2 = isset(mem_cfg, 0x08);
uint8_t book = isset(mem_cfg, 0x20);
if (isset(chip_cfg, 0x10) && !k16 && !book) {
*kb = 2;
*app_areas = 2;
} else if (isset(chip_cfg, 0x10) && k16 && !book) {
*kb = 16;
*app_areas = 2;
} else if (notset(chip_cfg, 0x10) && !k16 && !book) {
*kb = 16;
*app_areas = 16;
} else if (isset(chip_cfg, 0x10) && k16 && book) {
*kb = 32;
*app_areas = 3;
} else if (notset(chip_cfg, 0x10) && !k16 && book) {
*kb = 32;
*app_areas = 17;
} else {
*kb = 32;
*app_areas = 2;
}
}
static uint8_t get_mem_config(const picopass_hdr *hdr) {
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
// three configuration bits that decides sizes
uint8_t type = (chip & 0x10) >> 2;
type |= (mem & 0x80) >> 6;
type |= (mem & 0x20) >> 5;
return type;
}
static void mem_app_config(const picopass_hdr *hdr) {
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
uint8_t kb = 2;
uint8_t app_areas = 2;
getMemConfig(mem, chip, &app_areas, &kb);
uint8_t type = get_mem_config(hdr);
uint8_t app1_limit = hdr->conf.app_limit - 5; // minus header blocks
uint8_t app2_limit = card_app2_limit[type];
uint8_t pagemap = get_pagemap(hdr);
PrintAndLogEx(INFO, "------ " _CYAN_("Memory") " ------");
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, " %u KBits (%u bytes)", kb, app2_limit * 8);
PrintAndLogEx(INFO, " Tag has not App Areas");
return;
}
PrintAndLogEx(INFO, " %u KBits/%u App Areas (%u bytes)", kb, app_areas, app2_limit * 8);
PrintAndLogEx(INFO, " AA1 blocks %u { 0x06 - 0x%02X (06 - %02d) }", app1_limit , app1_limit + 5, app1_limit + 5);
PrintAndLogEx(INFO, " AA2 blocks %u { 0x%02X - 0x%02X (%02d - %02d) }", app2_limit - app1_limit, app1_limit + 5 + 1, app2_limit, app1_limit + 5 + 1, app2_limit);
PrintAndLogEx(INFO, "------ " _CYAN_("KeyAccess") " ------");
PrintAndLogEx(INFO, " Kd = Debit key (AA1), Kc = Credit key (AA2)");
uint8_t book = isset(mem, 0x20);
if (book) {
PrintAndLogEx(INFO, " Read A - Kd");
PrintAndLogEx(INFO, " Read B - Kc");
PrintAndLogEx(INFO, " Write A - Kd");
PrintAndLogEx(INFO, " Write B - Kc");
PrintAndLogEx(INFO, " Debit - Kd or Kc");
PrintAndLogEx(INFO, " Credit - Kc");
} else {
PrintAndLogEx(INFO, " Read A - Kd or Kc");
PrintAndLogEx(INFO, " Read B - Kd or Kc");
PrintAndLogEx(INFO, " Write A - Kc");
PrintAndLogEx(INFO, " Write B - Kc");
PrintAndLogEx(INFO, " Debit - Kd or Kc");
PrintAndLogEx(INFO, " Credit - Kc");
}
}
static void print_picopass_info(const picopass_hdr *hdr) {
PrintAndLogEx(INFO, "------ " _CYAN_("card configuration") " ------");
fuse_config(hdr);
mem_app_config(hdr);
}
static void print_picopass_header(const picopass_hdr *hdr) {
PrintAndLogEx(INFO, "------------ " _CYAN_("card") " -------------");
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s") " (uid)", sprint_hex(hdr->csn, sizeof(hdr->csn)));
PrintAndLogEx(SUCCESS, " Config: %s (Card configuration)", sprint_hex((uint8_t *)&hdr->conf, sizeof(hdr->conf)));
PrintAndLogEx(SUCCESS, "E-purse: %s (Card challenge, CC)", sprint_hex(hdr->epurse, sizeof(hdr->epurse)));
PrintAndLogEx(SUCCESS, " Kd: %s (Debit key, hidden)", sprint_hex(hdr->key_d, sizeof(hdr->key_d)));
PrintAndLogEx(SUCCESS, " Kc: %s (Credit key, hidden)", sprint_hex(hdr->key_c, sizeof(hdr->key_c)));
PrintAndLogEx(SUCCESS, " AIA: %s (Application Issuer area)", sprint_hex(hdr->app_issuer_area, sizeof(hdr->app_issuer_area)));
}
static int CmdHFiClassList(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdTraceList("iclass");
return PM3_SUCCESS;
}
static int CmdHFiClassSniff(const char *Cmd) {
CLIParserContext *ctx;
CLIParserInit(&ctx, "hf iclass sniff",
"Sniff the communication reader and tag",
"Usage:\n"
_YELLOW_("\thf iclass sniff") "\n"
_YELLOW_("\thf iclass sniff -j") " -> jam e-purse updates\n"
);
void* argtable[] = {
arg_param_begin,
arg_lit0("j", "jam", "Jam (prevent) e-purse updates"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool jam_epurse_update = arg_get_lit(ctx, 1);
CLIParserFree(ctx);
const uint8_t update_epurse_sequence[2] = {0x87, 0x02};
struct {
uint8_t jam_search_len;
uint8_t jam_search_string[2];
} PACKED payload;
if (jam_epurse_update) {
payload.jam_search_len = sizeof(update_epurse_sequence);
memcpy(payload.jam_search_string, update_epurse_sequence, sizeof(payload.jam_search_string));
}
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_SNIFF, (uint8_t *)&payload, sizeof(payload));
WaitForResponse(CMD_HF_ICLASS_SNIFF, &resp);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass list") "` to look at the collected trace");
PrintAndLogEx(HINT, "Try `" _YELLOW_("trace save h") "` to save tracelog for later analysing");
return PM3_SUCCESS;
}
static int CmdHFiClassSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_iclass_sim();
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t sim_type = param_get8ex(Cmd, 0, 0, 10);
if (sim_type == 0) {
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLogEx(ERR, "A CSN should consist of 16 HEX symbols");
return usage_hf_iclass_sim();
}
PrintAndLogEx(INFO, " simtype: %02x CSN: %s", sim_type, sprint_hex(CSN, 8));
}
if (sim_type > 4) {
PrintAndLogEx(ERR, "Undefined simtype %d", sim_type);
return usage_hf_iclass_sim();
}
// remember to change the define NUM_CSNS to match.
// pre-defined 9 CSN by iceman
uint8_t csns[8 * NUM_CSNS] = {
0x01, 0x0A, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x0C, 0x06, 0x0C, 0xFE, 0xF7, 0xFF, 0x12, 0xE0,
0x10, 0x97, 0x83, 0x7B, 0xF7, 0xFF, 0x12, 0xE0,
0x13, 0x97, 0x82, 0x7A, 0xF7, 0xFF, 0x12, 0xE0,
0x07, 0x0E, 0x0D, 0xF9, 0xF7, 0xFF, 0x12, 0xE0,
0x14, 0x96, 0x84, 0x76, 0xF7, 0xFF, 0x12, 0xE0,
0x17, 0x96, 0x85, 0x71, 0xF7, 0xFF, 0x12, 0xE0,
0xCE, 0xC5, 0x0F, 0x77, 0xF7, 0xFF, 0x12, 0xE0,
0xD2, 0x5A, 0x82, 0xF8, 0xF7, 0xFF, 0x12, 0xE0
//0x04, 0x08, 0x9F, 0x78, 0x6E, 0xFF, 0x12, 0xE0
};
/* DUMPFILE FORMAT:
*
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <4 byte NR><4 byte MAC>
* CC are all zeroes, CSN is the same as was sent in
**/
uint8_t tries = 0;
switch (sim_type) {
case ICLASS_SIM_MODE_READER_ATTACK: {
PrintAndLogEx(INFO, "Starting iCLASS sim 2 attack (elite mode)");
PrintAndLogEx(INFO, "press " _YELLOW_("`enter`") " to cancel");
PacketResponseNG resp;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_SIMULATE, sim_type, NUM_CSNS, 1, csns, 8 * NUM_CSNS);
while (WaitForResponseTimeout(CMD_ACK, &resp, 2000) == false) {
tries++;
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard.");
return PM3_EOPABORTED;
}
if (tries > 20) {
PrintAndLogEx(WARNING, "\ntimeout while waiting for reply.");
return PM3_ETIMEOUT;
}
}
uint8_t num_mac = resp.oldarg[1];
bool success = (NUM_CSNS == num_mac);
PrintAndLogEx((success) ? SUCCESS : WARNING, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+' : '!', num_mac, NUM_CSNS, (success) ? "OK" : "FAIL");
if (num_mac == 0)
break;
size_t datalen = NUM_CSNS * 24;
uint8_t *dump = calloc(datalen, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
return PM3_EMALLOC;
}
memset(dump, 0, datalen);//<-- Need zeroes for the EPURSE - field (offical)
uint8_t i = 0;
for (i = 0 ; i < NUM_CSNS ; i++) {
//copy CSN
memcpy(dump + i * 24, csns + i * 8, 8);
//copy epurse
memcpy(dump + i * 24 + 8, resp.data.asBytes + i * 16, 8);
// NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16)
memcpy(dump + i * 24 + 16, resp.data.asBytes + i * 16 + 8, 8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", ".bin", dump, datalen);
free(dump);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass loclass h") "` to recover elite key");
break;
}
case ICLASS_SIM_MODE_READER_ATTACK_KEYROLL: {
// reader in key roll mode, when it has two keys it alternates when trying to verify.
PrintAndLogEx(INFO, "Starting iCLASS sim 4 attack (elite mode, reader in key roll mode)");
PrintAndLogEx(INFO, "press Enter to cancel");
PacketResponseNG resp;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_SIMULATE, sim_type, NUM_CSNS, 1, csns, 8 * NUM_CSNS);
while (WaitForResponseTimeout(CMD_ACK, &resp, 2000) == false) {
tries++;
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "\naborted via keyboard.");
return PM3_EOPABORTED;
}
if (tries > 20) {
PrintAndLogEx(WARNING, "\ntimeout while waiting for reply.");
return PM3_ETIMEOUT;
}
}
uint8_t num_mac = resp.oldarg[1];
bool success = ((NUM_CSNS * 2) == num_mac);
PrintAndLogEx((success) ? SUCCESS : WARNING, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+' : '!', num_mac, NUM_CSNS * 2, (success) ? "OK" : "FAIL");
if (num_mac == 0)
break;
size_t datalen = NUM_CSNS * 24;
uint8_t *dump = calloc(datalen, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
return PM3_EMALLOC;
}
#define MAC_ITEM_SIZE 24
//KEYROLL 1
//Need zeroes for the CC-field
memset(dump, 0, datalen);
for (uint8_t i = 0; i < NUM_CSNS ; i++) {
// copy CSN
memcpy(dump + i * MAC_ITEM_SIZE, csns + i * 8, 8); //CSN
// copy EPURSE
memcpy(dump + i * MAC_ITEM_SIZE + 8, resp.data.asBytes + i * 16, 8);
// copy NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16)
memcpy(dump + i * MAC_ITEM_SIZE + 16, resp.data.asBytes + i * 16 + 8, 8);
}
saveFile("iclass_mac_attack_keyroll_A", ".bin", dump, datalen);
//KEYROLL 2
memset(dump, 0, datalen);
for (uint8_t i = 0; i < NUM_CSNS; i++) {
uint8_t resp_index = (i + NUM_CSNS) * 16;
// Copy CSN
memcpy(dump + i * MAC_ITEM_SIZE, csns + i * 8, 8);
// copy EPURSE
memcpy(dump + i * MAC_ITEM_SIZE + 8, resp.data.asBytes + resp_index, 8);
// copy NR_MAC (eight bytes from the response) ( 8b csn + 8 epurse == 16)
memcpy(dump + i * MAC_ITEM_SIZE + 16, resp.data.asBytes + resp_index + 8, 8);
resp_index++;
}
saveFile("iclass_mac_attack_keyroll_B", ".bin", dump, datalen);
free(dump);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass loclass h") "` to recover elite key");
break;
}
case ICLASS_SIM_MODE_CSN:
case ICLASS_SIM_MODE_CSN_DEFAULT:
case ICLASS_SIM_MODE_FULL:
default: {
uint8_t numberOfCSNs = 0;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_SIMULATE, sim_type, numberOfCSNs, 0, CSN, 8);
if (sim_type == ICLASS_SIM_MODE_FULL)
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass esave h") "` to save the emulator memory to file");
break;
}
}
return PM3_SUCCESS;
}
static int CmdHFiClassInfo(const char *Cmd) {
return info_iclass();
}
int read_iclass_csn(bool loop, bool verbose) {
uint32_t flags = (FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE);
int res = PM3_SUCCESS;
while (kbd_enter_pressed() == false) {
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_READER, flags, 0, 0, NULL, 0);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
uint8_t status = resp.oldarg[0] & 0xff;
if (loop == false) {
if (status == 0 || status == 0xFF) {
if (verbose) PrintAndLogEx(WARNING, "iCLASS / ISO15693 card select failed");
res = PM3_EOPABORTED;
break;
}
} else {
if (status == 0xFF)
continue;
}
picopass_hdr *hdr = (picopass_hdr *)resp.data.asBytes;
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s"), sprint_hex(hdr->csn, sizeof(hdr->csn)));
PrintAndLogEx(SUCCESS, " Config: " _GREEN_("%s"), sprint_hex((uint8_t *)&hdr->conf, sizeof(hdr->conf)));
if (loop == false)
break;
}
}
DropField();
return res;
}
static int CmdHFiClassReader(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_iclass_reader();
bool loop_read = (cmdp == '1') ? false : true;
return read_iclass_csn(loop_read, true);
}
static int CmdHFiClassReader_Replay(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_iclass_replay();
struct {
uint8_t reader;
uint8_t mac[4];
} PACKED payload;
if (param_gethex(Cmd, 0, payload.mac, 8)) {
PrintAndLogEx(FAILED, "MAC must include 8 HEX symbols");
return PM3_EINVARG;
}
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_REPLAY, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (!WaitForResponseTimeout(CMD_HF_ICLASS_REPLAY, &resp, 2000) == 0) {
}
return PM3_SUCCESS;
}
static int CmdHFiClassELoad(const char *Cmd) {
DumpFileType_t dftype = BIN;
char filename[FILE_PATH_SIZE] = {0};
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_eload();
case 'f':
if (param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) {
PrintAndLogEx(FAILED, "Filename too long");
errors = true;
break;
}
cmdp += 2;
break;
case 'j':
dftype = JSON;
cmdp++;
break;
case 'e':
dftype = EML;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors || cmdp == 0) {
return usage_hf_iclass_eload();
}
uint8_t *dump = calloc(2048, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(ERR, "error, cannot allocate memory ");
return PM3_EMALLOC;
}
size_t bytes_read = 2048;
int res = 0;
switch (dftype) {
case BIN: {
res = loadFile_safe(filename, ".bin", (void **)&dump, &bytes_read);
break;
}
case EML: {
res = loadFileEML_safe(filename, (void **)&dump, &bytes_read);
break;
}
case JSON: {
res = loadFileJSON(filename, dump, 2048, &bytes_read, NULL);
break;
}
case DICTIONARY:
PrintAndLogEx(ERR, "No dictionary loaded");
free(dump);
return PM3_ESOFT;
}
if (res != PM3_SUCCESS) {
free(dump);
return PM3_EFILE;
}
uint8_t *newdump = realloc(dump, bytes_read);
if (newdump == NULL) {
free(dump);
return PM3_EMALLOC;
} else {
dump = newdump;
}
print_picopass_header((picopass_hdr *) dump);
print_picopass_info((picopass_hdr *) dump);
// fast push mode
conn.block_after_ACK = true;
//Send to device
uint32_t bytes_sent = 0;
uint32_t bytes_remaining = bytes_read;
while (bytes_remaining > 0) {
uint32_t bytes_in_packet = MIN(PM3_CMD_DATA_SIZE, bytes_remaining);
if (bytes_in_packet == bytes_remaining) {
// Disable fast mode on last packet
conn.block_after_ACK = false;
}
clearCommandBuffer();
SendCommandOLD(CMD_HF_ICLASS_EML_MEMSET, bytes_sent, bytes_in_packet, 0, dump + bytes_sent, bytes_in_packet);
bytes_remaining -= bytes_in_packet;
bytes_sent += bytes_in_packet;
}
free(dump);
PrintAndLogEx(SUCCESS, "sent %d bytes of data to device emulator memory", bytes_sent);
return PM3_SUCCESS;
}
static int CmdHFiClassESave(const char *Cmd) {
char filename[FILE_PATH_SIZE] = {0};
char *fnameptr = filename;
int len = 0;
uint16_t bytes = 256;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_esave();
case 'f':
len = param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE);
if (len >= FILE_PATH_SIZE) {
PrintAndLogEx(FAILED, "Filename too long");
errors = true;
break;
}
cmdp += 2;
break;
case 's':
bytes = param_get32ex(Cmd, cmdp + 1, 256, 10);
if (bytes > 4096) {
PrintAndLogEx(WARNING, "Emulator memory is max 4096bytes. Truncating %u to 4096", bytes);
bytes = 4096;
}
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) {
return usage_hf_iclass_esave();
}
uint8_t *dump = calloc(bytes, sizeof(uint8_t));
if (!dump) {
PrintAndLogEx(WARNING, "Fail, cannot allocate memory");
return PM3_EMALLOC;
}
PrintAndLogEx(INFO, "downloading from emulator memory");
if (!GetFromDevice(BIG_BUF_EML, dump, bytes, 0, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "Fail, transfer from device time-out");
free(dump);
return PM3_ETIMEOUT;
}
// user supplied filename?
if (len < 1) {
fnameptr += sprintf(fnameptr, "hf-iclass-");
FillFileNameByUID(fnameptr, dump, "-dump", 8);
}
saveFile(filename, ".bin", dump, bytes);
saveFileEML(filename, dump, bytes, 8);
saveFileJSON(filename, jsfIclass, dump, bytes, NULL);
free(dump);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass readtagfile ") "` to view dump file");
return PM3_SUCCESS;
}
static int CmdHFiClassDecrypt(const char *Cmd) {
bool errors = false;
bool have_key = false;
bool have_data = false;
bool have_file = false;
bool verbose = false;
uint8_t cmdp = 0;
uint8_t enc_data[8] = {0};
uint8_t dec_data[8] = {0};
size_t keylen = 0;
uint8_t key[32] = {0};
uint8_t *keyptr = NULL;
size_t decryptedlen = 0;
uint8_t *decrypted = NULL;
char filename[FILE_PATH_SIZE];
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_decrypt();
case 'd':
if (param_gethex(Cmd, cmdp + 1, enc_data, 16)) {
PrintAndLogEx(ERR, "Data must be 16 HEX symbols");
errors = true;
break;
}
have_data = true;
cmdp += 2;
break;
case 'f':
if (param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)) == 0) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
break;
}
if (loadFile_safe(filename, "", (void **)&decrypted, &decryptedlen) != PM3_SUCCESS) {
errors = true;
break;
}
have_file = true;
cmdp += 2;
break;
case 'k':
if (param_gethex(Cmd, cmdp + 1, key, 32)) {
PrintAndLogEx(ERR, "Transport key must include 32 HEX symbols");
errors = true;
}
have_key = true;
cmdp += 2;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 1) return usage_hf_iclass_decrypt();
bool use_sc = IsCryptoHelperPresent(verbose);
if (have_key == false && use_sc == false) {
int res = loadFile_safe(ICLASS_DECRYPTION_BIN, "", (void **)&keyptr, &keylen);
if (res != PM3_SUCCESS) {
PrintAndLogEx(INFO, "Couldn't find any decryption methods");
return PM3_EINVARG;
}
memcpy(key, keyptr, sizeof(key));
free(keyptr);
}
// tripledes
mbedtls_des3_context ctx;
mbedtls_des3_set2key_dec(&ctx, key);
if (have_data) {
if (use_sc) {
Decrypt(enc_data, dec_data);
} else {
mbedtls_des3_crypt_ecb(&ctx, enc_data, dec_data);
}
PrintAndLogEx(SUCCESS, "Data: %s", sprint_hex(dec_data, sizeof(dec_data)));
}
if (have_file) {
picopass_hdr *hdr = (picopass_hdr *)decrypted;
uint8_t mem = hdr->conf.mem_config;
uint8_t chip = hdr->conf.chip_config;
uint8_t applimit = hdr->conf.app_limit;
uint8_t kb = 2;
uint8_t app_areas = 2;
getMemConfig(mem, chip, &app_areas, &kb);
BLOCK79ENCRYPTION aa1_encryption = (decrypted[(6 * 8) + 7] & 0x03);
uint32_t limit = MIN(applimit, decryptedlen / 8);
if (decryptedlen / 8 != applimit) {
PrintAndLogEx(WARNING, "Actual file len " _YELLOW_("%zu") " vs HID app-limit len " _YELLOW_("%u"), decryptedlen, applimit * 8);
PrintAndLogEx(INFO, "Setting limit to " _GREEN_("%u"), limit * 8);
}
//uint8_t numblocks4userid = GetNumberBlocksForUserId(decrypted + (6 * 8));
for (uint16_t blocknum = 0; blocknum < limit; ++blocknum) {
uint8_t idx = blocknum * 8;
memcpy(enc_data, decrypted + idx, 8);
if (aa1_encryption == RFU || aa1_encryption == None)
continue;
// Decrypted block 7,8,9 if configured.
if (blocknum > 6 && blocknum <= 9 && memcmp(enc_data, empty, 8) != 0) {
if (use_sc) {
Decrypt(enc_data, decrypted + idx);
} else {
mbedtls_des3_crypt_ecb(&ctx, enc_data, decrypted + idx);
}
}
}
// use the first block (CSN) for filename
char *fptr = calloc(50, sizeof(uint8_t));
if (fptr == false) {
PrintAndLogEx(WARNING, "Failed to allocate memory");
free(decrypted);
return PM3_EMALLOC;
}
strcat(fptr, "hf-iclass-");
FillFileNameByUID(fptr, hdr->csn, "-dump-decrypted", sizeof(hdr->csn));
saveFile(fptr, ".bin", decrypted, decryptedlen);
saveFileEML(fptr, decrypted, decryptedlen, 8);
saveFileJSON(fptr, jsfIclass, decrypted, decryptedlen, NULL);
PrintAndLogEx(INFO, "Following output skips CSN / block0");
printIclassDumpContents(decrypted, 1, (decryptedlen / 8), decryptedlen);
PrintAndLogEx(NORMAL, "");
// decode block 6
if (memcmp(decrypted + (8 * 6), empty, 8) != 0) {
if (use_sc) {
DecodeBlock6(decrypted + (8 * 6));
}
}
// decode block 7-8-9
if (memcmp(decrypted + (8 * 7), empty, 8) != 0) {
//todo: remove preamble/sentinal
uint32_t top = 0, mid, bot;
mid = bytes_to_num(decrypted + (8 * 7), 4);
bot = bytes_to_num(decrypted + (8 * 7) + 4, 4);
PrintAndLogEx(INFO, "Block 7 decoder");
char hexstr[8 + 1] = {0};
hex_to_buffer((uint8_t *)hexstr, decrypted + (8 * 7), 8, sizeof(hexstr) - 1, 0, 0, true);
char binstr[8 * 8 + 1] = {0};
hextobinstring(binstr, hexstr);
uint8_t i = 0;
while (i < strlen(binstr) && binstr[i++] == '0');
PrintAndLogEx(SUCCESS, "Binary..................... " _GREEN_("%s"), binstr + i);
PrintAndLogEx(INFO, "Wiegand decode");
wiegand_message_t packed = initialize_message_object(top, mid, bot);
HIDTryUnpack(&packed, true);
} else {
PrintAndLogEx(INFO, "No credential found.");
}
// decode block 9
if (memcmp(decrypted + (8 * 9), empty, 8) != 0) {
uint8_t usr_blk_len = GetNumberBlocksForUserId(decrypted + (8 * 6));
if (usr_blk_len < 3) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Block 9 decoder");
uint8_t pinsize = 0;
if (use_sc) {
pinsize = GetPinSize(decrypted + (8 * 6));
if (pinsize > 0) {
uint64_t pin = bytes_to_num(decrypted + (8 * 9), 5);
char tmp[17] = {0};
sprintf(tmp, "%."PRIu64, BCD2DEC(pin));
PrintAndLogEx(INFO, "PIN........................ " _GREEN_("%.*s"), pinsize, tmp);
}
}
}
}
PrintAndLogEx(INFO, "-----------------------------------------------------------------");
free(decrypted);
free(fptr);
}
mbedtls_des3_free(&ctx);
return PM3_SUCCESS;
}
static void iclass_encrypt_block_data(uint8_t *blk_data, uint8_t *key) {
uint8_t encrypted_data[16];
uint8_t *encrypted = encrypted_data;
mbedtls_des3_context ctx;
mbedtls_des3_set2key_enc(&ctx, key);
mbedtls_des3_crypt_ecb(&ctx, blk_data, encrypted);
memcpy(blk_data, encrypted, 8);
mbedtls_des3_free(&ctx);
}
static int CmdHFiClassEncryptBlk(const char *Cmd) {
bool errors = false;
bool have_key = false;
bool verbose = false;
uint8_t blk_data[8] = {0};
uint8_t key[16] = {0};
uint8_t *keyptr = NULL;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_encrypt();
case 'd':
if (param_gethex(Cmd, cmdp + 1, blk_data, 16)) {
PrintAndLogEx(ERR, "Block data must include 16 HEX symbols");
errors = true;
}
cmdp += 2;
break;
case 'k':
if (param_gethex(Cmd, cmdp + 1, key, 32)) {
PrintAndLogEx(ERR, "Transport key must include 32 HEX symbols");
errors = true;
}
have_key = true;
cmdp += 2;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 1) return usage_hf_iclass_encrypt();
bool use_sc = IsCryptoHelperPresent(verbose);
if (have_key == false && use_sc == false) {
size_t keylen = 0;
int res = loadFile_safe(ICLASS_DECRYPTION_BIN, "", (void **)&keyptr, &keylen);
if (res != PM3_SUCCESS)
return PM3_EINVARG;
memcpy(key, keyptr, sizeof(key));
free(keyptr);
}
if (use_sc) {
Encrypt(blk_data, blk_data);
} else {
iclass_encrypt_block_data(blk_data, key);
}
PrintAndLogEx(SUCCESS, "encrypted block %s", sprint_hex(blk_data, 8));
return PM3_SUCCESS;
}
static void calc_wb_mac(uint8_t blockno, uint8_t *data, uint8_t *div_key, uint8_t *MAC) {
uint8_t wb[9];
wb[0] = blockno;
memcpy(wb + 1, data, 8);
doMAC_N(wb, sizeof(wb), div_key, MAC);
}
static bool select_only(uint8_t *CSN, uint8_t *CCNR, bool verbose) {
uint8_t flags = (FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE);
clearCommandBuffer();
PacketResponseNG resp;
SendCommandMIX(CMD_HF_ICLASS_READER, flags, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000) == false) {
PrintAndLogEx(WARNING, "command execute timeout");
return false;
}
uint8_t isok = resp.oldarg[0] & 0xff;
// no tag found or button pressed
if ((isok == 0) || isok == 0xFF) {
if (verbose) {
PrintAndLogEx(FAILED, "failed tag-select, aborting... (%d)", isok);
}
return false;
}
picopass_hdr *hdr = (picopass_hdr *)resp.data.asBytes;
if (CSN != NULL)
memcpy(CSN, hdr->csn, 8);
if (CCNR != NULL)
memcpy(CCNR, hdr->epurse, 8);
if (verbose) {
PrintAndLogEx(SUCCESS, "CSN %s", sprint_hex(CSN, 8));
PrintAndLogEx(SUCCESS, "epurse %s", sprint_hex(CCNR, 8));
}
return true;
}
static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
iclass_auth_req_t payload = {
.use_raw = rawkey,
.use_elite = elite,
.use_credit_key = use_credit_key
};
memcpy(payload.key, KEY, 8);
SendCommandNG(CMD_HF_ICLASS_AUTH, (uint8_t*)&payload, sizeof(payload));
PacketResponseNG resp;
clearCommandBuffer();
if (WaitForResponseTimeout(CMD_HF_ICLASS_AUTH, &resp, 2000) == 0) {
if (verbose) PrintAndLogEx(WARNING, "Command execute timeout");
return false;
}
if (resp.status != PM3_SUCCESS) {
if (verbose) PrintAndLogEx(ERR, "failed to communicate with card");
return false;
}
iclass_readblock_resp_t *packet = (iclass_readblock_resp_t *)resp.data.asBytes;
if (packet->isOK == 0) {
if (verbose) PrintAndLogEx(FAILED, "authentication error");
return false;
}
if (div_key)
memcpy(div_key, packet->div_key, sizeof(packet->div_key));
if (MAC)
memcpy(MAC, packet->mac, sizeof(packet->mac));
if (verbose)
PrintAndLogEx(SUCCESS, "authing with %s: %s", rawkey ? "raw key" : "diversified key", sprint_hex(div_key, 8));
return true;
}
static int CmdHFiClassDump(const char *Cmd) {
uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t CreditKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t app_limit1 = 0, app_limit2 = 0;
uint8_t fileNameLen = 0;
char filename[FILE_PATH_SIZE] = {0};
char tempStr[50] = {0};
bool have_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool auth = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_dump();
case 'c':
auth = true;
have_credit_key = true;
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, CreditKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(CreditKEY, iClass_Key_Table[keyNbr], 8);
PrintAndLogEx(INFO, "AA2 (credit) index %u", keyNbr);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
elite = true;
cmdp++;
break;
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "no filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
auth = true;
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
PrintAndLogEx(INFO, "AA1 (debit) index %u", keyNbr);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
rawkey = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_dump();
uint32_t flags = (FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE);
//get CSN and config
PacketResponseNG resp;
uint8_t tag_data[255 * 8];
memset(tag_data, 0xFF, sizeof(tag_data));
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_READER, flags, 0, 0, NULL, 0);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
PrintAndLogEx(WARNING, "command execute timeout");
DropField();
return PM3_ESOFT;
}
DropField();
uint8_t readStatus = resp.oldarg[0] & 0xff;
picopass_hdr *hdr = (picopass_hdr *)resp.data.asBytes;
if (readStatus == 0) {
PrintAndLogEx(FAILED, "no tag found");
DropField();
return PM3_ESOFT;
}
uint8_t pagemap = get_pagemap(hdr);
if (readStatus & (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF | FLAG_ICLASS_CC)) {
memcpy(tag_data, hdr, 24);
uint8_t type = get_mem_config(hdr);
// tags configured for NON SECURE PAGE, acts different
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, "Card in non-secure page mode detected");
app_limit1 = card_app2_limit[type];
app_limit2 = 0;
} else {
app_limit1 = hdr->conf.app_limit;
app_limit2 = card_app2_limit[type];
}
} else {
PrintAndLogEx(FAILED, "failed to read block 0,1,2");
DropField();
return PM3_ESOFT;
}
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, "Dumping all available memory, block 3 - %u (0x%02x)",app_limit1 , app_limit1);
if (auth) {
PrintAndLogEx(INFO, "No keys needed, ignoring user supplied key");
}
} else {
if (auth == false) {
PrintAndLogEx(FAILED, "Run command with keys");
return PM3_ESOFT;
}
PrintAndLogEx(INFO, "Card has atleast 2 application areas. AA1 limit %u (0x%02X) AA2 limit %u (0x%02X)", app_limit1, app_limit1, app_limit2, app_limit2);
}
iclass_dump_req_t payload = {
.req.use_raw = rawkey,
.req.use_elite = elite,
.req.use_credit_key = false,
.req.send_reply = true,
.req.do_auth = auth,
.end_block = app_limit1,
};
memcpy(payload.req.key, KEY, 8);
// tags configured for NON SECURE PAGE, acts different
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
payload.start_block = 3;
payload.req.do_auth = false;
} else {
payload.start_block = 6;
}
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t*)&payload, sizeof(payload));
while (true) {
printf(".");
fflush(stdout);
if (kbd_enter_pressed()) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(WARNING, "aborted via keyboard!\n");
DropField();
return PM3_EOPABORTED;
}
if (WaitForResponseTimeout(CMD_HF_ICLASS_DUMP, &resp, 2000))
break;
}
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(ERR, "failed to communicate with card");
return resp.status;
}
struct p_resp {
bool isOK;
uint8_t block_cnt;
uint32_t bb_offset;
} PACKED;
struct p_resp *packet = (struct p_resp *)resp.data.asBytes;
if (packet->isOK == false) {
PrintAndLogEx(WARNING, "read AA1 blocks failed");
return PM3_ESOFT;
}
uint32_t startindex = packet->bb_offset;
uint32_t blocks_read = packet->block_cnt;
uint8_t tempbuf[0xFF * 8];
// response ok - now get bigbuf content of the dump
if (!GetFromDevice(BIG_BUF, tempbuf, sizeof(tempbuf), startindex, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
return PM3_ETIMEOUT;
}
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
// all memory available
memcpy(tag_data + (8 * 3), tempbuf + (8 * 3), (blocks_read * 8) );
} else {
// div key KD
memcpy(tag_data + (8 * 3), tempbuf + (8 * 3), 8);
// AIA data
memcpy(tag_data + (8 * 5), tempbuf + (8 * 5), 8);
// AA1 data
memcpy(tag_data + (8 * 6), tempbuf + (8 * 6), (blocks_read * 8) );
}
uint16_t bytes_got = (app_limit1 + 1) * 8;
// try AA2 Kc, Credit
bool aa2_success = false;
if (have_credit_key && pagemap != 0x01) {
// AA2 authenticate credit key
memcpy(payload.req.key, CreditKEY, 8);
payload.req.use_credit_key = true;
payload.start_block = app_limit1 + 1;
payload.end_block = app_limit2;
payload.req.do_auth = true;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t*)&payload, sizeof(payload));
while (true) {
printf(".");
fflush(stdout);
if (kbd_enter_pressed()) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(WARNING, "aborted via keyboard!\n");
DropField();
return PM3_EOPABORTED;
}
if (WaitForResponseTimeout(CMD_HF_ICLASS_DUMP, &resp, 2000))
break;
}
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(ERR, "failed to communicate with card");
goto write_dump;
}
packet = (struct p_resp *)resp.data.asBytes;
if (packet->isOK == false) {
PrintAndLogEx(WARNING, "failed read block using credit key");
goto write_dump;
}
blocks_read = packet->block_cnt;
startindex = packet->bb_offset;
if (blocks_read * 8 > sizeof(tag_data) - bytes_got) {
PrintAndLogEx(WARNING, "data exceeded buffer size! ");
blocks_read = (sizeof(tag_data) - bytes_got) / 8;
}
// get dumped data from bigbuf
if (!GetFromDevice(BIG_BUF, tempbuf, sizeof(tempbuf), startindex, NULL, 0, NULL, 2500, false)) {
PrintAndLogEx(WARNING, "command execution time out");
goto write_dump;
}
// div key KC
memcpy(tag_data + (8 * 4), tempbuf + (8 * 4), 8);
// AA2 data
memcpy(tag_data + (8 * (app_limit1 + 1)), tempbuf + (8 * (app_limit1 + 1)), (blocks_read * 8) );
bytes_got = (blocks_read * 8);
aa2_success = true;
}
write_dump:
if (have_credit_key && pagemap != 0x01 && aa2_success == false)
PrintAndLogEx(INFO, "Reading AA2 failed. dumping AA1 data to file");
// print the dump
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "------+----+-------------------------+----------");
PrintAndLogEx(INFO, " CSN |0x00| " _GREEN_("%s") "|", sprint_hex(tag_data, 8));
printIclassDumpContents(tag_data, 1, (bytes_got / 8), bytes_got);
// use CSN as filename
if (filename[0] == 0) {
strcat(filename, "hf-iclass-");
FillFileNameByUID(filename, tag_data, "-dump", 8);
}
// save the dump to .bin file
PrintAndLogEx(SUCCESS, "saving dump file - %zu blocks read", bytes_got / 8);
saveFile(filename, ".bin", tag_data, bytes_got);
saveFileEML(filename, tag_data, bytes_got, 8);
saveFileJSON(filename, jsfIclass, tag_data, bytes_got, NULL);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass decrypt") "` to decrypt dump file");
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass view") "` to view dump file");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int iclass_write_block(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
/*
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
if (select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose) == false) {
return PM3_ESOFT;
}
calc_wb_mac(blockno, bldata, div_key, MAC);
struct p {
uint8_t blockno;
uint8_t data[12];
} PACKED payload;
payload.blockno = blockno;
memcpy(payload.data, bldata, 8);
memcpy(payload.data + 8, MAC, 4);
//
typedef struct {
uint8_t key[8];
bool use_raw;
bool use_elite;
bool use_credit_key;
bool send_reply;
bool do_auth;
uint8_t blockno;
} PACKED iclass_auth_req_t;
// iCLASS write block request data structure
typedef struct {
iclass_auth_req_t req;
uint8_t data[8];
} PACKED iclass_writeblock_req_t;
*/
iclass_writeblock_req_t payload = {
.req.use_raw = rawkey,
.req.use_elite = elite,
.req.use_credit_key = use_credit_key,
.req.blockno = blockno,
.req.send_reply = true,
.req.do_auth = true,
};
memcpy(payload.req.key, KEY, 8);
memcpy(payload.data, bldata, sizeof(payload.data));
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_WRITEBL, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_HF_ICLASS_WRITEBL, &resp, 2000) == 0) {
if (verbose) PrintAndLogEx(WARNING, "Command execute timeout");
return PM3_ETIMEOUT;
}
if (resp.status != PM3_SUCCESS) {
if (verbose) PrintAndLogEx(ERR, "failed to communicate with card");
return PM3_EWRONGANSWER;
}
return (resp.data.asBytes[0] == 1) ? PM3_SUCCESS : PM3_ESOFT;
}
static int CmdHFiClass_WriteBlock(const char *Cmd) {
uint8_t blockno = 0;
uint8_t bldata[8] = {0, 0, 0, 0, 0, 0, 0, 0};
uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool got_blockno = false;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_writeblock();
case 'b':
blockno = param_get8ex(Cmd, cmdp + 1, 07, 16);
got_blockno = true;
cmdp += 2;
break;
case 'c':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("CREDIT"));
use_credit_key = true;
cmdp++;
break;
case 'd':
if (param_gethex(Cmd, cmdp + 1, bldata, 16)) {
PrintAndLogEx(WARNING, "Data must include 16 HEX symbols\n");
errors = true;
}
cmdp += 2;
break;
case 'e':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
elite = true;
cmdp++;
break;
case 'k':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
PrintAndLogEx(SUCCESS, "Using key[%d] %s", keyNbr, sprint_hex(iClass_Key_Table[keyNbr], 8));
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
rawkey = true;
cmdp++;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (got_blockno == false)
errors = true;
if (errors || cmdp < 6) return usage_hf_iclass_writeblock();
int isok = iclass_write_block(blockno, bldata, KEY, use_credit_key, elite, rawkey, verbose);
if (isok == PM3_SUCCESS)
PrintAndLogEx(SUCCESS, "Wrote block %02X successful", blockno);
else
PrintAndLogEx(FAILED, "Writing failed");
return isok;
}
/*
static int CmdHFiClassClone(const char *Cmd) {
return PM3_SUCCESS;
}
*/
static int CmdHFiClassRestore(const char *Cmd) {
char filename[FILE_PATH_SIZE] = { 0x00 };
char tempStr[50] = {0};
uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t keyNbr = 0;
uint8_t fileNameLen = 0;
uint8_t startblock = 0;
uint8_t endblock = 0;
uint8_t dataLen = 0;
bool got_startblk = false, got_endblk = false;
bool use_credit_key = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_clone();
case 'b':
startblock = param_get8ex(Cmd, cmdp + 1, 07, 16);
got_startblk = true;
cmdp += 2;
break;
case 'c':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("CREDIT"));
use_credit_key = true;
cmdp++;
break;
case 'e':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
elite = true;
cmdp++;
break;
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'k':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
PrintAndLogEx(SUCCESS, "Using key[%d] %s", keyNbr, sprint_hex(iClass_Key_Table[keyNbr], 8));
memcpy(KEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'l':
endblock = param_get8ex(Cmd, cmdp + 1, 07, 16);
got_endblk = true;
cmdp += 2;
break;
case 'r':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
rawkey = true;
cmdp++;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (got_endblk == false || got_startblk == false)
errors = true;
if (errors || cmdp < 8) return usage_hf_iclass_clone();
if (startblock < 5) {
PrintAndLogEx(WARNING, "you cannot write key blocks this way. yet... make your start block > 4");
return PM3_EINVARG;
}
int total_bytes = (((endblock - startblock) + 1) * 12);
if (total_bytes > PM3_CMD_DATA_SIZE - 2) {
PrintAndLogEx(NORMAL, "Trying to write too many blocks at once. Max: %d", PM3_CMD_DATA_SIZE / 8);
return PM3_EINVARG;
}
uint8_t *dump = NULL;
size_t bytes_read = 0;
if (loadFile_safe(filename, "", (void **)&dump, &bytes_read) != PM3_SUCCESS) {
PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename);
return PM3_EFILE;
}
if (bytes_read == 0) {
PrintAndLogEx(ERR, "file reading error");
free(dump);
return PM3_EFILE;
}
if (bytes_read < sizeof(iclass_block_t) * (endblock - startblock + 1)) {
PrintAndLogEx(ERR, "file wrong size");
free(dump);
return PM3_EFILE;
}
// read data from file from block 6 --- 19
// we will use this struct [data 8 bytes][MAC 4 bytes] for each block calculate all mac number for each data
// then copy to usbcommand->asbytes;
// max is 32 - 6 = 28 block. 28 x 12 bytes gives 336 bytes
iclass_block_t tag_data[PM3_CMD_DATA_SIZE / 12];
memcpy(tag_data, dump + startblock * 8, sizeof(iclass_block_t) * (endblock - startblock + 1));
free(dump);
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
int i;
int numberAuthRetries = ICLASS_AUTH_RETRY;
do {
if (select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose))
break;
} while (numberAuthRetries--);
if (numberAuthRetries <= 0) {
PrintAndLogEx(ERR, "failed to authenticate");
DropField();
return PM3_ESOFT;
}
uint8_t data[total_bytes];
// calculate all mac for every the block we will write
for (i = startblock; i <= endblock; i++) {
calc_wb_mac(i, tag_data[i - startblock].d, div_key, MAC);
// usb command d start pointer = d + (i - 6) * 12
// memcpy(pointer,tag_data[i - 6],8) 8 bytes
// memcpy(pointer + 8,mac,sizoof(mac) 4 bytes;
// next one
uint8_t *ptr = data + (i - startblock) * 12;
memcpy(ptr, &(tag_data[i - startblock].d[0]), 8);
memcpy(ptr + 8, MAC, 4);
}
if (verbose) {
PrintAndLogEx(INFO, "------+--------------------------+-------------");
PrintAndLogEx(INFO, "block | data | mac");
PrintAndLogEx(INFO, "------+--------------------------+-------------");
uint8_t p[12];
for (i = 0; i <= endblock - startblock; i++) {
memcpy(p, data + (i * 12), 12);
char *s = calloc(70, sizeof(uint8_t));
sprintf(s, "| %s ", sprint_hex(p, 8));
sprintf(s + strlen(s), "| %s", sprint_hex(p + 8, 4));
PrintAndLogEx(NORMAL, " %02X %s", i + startblock, s);
free(s);
}
}
struct p {
uint8_t startblock;
uint8_t endblock;
uint8_t data[PM3_CMD_DATA_SIZE - 2];
} PACKED payload;
payload.startblock = startblock;
payload.endblock = endblock;
memcpy(payload.data, data, total_bytes);
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_CLONE, (uint8_t *)&payload, total_bytes + 2);
if (WaitForResponseTimeout(CMD_HF_ICLASS_CLONE, &resp, 2000) == 0) {
PrintAndLogEx(WARNING, "command execute timeout");
DropField();
return PM3_ETIMEOUT;
}
if (resp.status == PM3_SUCCESS) {
if (resp.data.asBytes[0] == 1)
PrintAndLogEx(SUCCESS, "Restore successful");
else
PrintAndLogEx(WARNING, "Restore failed");
}
return resp.status;
}
static int iclass_read_block(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool verbose, bool auth, uint8_t *out) {
iclass_auth_req_t payload = {
.use_raw = rawkey,
.use_elite = elite,
.use_credit_key = (keyType == 0x18),
.blockno = blockno,
.send_reply = true,
.do_auth = auth,
};
memcpy(payload.key, KEY, 8);
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_READBL, (uint8_t*)&payload, sizeof(payload));
if (WaitForResponseTimeout(CMD_HF_ICLASS_READBL, &resp, 2000) == false) {
if (verbose) PrintAndLogEx(WARNING, "Command execute timeout");
return PM3_ETIMEOUT;
}
if (resp.status != PM3_SUCCESS) {
if (verbose) PrintAndLogEx(ERR, "failed to communicate with card");
return PM3_EWRONGANSWER;
}
// return data.
iclass_readblock_resp_t *packet = (iclass_readblock_resp_t *)resp.data.asBytes;
if (packet->isOK == false) {
if (verbose) PrintAndLogEx(FAILED, "authentication error");
return PM3_ESOFT;
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " block %02X : " _GREEN_("%s"), blockno, sprint_hex(packet->data, sizeof(packet->data)));
PrintAndLogEx(NORMAL, "");
if (out)
memcpy(out, packet->data, sizeof(packet->data));
return PM3_SUCCESS;
}
static int CmdHFiClass_ReadBlock(const char *Cmd) {
uint8_t blockno = 0;
uint8_t keyType = 0x88; //debit key
uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t key_idx = 0;
uint8_t key_len = 0;
char tempStr[50] = {0};
bool got_blockno = false;
bool elite = false;
bool rawkey = false;
bool errors = false;
bool auth = false;
bool verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_readblock();
case 'b':
blockno = param_get8ex(Cmd, cmdp + 1, 7, 16);
got_blockno = true;
cmdp += 2;
break;
case 'c':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("KC credit"));
keyType = 0x18;
cmdp++;
break;
case 'e':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
elite = true;
cmdp++;
break;
case 'k':
auth = true;
key_len = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (key_len == 16) {
errors = param_gethex(tempStr, 0, KEY, key_len);
} else if (key_len == 1) {
key_idx = param_get8(Cmd, cmdp + 1);
if (key_idx < ICLASS_KEYS_MAX) {
memcpy(KEY, iClass_Key_Table[key_idx], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: key index is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: incorrect key length\n");
errors = true;
}
cmdp += 2;
break;
case 'r':
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
rawkey = true;
cmdp++;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (got_blockno == false)
errors = true;
if (errors) return usage_hf_iclass_readblock();
if (verbose) {
if (key_len == 1)
PrintAndLogEx(SUCCESS, "Using key[%d] %s", key_idx, sprint_hex(KEY, 8));
else
PrintAndLogEx(SUCCESS, "Using key %s", sprint_hex(KEY, 8));
}
if (auth == false && verbose) {
PrintAndLogEx(WARNING, "warning: no authentication used with read. Typical for cards configured toin `non-secure page`");
}
uint8_t data[8] = {0};
int res = iclass_read_block(KEY, blockno, keyType, elite, rawkey, verbose, auth, data);
if (res != PM3_SUCCESS)
return res;
if (blockno < 6 || blockno > 7)
return PM3_SUCCESS;
if (memcmp(data, empty, 8) == 0)
return PM3_SUCCESS;
bool use_sc = IsCryptoHelperPresent(verbose);
if (use_sc == false)
return PM3_SUCCESS;
// crypto helper available.
PrintAndLogEx(INFO, "----------------------------- " _CYAN_("cardhelper") " -----------------------------");
switch (blockno) {
case 6: {
DecodeBlock6(data);
break;
}
case 7: {
uint8_t dec_data[8];
uint64_t a = bytes_to_num(data, 8);
bool starts = (leadingzeros(a) < 12);
bool ones = (countones(a) > 16 && countones(a) < 48);
if (starts && ones) {
PrintAndLogEx(INFO, "data looks encrypted, False Positives " _YELLOW_("ARE") " possible");
Decrypt(data, dec_data);
PrintAndLogEx(SUCCESS, "decrypted : " _GREEN_("%s"), sprint_hex(dec_data, sizeof(dec_data)));
} else {
memcpy(dec_data, data, sizeof(dec_data));
PrintAndLogEx(INFO, "data looks unencrypted, trying to decode");
}
if (memcmp(dec_data, empty, 8) != 0) {
//todo: remove preamble/sentinal
uint32_t top = 0, mid, bot;
mid = bytes_to_num(dec_data, 4);
bot = bytes_to_num(dec_data + 4, 4);
char hexstr[16 + 1] = {0};
hex_to_buffer((uint8_t *)hexstr, dec_data, 8, sizeof(hexstr) - 1, 0, 0, true);
char binstr[64 + 1] = {0};
hextobinstring(binstr, hexstr);
uint8_t i = 0;
while (i < strlen(binstr) && binstr[i++] == '0');
i &= 0x3C;
PrintAndLogEx(SUCCESS, " bin : %s", binstr + i);
PrintAndLogEx(INFO, "");
PrintAndLogEx(INFO, "------------------------------ " _CYAN_("wiegand") " -------------------------------");
wiegand_message_t packed = initialize_message_object(top, mid, bot);
HIDTryUnpack(&packed, true);
} else {
PrintAndLogEx(INFO, "no credential found");
}
break;
}
}
PrintAndLogEx(INFO, "----------------------------------------------------------------------");
return PM3_SUCCESS;
}
static int CmdHFiClass_loclass(const char *Cmd) {
char opt = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) < 1 || opt == 'h')
return usage_hf_iclass_loclass();
if (opt == 'f') {
char fileName[FILE_PATH_SIZE] = {0};
if (param_getstr(Cmd, 1, fileName, sizeof(fileName)) > 0) {
return bruteforceFileNoKeys(fileName);
}
} else if (opt == 't') {
char opt2 = tolower(param_getchar(Cmd, 1));
int errors = testCipherUtils();
errors += testMAC();
errors += doKeyTests();
errors += testElite(opt2 == 'l');
if (errors != PM3_SUCCESS)
PrintAndLogEx(ERR, "There were errors!!!");
return PM3_ESOFT;
}
return usage_hf_iclass_loclass();
}
void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t endblock, size_t filesize) {
uint8_t maxmemcount;
uint8_t filemaxblock = filesize / 8;
uint8_t mem_config = iclass_dump[13];
if (mem_config & 0x80)
maxmemcount = 255;
else
maxmemcount = 31;
if (startblock == 0)
startblock = 6;
if ((endblock > maxmemcount) || (endblock == 0))
endblock = maxmemcount;
// remember endblock needs to relate to zero-index arrays.
if (endblock > filemaxblock - 1)
endblock = filemaxblock - 1;
/*
PrintAndLogEx(INFO, "startblock: %u, endblock: %u, filesize: %zu, maxmemcount: %u, filemaxblock: %u"
, startblock
, endblock
, filesize
, maxmemcount
, filemaxblock
);
*/
int i = startblock;
PrintAndLogEx(INFO, "------+----+-------------------------+----------");
while (i <= endblock) {
uint8_t *blk = iclass_dump + (i * 8);
PrintAndLogEx(INFO, " |0x%02X| %s", i, sprint_hex_ascii(blk, 8));
i++;
}
PrintAndLogEx(INFO, "------+----+-------------------------+----------");
}
static int CmdHFiClassView(const char *Cmd) {
int startblock = 0;
int endblock = 0;
char filename[FILE_PATH_SIZE];
bool errors = false, verbose = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_view();
case 'f':
if (param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) {
PrintAndLogEx(FAILED, "Filename too long");
errors = true;
break;
}
cmdp += 2;
break;
case 's':
startblock = param_get8ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'e':
endblock = param_get8ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'v':
verbose = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || (strlen(Cmd) == 0)) return usage_hf_iclass_view();
uint8_t *dump = NULL;
size_t bytes_read = 0;
if (loadFile_safe(filename, "", (void **)&dump, &bytes_read) != PM3_SUCCESS) {
PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename);
return PM3_EFILE;
}
if (verbose) {
PrintAndLogEx(INFO, "File: " _YELLOW_("%s"), filename);
PrintAndLogEx(INFO, "File size %zu bytes, file blocks %d (0x%x)", bytes_read, (uint16_t)(bytes_read >> 3), (uint16_t)(bytes_read >> 3));
PrintAndLogEx(INFO, "Printing blocks from");
PrintAndLogEx(INFO, "start " _YELLOW_("0x%02x") " end " _YELLOW_("0x%02x"), (startblock == 0) ? 6 : startblock, endblock);
}
print_picopass_header((picopass_hdr *) dump);
print_picopass_info((picopass_hdr *) dump);
PrintAndLogEx(NORMAL, "");
uint8_t *csn = dump;
PrintAndLogEx(INFO, "------+----+-------------------------+----------");
PrintAndLogEx(INFO, " CSN |0x00| " _GREEN_("%s") "|", sprint_hex(csn, 8));
printIclassDumpContents(dump, startblock, endblock, bytes_read);
free(dump);
return PM3_SUCCESS;
}
void HFiClassCalcDivKey(uint8_t *CSN, uint8_t *KEY, uint8_t *div_key, bool elite) {
if (elite) {
uint8_t keytable[128] = {0};
uint8_t key_index[8] = {0};
uint8_t key_sel[8] = { 0 };
uint8_t key_sel_p[8] = { 0 };
hash2(KEY, keytable);
hash1(CSN, key_index);
for (uint8_t i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]];
//Permute from iclass format to standard format
permutekey_rev(key_sel, key_sel_p);
diversifyKey(CSN, key_sel_p, div_key);
} else {
diversifyKey(CSN, KEY, div_key);
}
}
//when told CSN, oldkey, newkey, if new key is elite (elite), and if old key was elite (oldElite)
//calculate and return xor_div_key (ready for a key write command)
//print all div_keys if verbose
static void HFiClassCalcNewKey(uint8_t *CSN, uint8_t *OLDKEY, uint8_t *NEWKEY, uint8_t *xor_div_key, bool elite, bool oldElite, bool verbose) {
uint8_t old_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t new_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
//get old div key
HFiClassCalcDivKey(CSN, OLDKEY, old_div_key, oldElite);
//get new div key
HFiClassCalcDivKey(CSN, NEWKEY, new_div_key, elite);
for (uint8_t i = 0; i < ARRAYLEN(old_div_key); i++) {
xor_div_key[i] = old_div_key[i] ^ new_div_key[i];
}
if (verbose) {
PrintAndLogEx(SUCCESS, "Old div key : %s", sprint_hex(old_div_key, 8));
PrintAndLogEx(SUCCESS, "New div key : %s", sprint_hex(new_div_key, 8));
PrintAndLogEx(SUCCESS, "Xor div key : " _YELLOW_("%s") "\n", sprint_hex(xor_div_key, 8));
}
}
static int CmdHFiClassCalcNewKey(const char *Cmd) {
uint8_t OLDKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t NEWKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t xor_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
char tempStr[50] = {0};
bool givenCSN = false;
bool old_elite = false;
bool elite = false;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_calc_newkey();
case 'e':
dataLen = param_getstr(Cmd, cmdp, tempStr, sizeof(tempStr));
if (dataLen == 2)
old_elite = true;
elite = true;
cmdp++;
break;
case 'n':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, NEWKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(NEWKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: NewKey Nbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: NewKey is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'o':
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) {
errors = param_gethex(tempStr, 0, OLDKEY, dataLen);
} else if (dataLen == 1) {
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr < ICLASS_KEYS_MAX) {
memcpy(OLDKEY, iClass_Key_Table[keyNbr], 8);
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n");
errors = true;
}
} else {
PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 's':
givenCSN = true;
if (param_gethex(Cmd, cmdp + 1, CSN, 16))
return usage_hf_iclass_calc_newkey();
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors || cmdp < 4) return usage_hf_iclass_calc_newkey();
if (givenCSN == false) {
uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
if (select_only(CSN, CCNR, true) == false) {
DropField();
return PM3_ESOFT;
}
}
HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, old_elite, true);
return PM3_SUCCESS;
}
static int loadKeys(char *filename) {
uint8_t *dump = NULL;
size_t bytes_read = 0;
if (loadFile_safe(filename, "", (void **)&dump, &bytes_read) != PM3_SUCCESS) {
PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename);
return PM3_EFILE;
}
if (bytes_read > ICLASS_KEYS_MAX * 8) {
PrintAndLogEx(WARNING, "File is too long to load - bytes: %zu", bytes_read);
free(dump);
return PM3_EFILE;
}
uint8_t i = 0;
for (; i < bytes_read / 8; i++)
memcpy(iClass_Key_Table[i], dump + (i * 8), 8);
free(dump);
PrintAndLogEx(SUCCESS, "Loaded " _GREEN_("%2d") " keys from %s", i, filename);
return PM3_SUCCESS;
}
static int saveKeys(char *filename) {
FILE *f;
f = fopen(filename, "wb");
if (!f) {
PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename);
return PM3_EFILE;
}
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++) {
if (fwrite(iClass_Key_Table[i], 8, 1, f) != 1) {
PrintAndLogEx(WARNING, "save key failed to write to file:" _YELLOW_("%s"), filename);
break;
}
}
fclose(f);
return PM3_SUCCESS;
}
static int printKeys(void) {
PrintAndLogEx(NORMAL, "");
for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++) {
if (memcmp(iClass_Key_Table[i], "\x00\x00\x00\x00\x00\x00\x00\x00", 8) == 0)
PrintAndLogEx(INFO, "%u: %s", i, sprint_hex(iClass_Key_Table[i], 8));
else
PrintAndLogEx(INFO, "%u: "_YELLOW_("%s"), i, sprint_hex(iClass_Key_Table[i], 8));
}
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int CmdHFiClassManageKeys(const char *Cmd) {
uint8_t keyNbr = 0;
uint8_t dataLen = 0;
uint8_t KEY[8] = {0};
char filename[FILE_PATH_SIZE];
uint8_t fileNameLen = 0;
bool errors = false;
uint8_t operation = 0;
char tempStr[20];
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_managekeys();
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(ERR, "No filename found");
errors = true;
}
cmdp += 2;
break;
case 'n':
keyNbr = param_get8(Cmd, cmdp + 1);
if (keyNbr >= ICLASS_KEYS_MAX) {
PrintAndLogEx(ERR, "Invalid block number, MAX is " _YELLOW_("%d"), ICLASS_KEYS_MAX);
errors = true;
}
cmdp += 2;
break;
case 'k':
operation += 3; //set key
dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr));
if (dataLen == 16) { //ul-c or ev1/ntag key length
errors = param_gethex(tempStr, 0, KEY, dataLen);
} else {
PrintAndLogEx(WARNING, "\nERROR: Key is incorrect length\n");
errors = true;
}
cmdp += 2;
break;
case 'p':
operation += 4; //print keys in memory
cmdp++;
break;
case 'l':
operation += 5; //load keys from file
cmdp++;
break;
case 's':
operation += 6; //save keys to file
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_managekeys();
if (operation == 0) {
PrintAndLogEx(WARNING, "no operation specified (load, save, or print)\n");
return usage_hf_iclass_managekeys();
}
if (operation > 6) {
PrintAndLogEx(WARNING, "Too many operations specified\n");
return usage_hf_iclass_managekeys();
}
if (operation > 4 && fileNameLen == 0) {
PrintAndLogEx(WARNING, "You must enter a filename when loading or saving\n");
return usage_hf_iclass_managekeys();
}
switch (operation) {
case 3:
memcpy(iClass_Key_Table[keyNbr], KEY, 8);
return PM3_SUCCESS;
case 4:
return printKeys();
case 5:
return loadKeys(filename);
case 6:
return saveKeys(filename);
}
return PM3_SUCCESS;
}
static void add_key(uint8_t *key) {
uint8_t i;
for (i = 0; i < ICLASS_KEYS_MAX; i++) {
if (memcmp(iClass_Key_Table[i], key, 8) == 0) {
PrintAndLogEx(SUCCESS, "Key already at keyslot " _GREEN_("%d"), i);
break;
}
if (memcmp(iClass_Key_Table[i], "\x00\x00\x00\x00\x00\x00\x00\x00", 8) == 0) {
memcpy(iClass_Key_Table[i], key, 8);
PrintAndLogEx(SUCCESS, "Added key to keyslot " _GREEN_("%d"), i);
break;
}
}
if (i == ICLASS_KEYS_MAX) {
PrintAndLogEx(INFO, "Couldn't find an empty keyslot");
} else {
PrintAndLogEx(HINT, "Try " _YELLOW_("`hf iclass managekeys p`") " to view keys");
}
}
static int CmdHFiClassCheckKeys(const char *Cmd) {
// empty string
if (strlen(Cmd) == 0) return usage_hf_iclass_chk();
uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
// elite key, raw key, standard key
bool use_elite = false;
bool use_raw = false;
bool use_credit_key = false;
bool found_key = false;
//bool found_credit = false;
bool got_csn = false;
bool errors = false;
uint8_t cmdp = 0x00;
char filename[FILE_PATH_SIZE] = {0};
uint8_t fileNameLen = 0;
iclass_premac_t *pre = NULL;
// time
uint64_t t1 = msclock();
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_chk();
case 'f':
fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename));
if (fileNameLen < 1) {
PrintAndLogEx(WARNING, _RED_("no filename found after f"));
errors = true;
}
cmdp += 2;
break;
case 'e':
use_elite = true;
cmdp++;
break;
case 'c':
use_credit_key = true;
cmdp++;
break;
case 'r':
use_raw = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_chk();
uint8_t *keyBlock = NULL;
uint32_t keycount = 0;
// load keys
int res = loadFileDICTIONARY_safe(filename, (void **)&keyBlock, 8, &keycount);
if (res != PM3_SUCCESS || keycount == 0) {
free(keyBlock);
return res;
}
pre = calloc(keycount, sizeof(iclass_premac_t));
if (!pre) {
free(keyBlock);
return PM3_EMALLOC;
}
// Get CSN / UID and CCNR
PrintAndLogEx(SUCCESS, "Reading tag CSN / CCNR...");
for (uint8_t i = 0; i < ICLASS_AUTH_RETRY && !got_csn; i++) {
got_csn = select_only(CSN, CCNR, false);
if (got_csn == false)
PrintAndLogEx(WARNING, "one more try");
}
if (got_csn == false) {
PrintAndLogEx(WARNING, "Tried 10 times. Can't select card, aborting...");
free(keyBlock);
DropField();
return PM3_ESOFT;
}
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s"), sprint_hex(CSN, sizeof(CSN)));
PrintAndLogEx(SUCCESS, " CCNR: " _GREEN_("%s"), sprint_hex(CCNR, sizeof(CCNR)));
PrintAndLogEx(SUCCESS, "Generating diversified keys...");
if (use_elite)
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
if (use_raw)
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
GenerateMacFrom(CSN, CCNR, use_raw, use_elite, keyBlock, keycount, pre);
PrintAndLogEx(SUCCESS, "Searching for " _YELLOW_("%s") " key...", (use_credit_key) ? "CREDIT" : "DEBIT");
// max 42 keys inside USB_COMMAND. 512/4 = 103 mac
uint32_t chunksize = keycount > (PM3_CMD_DATA_SIZE / 4) ? (PM3_CMD_DATA_SIZE / 4) : keycount;
bool lastChunk = false;
// fast push mode
conn.block_after_ACK = true;
// keep track of position of found key
uint8_t found_offset = 0;
uint32_t key_offset = 0;
// main keychunk loop
for (key_offset = 0; key_offset < keycount; key_offset += chunksize) {
uint64_t t2 = msclock();
uint8_t timeout = 0;
if (kbd_enter_pressed()) {
PrintAndLogEx(WARNING, "Aborted via keyboard!\n");
goto out;
}
uint32_t keys = ((keycount - key_offset) > chunksize) ? chunksize : keycount - key_offset;
// last chunk?
if (keys == keycount - key_offset) {
lastChunk = true;
// Disable fast mode on last command
conn.block_after_ACK = false;
}
uint32_t flags = lastChunk << 8;
// bit 16
// - 1 indicates credit key
// - 0 indicates debit key (default)
flags |= (use_credit_key << 16);
clearCommandBuffer();
SendCommandOLD(CMD_HF_ICLASS_CHKKEYS, flags, keys, 0, pre + key_offset, 4 * keys);
PacketResponseNG resp;
bool looped = false;
while (!WaitForResponseTimeout(CMD_HF_ICLASS_CHKKEYS, &resp, 2000)) {
timeout++;
printf(".");
fflush(stdout);
if (timeout > 120) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(WARNING, "No response from Proxmark3. Aborting...");
goto out;
}
looped = true;
}
if (looped)
PrintAndLogEx(NORMAL, "");
found_offset = resp.oldarg[1] & 0xFF;
uint8_t isOK = resp.oldarg[0] & 0xFF;
t2 = msclock() - t2;
switch (isOK) {
case 1: {
found_key = true;
PrintAndLogEx(SUCCESS, "Found valid key " _GREEN_("%s")
, sprint_hex(keyBlock + (key_offset + found_offset) * 8, 8)
);
break;
}
case 0: {
PrintAndLogEx(INFO, "Chunk [%d/%d] : %.1fs - no luck"
, key_offset
, keycount
, (float)(t2 / 1000.0)
);
break;
}
case 99: {
}
default:
break;
}
// both keys found.
if (found_key) {
break;
}
} // end chunks of keys
out:
t1 = msclock() - t1;
PrintAndLogEx(SUCCESS, "Time in iclass chk: " _YELLOW_("%.0f") " seconds\n", (float)t1 / 1000.0);
DropField();
if (found_key) {
uint8_t *key = keyBlock + (key_offset + found_offset) * 8;
add_key(key);
}
free(pre);
free(keyBlock);
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int cmp_uint32(const void *a, const void *b) {
const iclass_prekey_t *x = (const iclass_prekey_t *)a;
const iclass_prekey_t *y = (const iclass_prekey_t *)b;
uint32_t mx = bytes_to_num((uint8_t *)x->mac, 4);
uint32_t my = bytes_to_num((uint8_t *)y->mac, 4);
if (mx < my)
return -1;
else
return mx > my;
}
// this method tries to identify in which configuration mode a iCLASS / iCLASS SE reader is in.
// Standard or Elite / HighSecurity mode. It uses a default key dictionary list in order to work.
static int CmdHFiClassLookUp(const char *Cmd) {
uint8_t CSN[8];
uint8_t EPURSE[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t MACS[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint8_t CCNR[12];
uint8_t MAC_TAG[4] = { 0, 0, 0, 0 };
// elite key, raw key, standard key
bool use_elite = false;
bool use_raw = false;
bool errors = false;
uint8_t cmdp = 0x00;
char filename[FILE_PATH_SIZE] = {0};
iclass_prekey_t *prekey = NULL;
int len = 0;
// if empty string
if (strlen(Cmd) == 0) errors = true;
// time
uint64_t t1 = msclock();
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_hf_iclass_lookup();
case 'f':
if (param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)) < 1) {
PrintAndLogEx(WARNING, "No filename found after f");
errors = true;
}
cmdp += 2;
break;
case 'u':
param_gethex_ex(Cmd, cmdp + 1, CSN, &len);
if (len >> 1 != sizeof(CSN)) {
PrintAndLogEx(WARNING, "Wrong CSN length, expected %zu got [%d]", sizeof(CSN), len >> 1);
errors = true;
}
cmdp += 2;
break;
case 'm':
param_gethex_ex(Cmd, cmdp + 1, MACS, &len);
if (len >> 1 != sizeof(MACS)) {
PrintAndLogEx(WARNING, "Wrong MACS length, expected %zu got [%d] ", sizeof(MACS), len >> 1);
errors = true;
} else {
memcpy(MAC_TAG, MACS + 4, 4);
}
cmdp += 2;
break;
case 'p':
param_gethex_ex(Cmd, cmdp + 1, EPURSE, &len);
if (len >> 1 != sizeof(EPURSE)) {
PrintAndLogEx(WARNING, "Wrong EPURSE length, expected %zu got [%d] ", sizeof(EPURSE), len >> 1);
errors = true;
}
cmdp += 2;
break;
case 'e':
use_elite = true;
cmdp++;
break;
case 'r':
use_raw = true;
cmdp++;
break;
default:
PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
if (errors) return usage_hf_iclass_lookup();
// stupid copy.. CCNR is a combo of epurse and reader nonce
memcpy(CCNR, EPURSE, 8);
memcpy(CCNR + 8, MACS, 4);
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s"), sprint_hex(CSN, sizeof(CSN)));
PrintAndLogEx(SUCCESS, " Epurse: %s", sprint_hex(EPURSE, sizeof(EPURSE)));
PrintAndLogEx(SUCCESS, " MACS: %s", sprint_hex(MACS, sizeof(MACS)));
PrintAndLogEx(SUCCESS, " CCNR: " _GREEN_("%s"), sprint_hex(CCNR, sizeof(CCNR)));
PrintAndLogEx(SUCCESS, "TAG MAC: %s", sprint_hex(MAC_TAG, sizeof(MAC_TAG)));
uint8_t *keyBlock = NULL;
uint32_t keycount = 0;
// load keys
int res = loadFileDICTIONARY_safe(filename, (void **)&keyBlock, 8, &keycount);
if (res != PM3_SUCCESS || keycount == 0) {
free(keyBlock);
return res;
}
//iclass_prekey_t
prekey = calloc(keycount, sizeof(iclass_prekey_t));
if (!prekey) {
free(keyBlock);
return PM3_EMALLOC;
}
PrintAndLogEx(SUCCESS, "Generating diversified keys...");
GenerateMacKeyFrom(CSN, CCNR, use_raw, use_elite, keyBlock, keycount, prekey);
if (use_elite)
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("elite algo"));
if (use_raw)
PrintAndLogEx(SUCCESS, "Using " _YELLOW_("raw mode"));
PrintAndLogEx(SUCCESS, "Sorting...");
// sort mac list.
qsort(prekey, keycount, sizeof(iclass_prekey_t), cmp_uint32);
PrintAndLogEx(SUCCESS, "Searching for " _YELLOW_("%s") " key...", "DEBIT");
iclass_prekey_t *item;
iclass_prekey_t lookup;
memcpy(lookup.mac, MAC_TAG, 4);
// binsearch
item = (iclass_prekey_t *) bsearch(&lookup, prekey, keycount, sizeof(iclass_prekey_t), cmp_uint32);
if (item != NULL) {
PrintAndLogEx(SUCCESS, "Found valid key " _GREEN_("%s"), sprint_hex(item->key, 8));
add_key(item->key);
}
t1 = msclock() - t1;
PrintAndLogEx(SUCCESS, "Time in iclass lookup: " _YELLOW_("%.0f") " seconds", (float)t1 / 1000.0);
free(prekey);
free(keyBlock);
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
// precalc diversified keys and their MAC
void GenerateMacFrom(uint8_t *CSN, uint8_t *CCNR, bool use_raw, bool use_elite, uint8_t *keys, uint32_t keycnt, iclass_premac_t *list) {
uint8_t key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
//iceman: threading
for (uint32_t i = 0; i < keycnt; i++) {
memcpy(key, keys + 8 * i, 8);
if (use_raw)
memcpy(div_key, key, 8);
else
HFiClassCalcDivKey(CSN, key, div_key, use_elite);
doMAC(CCNR, div_key, list[i].mac);
}
}
void GenerateMacKeyFrom(uint8_t *CSN, uint8_t *CCNR, bool use_raw, bool use_elite, uint8_t *keys, uint32_t keycnt, iclass_prekey_t *list) {
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
//iceman: threading
for (uint32_t i = 0; i < keycnt; i++) {
memcpy(list[i].key, keys + 8 * i, 8);
// generate diversifed key
if (use_raw)
memcpy(div_key, list[i].key, 8);
else
HFiClassCalcDivKey(CSN, list[i].key, div_key, use_elite);
// generate MAC
doMAC(CCNR, div_key, list[i].mac);
}
}
// print diversified keys
void PrintPreCalcMac(uint8_t *keys, uint32_t keycnt, iclass_premac_t *pre_list) {
iclass_prekey_t *b = calloc(keycnt, sizeof(iclass_prekey_t));
if (!b)
return;
for (uint32_t i = 0; i < keycnt; i++) {
memcpy(b[i].key, keys + 8 * i, 8);
memcpy(b[i].mac, pre_list[i].mac, 4);
}
PrintPreCalc(b, keycnt);
free(b);
}
void PrintPreCalc(iclass_prekey_t *list, uint32_t itemcnt) {
PrintAndLogEx(NORMAL, "-----+------------------+---------");
PrintAndLogEx(NORMAL, "#key | key | mac");
PrintAndLogEx(NORMAL, "-----+------------------+---------");
for (int i = 0; i < itemcnt; i++) {
if (i < 10) {
PrintAndLogEx(NORMAL, "[%2d] | %016" PRIx64 " | %08" PRIx64, i, bytes_to_num(list[i].key, 8), bytes_to_num(list[i].mac, 4));
} else if (i == 10) {
PrintAndLogEx(SUCCESS, "... skip printing the rest");
}
}
}
static void permute(uint8_t *data, uint8_t len, uint8_t *output) {
#define KEY_SIZE 8
if (len > KEY_SIZE) {
for (uint8_t m = 0; m < len; m += KEY_SIZE) {
permute(data + m, KEY_SIZE, output + m);
}
return;
}
if (len != KEY_SIZE) {
PrintAndLogEx(WARNING, "wrong key size\n");
return;
}
for (uint8_t i = 0; i < KEY_SIZE; ++i) {
uint8_t p = 0;
uint8_t mask = 0x80 >> i;
for (uint8_t j = 0; j < KEY_SIZE; ++j) {
p >>= 1;
if (data[j] & mask)
p |= 0x80;
}
output[i] = p;
}
}
static void permute_rev(uint8_t *data, uint8_t len, uint8_t *output) {
permute(data, len, output);
permute(output, len, data);
permute(data, len, output);
}
static void simple_crc(uint8_t *data, uint8_t len, uint8_t *output) {
uint8_t crc = 0;
for (uint8_t i = 0; i < len; ++i) {
// seventh byte contains the crc.
if ((i & 0x7) == 0x7) {
output[i] = crc ^ 0xFF;
crc = 0;
} else {
output[i] = data[i];
crc ^= data[i];
}
}
}
// DES doesn't use the MSB.
static void shave(uint8_t *data, uint8_t len) {
for (uint8_t i = 0; i < len; ++i)
data[i] &= 0xFE;
}
static void generate_rev(uint8_t *data, uint8_t len) {
uint8_t *key = calloc(len, sizeof(uint8_t));
PrintAndLogEx(SUCCESS, "input permuted key | %s \n", sprint_hex(data, len));
permute_rev(data, len, key);
PrintAndLogEx(SUCCESS, " unpermuted key | %s \n", sprint_hex(key, len));
shave(key, len);
PrintAndLogEx(SUCCESS, " key | %s \n", sprint_hex(key, len));
free(key);
}
static void generate(uint8_t *data, uint8_t len) {
uint8_t *key = calloc(len, sizeof(uint8_t));
uint8_t *pkey = calloc(len, sizeof(uint8_t));
PrintAndLogEx(SUCCESS, " input key | %s \n", sprint_hex(data, len));
permute(data, len, pkey);
PrintAndLogEx(SUCCESS, "permuted key | %s \n", sprint_hex(pkey, len));
simple_crc(pkey, len, key);
PrintAndLogEx(SUCCESS, " CRC'ed key | %s \n", sprint_hex(key, len));
free(key);
free(pkey);
}
static int CmdHFiClassPermuteKey(const char *Cmd) {
uint8_t key[8] = {0};
uint8_t data[16] = {0};
bool isReverse = false;
int len = 0;
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h')
return usage_hf_iclass_permutekey();
isReverse = (cmdp == 'r');
param_gethex_ex(Cmd, 1, data, &len);
if (len % 2)
return usage_hf_iclass_permutekey();
len >>= 1;
memcpy(key, data, 8);
if (isReverse) {
generate_rev(data, len);
uint8_t key_std_format[8] = {0};
permutekey_rev(key, key_std_format);
PrintAndLogEx(SUCCESS, "Standard NIST format key " _YELLOW_("%s") " \n", sprint_hex(key_std_format, 8));
} else {
generate(data, len);
uint8_t key_iclass_format[8] = {0};
permutekey(key, key_iclass_format);
PrintAndLogEx(SUCCESS, "HID permuted iCLASS format: %s \n", sprint_hex(key_iclass_format, 8));
}
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("operations") " ---------------------"},
{"help", CmdHelp, AlwaysAvailable, "This help"},
// {"clone", CmdHFiClassClone, IfPm3Iclass, "[options..] Create a HID credential to Picopass / iCLASS tag"},
{"dump", CmdHFiClassDump, IfPm3Iclass, "[options..] Dump Picopass / iCLASS tag to file"},
{"info", CmdHFiClassInfo, AlwaysAvailable, " Tag information"},
{"list", CmdHFiClassList, AlwaysAvailable, " List iclass history"},
{"rdbl", CmdHFiClass_ReadBlock, IfPm3Iclass, "[options..] Read Picopass / iCLASS block"},
{"reader", CmdHFiClassReader, IfPm3Iclass, " Act like an Picopass / iCLASS reader"},
{"restore", CmdHFiClassRestore, IfPm3Iclass, "[options..] Restore a dump file onto a Picopass / iCLASS tag"},
{"sniff", CmdHFiClassSniff, IfPm3Iclass, " Eavesdrop Picopass / iCLASS communication"},
{"wrbl", CmdHFiClass_WriteBlock, IfPm3Iclass, "[options..] Write Picopass / iCLASS block"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("recovery") " ---------------------"},
{"chk", CmdHFiClassCheckKeys, AlwaysAvailable, "[options..] Check keys"},
{"loclass", CmdHFiClass_loclass, AlwaysAvailable, "[options..] Use loclass to perform bruteforce reader attack"},
{"lookup", CmdHFiClassLookUp, AlwaysAvailable, "[options..] Uses authentication trace to check for key in dictionary file"},
{"replay", CmdHFiClassReader_Replay, IfPm3Iclass, "<mac> Read Picopass / iCLASS tag via replay attack"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("simulation") " ---------------------"},
{"sim", CmdHFiClassSim, IfPm3Iclass, "[options..] Simulate iCLASS tag"},
{"eload", CmdHFiClassELoad, IfPm3Iclass, "[f <fn> ] Load Picopass / iCLASS dump file into emulator memory"},
{"esave", CmdHFiClassESave, IfPm3Iclass, "[f <fn> ] Save emulator memory to file"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("utils") " ---------------------"},
{"calcnewkey", CmdHFiClassCalcNewKey, AlwaysAvailable, "[options..] Calc diversified keys (blocks 3 & 4) to write new keys"},
{"encrypt", CmdHFiClassEncryptBlk, AlwaysAvailable, "[options..] Encrypt given block data"},
{"decrypt", CmdHFiClassDecrypt, AlwaysAvailable, "[options..] Decrypt given block data or tag dump file" },
{"managekeys", CmdHFiClassManageKeys, AlwaysAvailable, "[options..] Manage keys to use with iclass commands"},
{"permutekey", CmdHFiClassPermuteKey, IfPm3Iclass, " Permute function from 'heart of darkness' paper"},
{"view", CmdHFiClassView, AlwaysAvailable, "[options..] Display content from tag dump file"},
{NULL, NULL, NULL, NULL}
};
static int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}
int CmdHFiClass(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
//static void test_credential_type(void) {
// need AA1 key
// Block 5 -> tells if its a legacy or SIO, also tells which key to use.
// tech | blocks used | desc | num of payloads
// -------+-----------------------+-----------------------------------+------
// legacy | 6,7,8,9 | AA!, Access control payload | 1
// SE | 6,7,8,9,10,11,12 | AA1, Secure identity object (SIO) | 1
// SR | 6,7,8,9, | AA1, Access control payload | 2
// | 10,11,12,13,14,15,16 | AA1, Secure identity object (SIO) |
// SEOS | | |
//}
int info_iclass(void) {
uint32_t flags = (FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE);
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_READER, flags, 0, 0, NULL, 0);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
uint8_t readStatus = resp.oldarg[0] & 0xff;
// no tag found or button pressed
if (readStatus == 0 || readStatus == 0xFF) {
DropField();
return PM3_EOPABORTED;
}
picopass_hdr *hdr = (picopass_hdr *)resp.data.asBytes;
picopass_ns_hdr *ns_hdr = (picopass_ns_hdr *)resp.data.asBytes;
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "--- " _CYAN_("Tag Information") " --------------------------");
PrintAndLogEx(INFO, "-------------------------------------------------------------");
if (readStatus & FLAG_ICLASS_CSN) {
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s") " (uid)", sprint_hex(hdr->csn, sizeof(hdr->csn)));
}
if (readStatus & FLAG_ICLASS_CONF) {
PrintAndLogEx(SUCCESS, " Config: %s (Card configuration)", sprint_hex((uint8_t *)&hdr->conf, sizeof(hdr->conf)));
}
// page mapping. If fuse0|1 == 0x01, card is in non-secure mode, with CSN, CONF, AIA as top 3 blocks.
// page9 in http://www.proxmark.org/files/Documents/13.56%20MHz%20-%20iClass/DS%20Picopass%202KS%20V1-0.pdf
uint8_t pagemap = get_pagemap(hdr);
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(SUCCESS, " AIA: %s (Application Issuer area)", sprint_hex(ns_hdr->app_issuer_area, sizeof(ns_hdr->app_issuer_area)));
} else {
if (readStatus & FLAG_ICLASS_CC) {
PrintAndLogEx(SUCCESS, "E-purse: %s (Card challenge, CC)", sprint_hex(hdr->epurse, sizeof(hdr->epurse)));
}
PrintAndLogEx(SUCCESS, " Kd: %s (Debit key, hidden)", sprint_hex(hdr->key_d, sizeof(hdr->key_d)));
PrintAndLogEx(SUCCESS, " Kc: %s (Credit key, hidden)", sprint_hex(hdr->key_c, sizeof(hdr->key_c)));
if (readStatus & FLAG_ICLASS_AIA) {
PrintAndLogEx(SUCCESS, " AIA: %s (Application Issuer area)", sprint_hex(hdr->app_issuer_area, sizeof(hdr->app_issuer_area)));
}
}
if (readStatus & FLAG_ICLASS_CONF) {
print_picopass_info(hdr);
}
PrintAndLogEx(INFO, "------ " _CYAN_("Fingerprint") " ------");
uint8_t aia[8];
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE)
memcpy(aia, ns_hdr->app_issuer_area, sizeof(aia));
else
memcpy(aia, hdr->app_issuer_area, sizeof(aia));
// if CSN ends with FF12E0, it's inside HID CSN range.
bool isHidRange = (memcmp(hdr->csn + 5, "\xFF\x12\xE0", 3) == 0);
bool legacy = (memcmp(aia, "\xff\xff\xff\xff\xff\xff\xff\xff", 8) == 0);
bool se_enabled = (memcmp(aia, "\xff\xff\xff\x00\x06\xff\xff\xff", 8) == 0);
if (isHidRange) {
PrintAndLogEx(SUCCESS, "CSN is in HID range");
if (legacy)
PrintAndLogEx(SUCCESS, "Credential : " _GREEN_("iCLASS legacy"));
if (se_enabled)
PrintAndLogEx(SUCCESS, "Credential : " _GREEN_("iCLASS SE"));
} else {
PrintAndLogEx(SUCCESS, _YELLOW_("PicoPass")" (CSN is not in HID range)");
}
uint8_t cardtype = get_mem_config(hdr);
PrintAndLogEx(SUCCESS, " Card type : " _GREEN_("%s"), card_types[cardtype]);
}
DropField();
return PM3_SUCCESS;
}