proxmark3/armsrc/emvcmd.c
2017-10-01 22:06:06 +02:00

1114 lines
42 KiB
C

//Peter Fillmore - 2014
//
//--------------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//--------------------------------------------------------------------------------
//--------------------------------------------------------------------------------
//Routines to support EMV transactions
//--------------------------------------------------------------------------------
#include "emvcmd.h"
static emvcard currentcard; //use to hold emv tags for the reader/card during communications
void EMVTest(void)
{
uint8_t rats[0x0b] = {0x0b,0x78,0x80,0x81,0x02,0x4b,0x4f,0x4e,0x41, 0x14, 0x11};
EMVFuzz_RATS(0xb, rats);
//grab card
//EMVClone(1,1);
/*
uint8_t tagvalbuffer[256];
uint8_t tagvallen;
uint8_t template6F[] = {0x6F,0x00};
uint8_t templateA5[] = {0xA5,0x00};
uint8_t tag1[] = {0x50,0x00,0x00};
uint8_t tag2[] = {0x87,0x00,0x00};
uint8_t tag3[] = {0x9f,0x38,0x00};
uint8_t tag4[] = {0x5F,0x2D,0x00};
uint8_t tag5[] = {0x9F,0x11,0x00};
uint8_t tag6[] = {0x9F,0x12,0x00};
uint8_t tag7[] = {0x84, 0x00};
uint8_t tag8[] = {0xA5, 0x00};
emv_generatetemplate(templateA5,&currentcard,tagvalbuffer,&tagvallen, 6, tag1, tag2, tag3, tag4, tag5, tag6);
memcpy(currentcard.tag_A5, tagvalbuffer+2, tagvallen-2);
currentcard.tag_A5_len = tagvallen-2;
emv_generatetemplate(template6F,&currentcard,currentcard.tag_6F ,&currentcard.tag_6F_len, 2, tag7, tag8);
Dbprintf("TAG A5=");
Dbhexdump(currentcard.tag_A5_len,currentcard.tag_A5 , false);
*/
//EMVSim();
}
//load individual tag into current card
void EMVloadvalue(uint32_t tag, uint8_t *datain){
//Dbprintf("TAG=%i\n", tag);
//Dbprintf("DATA=%s\n", datain);
emv_settag(tag, datain, &currentcard);
}
void EMVReadRecord(uint8_t arg0, uint8_t arg1,emvcard *currentcard)
{
uint8_t record = arg0;
uint8_t sfi = arg1 & 0x0F; // convert arg1 to number
uint8_t *resp = BigBuf_malloc(256);
// variables
tlvtag inputtag; // create the tag structure
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
// perform read
// write the result to the provided card
while(true) {
if(!emv_readrecord(record, sfi, resp)) {
if(MF_DBGLEVEL >= 1) Dbprintf("readrecord failed");
}
if(*(resp+1) == 0x70){
decode_ber_tlv_item(resp+1, &inputtag);
emv_decode_field(inputtag.value, inputtag.valuelength, currentcard);
}
else
{
if(MF_DBGLEVEL >= 1)
Dbprintf("Record not found SFI=%i RECORD=%i", sfi, record);
}
LED_B_ON();
LED_B_OFF();
break;
}
LEDsoff();
}
void EMVSelectAID(uint8_t *AID, uint8_t AIDlen, emvcard* inputcard)
{
uint8_t* resp = BigBuf_malloc(256);
// variables
tlvtag inputtag; // create the tag structure
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while(true) {
if(!emv_select(AID, AIDlen, resp)){
if(MF_DBGLEVEL == 1) DbpString("AID Select failed");
break;
}
// write the result to the provided card
if(*(resp+1) == 0x6F){
// decode the 6F template
decode_ber_tlv_item(resp+1, &inputtag);
// store 84 and A5 tags
emv_decode_field(inputtag.value, inputtag.valuelength, &currentcard);
// decode the A5 tag
if(currentcard.tag_A5_len > 0)
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
// copy this result to the DFName
if(currentcard.tag_84_len == 0)
memcpy(currentcard.tag_DFName, currentcard.tag_84, currentcard.tag_84_len);
// decode the BF0C result, assuming 1 directory entry for now
if(currentcard.tag_BF0C_len !=0){
emv_decode_field(currentcard.tag_BF0C, currentcard.tag_BF0C_len, &currentcard);}
// retrieve the AID, use the AID to decide what transaction flow to use
if(currentcard.tag_61_len !=0)
emv_decode_field(currentcard.tag_61, currentcard.tag_61_len, &currentcard);
}
LED_B_ON();
LED_B_OFF();
break;
}
if(MF_DBGLEVEL >= 2) DbpString("SELECT AID COMPLETED");
LEDsoff();
}
void EMVSelectPPSE(void)
{
while(true) {
if(!emv_selectPPSE()) {
if(MF_DBGLEVEL >= 1) DbpString("PPSE failed");
break;
}
LED_B_ON();
LED_B_OFF();
break;
}
if(MF_DBGLEVEL >= 2) DbpString("SELECT PPSE COMPLETED");
LEDsoff();
}
int EMVGetProcessingOptions(uint8_t *PDOL, uint8_t PDOLlen, emvcard* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
// variables
tlvtag inputtag; //create the tag structure
// perform pdol
if(!emv_getprocessingoptions(PDOL, PDOLlen, receivedAnswer)){
if(MF_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 0;
}
// write the result to the provided card
// FORMAT 1 received
if(receivedAnswer[1] == 0x80){
// store AIP
// decode tag 80
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
memcpy(currentcard.tag_82, &inputtag.value, sizeof(currentcard.tag_82));
memcpy(currentcard.tag_94, &inputtag.value[2], inputtag.valuelength - sizeof(currentcard.tag_82));
currentcard.tag_94_len = inputtag.valuelength - sizeof(currentcard.tag_82);
}
else if(receivedAnswer[1] == 0x77){
// decode the 77 template
decode_ber_tlv_item(receivedAnswer+1, &inputtag);
// store 82 and 94 tags (AIP, AFL)
emv_decode_field(inputtag.value, inputtag.valuelength, &currentcard);
}
if(MF_DBGLEVEL >= 2)
DbpString("GET PROCESSING OPTIONS COMPLETE");
return 1;
}
int EMVGetChallenge(emvcard* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
// variables
// tlvtag inputtag; //create the tag structure
// perform select
if(!emv_getchallenge(receivedAnswer)){
if(MF_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 1;
}
return 0;
}
int EMVGenerateAC(uint8_t refcontrol, emvcard* inputcard)
{
uint8_t receivedAnswer[MAX_FRAME_SIZE];
uint8_t cdolcommand[MAX_FRAME_SIZE];
uint8_t cdolcommandlen = 0;
tlvtag temptag;
if(currentcard.tag_8C_len > 0) {
emv_generateDOL(currentcard.tag_8C, currentcard.tag_8C_len, &currentcard, cdolcommand, &cdolcommandlen); }
else{
// cdolcommand = NULL; //cdol val is null
cdolcommandlen = 0;
}
// variables
// tlvtag inputtag; //create the tag structure
// perform select
if(!emv_generateAC(refcontrol, cdolcommand, cdolcommandlen,receivedAnswer)){
if(MF_DBGLEVEL >= 1) Dbprintf("get processing options failed");
return 1;
}
if(receivedAnswer[2] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&receivedAnswer[2], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
return 0;
}
//function to perform paywave transaction
//takes in TTQ, amount authorised, unpredicable number and transaction currency code
int EMV_PaywaveTransaction(void)
{
uint8_t *resp = BigBuf_malloc(256);
tlvtag temptag;
//get the current block counter
//select the AID (Mastercard
EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, &currentcard);
if(resp[1] == 0x6F){ //decode template
decode_ber_tlv_item(&resp[1], &temptag);
//decode 84 and A5 tags
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//decode the A5 tag
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//decode the BF0C result, assuming 1 directory entry for now
//retrieve the AID
}
// get PDOL
uint8_t pdolcommand[20]; //20 byte buffer for pdol data
uint8_t pdolcommandlen = 0;
if(currentcard.tag_9F38_len > 0) {
emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, &currentcard, pdolcommand, &pdolcommandlen);
} else {
pdolcommandlen = 0;
}
if(!EMVGetProcessingOptions(pdolcommand, pdolcommandlen, &currentcard)) {
if(MF_DBGLEVEL >= 1) Dbprintf("PDOL failed");
return 1;
}
if(resp[1] == 0x80) //format 1 data field returned
{
memcpy(currentcard.tag_82, &resp[3],2); //copy AIP
currentcard.tag_94_len = resp[2]-2; //AFL len
memcpy(currentcard.tag_94, &resp[5], currentcard.tag_94_len); //copy AFL
}
else if(resp[1] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&resp[1], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
else
{
//throw an error
}
Dbprintf("AFL=");
Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false);
Dbprintf("AIP=");
Dbhexdump(2, currentcard.tag_82, false);
emv_decodeAIP(currentcard.tag_82);
//
// decode the AFL list and read records
//record, sfi
EMVReadRecord(1,1,&currentcard);
Dbhexdump(200, resp, false);
EMVReadRecord(2,1,&currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord( 1,2, &currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord(2,2,&currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord( 3,2, &currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord( 4,2, &currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord( 1,3, &currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord(2,3,&currentcard);
Dbhexdump(200, resp,false);
EMVReadRecord(4,2,&currentcard);
EMVReadRecord( 1,3, &currentcard);
Dbhexdump(200, resp,false);
//DDA supported, so read more records
if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED){
EMVReadRecord( 1,4, &currentcard);
EMVReadRecord( 2,4, &currentcard);
}
emv_decodeCVM(currentcard.tag_8E, currentcard.tag_8E_len);
/* get ICC dynamic data */
//if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED)
{
//DDA supported, so perform GENERATE AC
uint8_t cdolcommand[40]; //20 byte buffer for pdol data
uint8_t cdolcommandlen;
//generate the iCC UN
EMVGetChallenge(&currentcard);
memcpy(currentcard.tag_9F37,&resp[1],8); // ICC UN
memcpy(currentcard.tag_9F4C,&resp[1],8); // ICC UN
if(currentcard.tag_8C_len > 0) {
emv_generateDOL(currentcard.tag_8C, currentcard.tag_8C_len, &currentcard, cdolcommand, &cdolcommandlen);
} else {
cdolcommandlen = 0;
}
Dbhexdump(currentcard.tag_8C_len, currentcard.tag_8C,false);
Dbhexdump(cdolcommandlen, cdolcommand,false);
EMVGenerateAC(0x41, &currentcard);
Dbhexdump(100, resp,false);
}
return 0;
}
int EMV_PaypassTransaction(void)
{
uint8_t *resp = BigBuf_malloc(256);
tlvtag temptag; //buffer for decoded tags
// get the current block counter
// select the AID (Mastercard
EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, &currentcard);
if(resp[1] == 0x6F){ //decode template
decode_ber_tlv_item(&resp[1], &temptag);
//decode 84 and A5 tags
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//decode the A5 tag
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//decode the BF0C result, assuming 1 directory entry for now
//retrieve the AID
}
// get PDOL
uint8_t pdolcommand[20]; // 20 byte buffer for pdol data
uint8_t pdolcommandlen = 0;
if(currentcard.tag_9F38_len > 0) {
emv_generateDOL(currentcard.tag_9F38, currentcard.tag_9F38_len, &currentcard, pdolcommand, &pdolcommandlen);
} else {
pdolcommandlen = 0;
}
if(EMVGetProcessingOptions(pdolcommand,pdolcommandlen, &currentcard)) {
if(MF_DBGLEVEL >= 1) Dbprintf("PDOL failed");
return 1;
}
if(resp[1] == 0x80) //format 1 data field returned
{
memcpy(currentcard.tag_82, &resp[3],2); //copy AIP
currentcard.tag_94_len = resp[2]-2; //AFL len
memcpy(currentcard.tag_94, &resp[5],currentcard.tag_94_len); //copy AFL
}
else if(resp[1] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&resp[1], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
else
{
//throw an error
}
Dbprintf("AFL=");
Dbhexdump(currentcard.tag_94_len, currentcard.tag_94,false);
Dbprintf("AIP=");
Dbhexdump(2, currentcard.tag_82, false);
emv_decodeAIP(currentcard.tag_82);
// decode the AFL list and read records
//record, sfi
EMVReadRecord( 1,1, &currentcard);
EMVReadRecord( 1,2, &currentcard);
EMVReadRecord( 1,3, &currentcard);
EMVReadRecord( 2,3, &currentcard);
//DDA supported, so read more records
if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED){
EMVReadRecord( 1,4, &currentcard);
EMVReadRecord( 2,4, &currentcard);
}
/* get ICC dynamic data */
if((currentcard.tag_82[0] & AIP_CDA_SUPPORTED) == AIP_CDA_SUPPORTED)
{
// DDA supported, so perform GENERATE AC
uint8_t cdolcommand[40]; //20 byte buffer for pdol data
uint8_t cdolcommandlen;
// generate the iCC UN
EMVGetChallenge(&currentcard);
memcpy(currentcard.tag_9F4C, &resp[1],8); // ICC UN
if(currentcard.tag_8C_len > 0) {
emv_generateDOL(currentcard.tag_8C, currentcard.tag_8C_len, &currentcard, cdolcommand, &cdolcommandlen);
} else {
cdolcommandlen = 0;
}
EMVGenerateAC(0x80, &currentcard);
if(resp[1] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&resp[1], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
// generate AC2
if(currentcard.tag_8D_len > 0) {
emv_generateDOL(currentcard.tag_8D, currentcard.tag_8D_len, &currentcard, cdolcommand, &cdolcommandlen); }
else{
//cdolcommand = NULL; //cdol val is null
cdolcommandlen = 0;
}
EMVGenerateAC(0x80, &currentcard);
if(resp[1] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&resp[1], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
}
// generate cryptographic checksum
uint8_t udol[4] = {0x00,0x00,0x00,0x00};
emv_computecryptogram(udol, sizeof(udol), resp);
if(resp[1] == 0x77) //format 2 data field returned
{
decode_ber_tlv_item(&resp[1], &temptag);
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
}
return 0;
}
void EMVTransaction(void)
{
//params
uint8_t uid[10] = {0x00};
uint32_t cuid = 0;
//setup stuff
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
uint8_t *resp = BigBuf_malloc(256);
//variables
tlvtag temptag; //used to buffer decoded tag valuesd
//initialize the emv card structure
//extern emvcard currentcard;
memset(&currentcard, 0x00, sizeof(currentcard)); //set all to zeros
memcpy(currentcard.tag_9F66,"\xD7\x20\xC0\x00",4);
memcpy(currentcard.tag_9F02,"\x00\x00\x00\x00\x00\x20",6); //20 dollars
memcpy(currentcard.tag_9F37, "\x01\x02\x03\x04", 4); //UN
memcpy(currentcard.tag_5F2A, "\x00\x36",2); //currency code
//CDOL stuff
memcpy(currentcard.tag_9F03,"\x00\x00\x00\x00\x00\x00",6);
memcpy(currentcard.tag_9F1A,"\x00\x36",2); //country code
memcpy(currentcard.tag_95,"\x00\x00\x00\x00\x00",5); //TVR
memcpy(currentcard.tag_9A,"\x14\x04\x01",3); //date
memcpy(currentcard.tag_9C,"\x00",1); //processingcode;
memcpy(currentcard.tag_9F45, "\x00\x00", 2); //Data Authentication Code
memset(currentcard.tag_9F4C,0x00,8); // ICC UN
memcpy(currentcard.tag_9F35,"\x12",1);
memcpy(currentcard.tag_9F34,"\x3F\x00\x00", 3); //CVM
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
while(true) {
if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, false)) {
if(MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
}
EMVSelectPPSE();
//get response
if (resp[1] == 0x6F){ //decode template
decode_ber_tlv_item(&resp[1], &temptag);
//decode 84 and A5 tags
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//decode the A5 tag
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//decode the BF0C result, assuming 1 directory entry for now
if(currentcard.tag_BF0C_len !=0){
emv_decode_field(currentcard.tag_BF0C, currentcard.tag_BF0C_len, &currentcard);}
//retrieve the AID, use the AID to decide what transaction flow to use
if(currentcard.tag_61_len !=0){
emv_decode_field(currentcard.tag_61, currentcard.tag_61_len, &currentcard);}
}
if (!memcmp(currentcard.tag_4F, AID_MASTERCARD, sizeof(AID_MASTERCARD))){
Dbprintf("Mastercard Paypass Card Detected");
EMV_PaypassTransaction();
}
else if (!memcmp(currentcard.tag_4F, AID_VISA, sizeof(AID_VISA))){
Dbprintf("VISA Paywave Card Detected");
EMV_PaywaveTransaction();
}
//TODO: add other card schemes like AMEX, JCB, China Unionpay etc
LED_B_ON();
//output the sensitive data
cmd_send(CMD_ACK, 0, 0,0,resp,100);
LED_B_OFF();
break;
}
if (MF_DBGLEVEL >= 2) DbpString("EMV TRANSACTION FINISHED");
//finish up
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
void EMVdumpcard(void){
dumpCard(&currentcard);
}
//EMV clone a card - read up to the max SFI and max records for that SFI
void EMVClone(uint8_t maxsfi, uint8_t maxrecord)
{
//params
uint8_t uid[10];
uint32_t cuid;
uint8_t *resp = BigBuf_malloc(256);
iso14a_card_select_t hi14a_card; //card select values
//variables
tlvtag temptag; //used to buffer decoded tag valuesd
memset(&currentcard, 0x00, sizeof(currentcard)); //set all to zeros
//memcpy(currentcard.tag_9F66,"\x20\x00\x00\x00",4);
memcpy(currentcard.tag_9F66,"\xD7\x20\xC0\x00",4);
//memcpy(currentcard.tag_9F66,"\xC0\x00\x00\x00",2);
memcpy(currentcard.tag_9F02,"\x00\x00\x00\x00\x00\x20",6); //20 dollars
memcpy(currentcard.tag_9F37, "\x01\x02\x03\x04", 4); //UN
memcpy(currentcard.tag_5F2A, "\x00\x36",2); //currency code
//CDOL stuff
//memcpy(currentcard.tag_9F02,"\x00\x00\x00\x00\x00\x20",6);
memcpy(currentcard.tag_9F03,"\x00\x00\x00\x00\x00\x00",6);
memcpy(currentcard.tag_9F1A,"\x00\x36",2); //country code
memcpy(currentcard.tag_95,"\x00\x00\x00\x00\x00",5); //TVR
//memcpy(currentcard.tag_5F2A,"\x00\x36",2);
memcpy(currentcard.tag_9A,"\x14\x04x01",3); //date
memcpy(currentcard.tag_9C,"\x00",1); //processingcode;
memcpy(currentcard.tag_9F45, "\x00\x00", 2); //Data Authentication Code
memset(currentcard.tag_9F4C,0x00,8); // ICC UN
memcpy(currentcard.tag_9F35,"\x12",1);
memcpy(currentcard.tag_9F34,"\x3F\x00\x00", 3); //CVM
iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
while(true) {
if(!iso14443a_select_card(uid, &hi14a_card, &cuid, true, 0, false)) {
if(MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
}
//copy UID and ATQA SAK and ATS values
memcpy(currentcard.UID, hi14a_card.uid, hi14a_card.uidlen);
currentcard.UID_len = hi14a_card.uidlen;
memcpy(currentcard.ATQA, hi14a_card.atqa, 2);
currentcard.SAK = (uint8_t)hi14a_card.sak;
memcpy(currentcard.ATS, hi14a_card.ats, hi14a_card.ats_len);
currentcard.ATS_len = hi14a_card.ats_len;
if(MF_DBGLEVEL >= 1){
Dbprintf("UID=");
Dbhexdump(currentcard.UID_len, currentcard.UID, false);
Dbprintf("ATQA=");
Dbhexdump(2, currentcard.ATQA,false);
Dbprintf("SAK=");
Dbhexdump(1, &currentcard.SAK,false);
Dbprintf("ATS=");
Dbhexdump(currentcard.ATS_len, currentcard.ATS,false);
}
EMVSelectPPSE();
//get response
if(resp[1] == 0x6F){ //decode template
decode_ber_tlv_item(&resp[1], &temptag);
//decode 84 and A5 tags
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//decode the A5 tag
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//decode the BF0C result, assuming 1 directory entry for now
if(currentcard.tag_BF0C_len !=0){
emv_decode_field(currentcard.tag_BF0C, currentcard.tag_BF0C_len, &currentcard);}
//retrieve the AID, use the AID to decide what transaction flow to use
if(currentcard.tag_61_len !=0){
emv_decode_field(currentcard.tag_61, currentcard.tag_61_len, &currentcard);}
}
//perform AID selection
EMVSelectAID(currentcard.tag_4F,currentcard.tag_4F_len, &currentcard);
if(resp[1] == 0x6F){ //decode template
decode_ber_tlv_item(&resp[1], &temptag);
//decode 84 and A5 tags
emv_decode_field(temptag.value, temptag.valuelength, &currentcard);
//decode the A5 tag
emv_decode_field(currentcard.tag_A5, currentcard.tag_A5_len, &currentcard);
//decode the BF0C result, assuming 1 directory entry for now
}
//decode the AFL list and read records
//scan all card records
Dbprintf("Reading %u SFIs and %u records...", maxsfi, maxrecord);
for(uint8_t sfi = 1; sfi < maxsfi; sfi++){ //all possible SFI values
for(uint8_t record = 1; record < maxrecord; record++){
EMVReadRecord(record,sfi, &currentcard);
if(resp[1] == 0x70){
Dbprintf("Record Found! SFI=%u RECORD=%u", sfi, record);
}
}
}
Dbprintf("Reading finished");
LED_B_ON();
//output the sensitive data
cmd_send(CMD_ACK, 0, 0,0,resp,100);
LED_B_OFF();
break;
}
if(MF_DBGLEVEL >= 2) DbpString("EMV TRANSACTION FINISHED");
//finish up
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
//SIMULATOR CODE
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void EMVSim(void)
{
/*
//uint8_t sak; //select ACKnowledge
uint16_t readerPacketLen = 64; //reader packet length - provided by RATS, default to 64 bytes if RATS not supported
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
//uint8_t atqapacket[2];
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t uid0packet[5] = {0x00};
memcpy(uid0packet, currentcard.UID, sizeof(uid0packet));
// Check if the uid uses the (optional) part
uint8_t uid1packet[5] = {0x00};
memcpy(uid1packet, currentcard.UID, sizeof(uid1packet));
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
uid0packet[4] = uid0packet[0] ^ uid0packet[1] ^ uid0packet[2] ^ uid0packet[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
uint8_t sak0packet[3] = {0x00};
memcpy(sak0packet,&currentcard.SAK1,1);
ComputeCrc14443(CRC_14443_A, sak0packet, 1, &sak0packet[1], &sak0packet[2]);
uint8_t sak1packet[3] = {0x00};
memcpy(sak1packet,&currentcard.SAK2,1);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
ComputeCrc14443(CRC_14443_A, sak1packet, 1, &sak1packet[1], &sak1packet[2]);
uint8_t authanspacket[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
//setup response to ATS
uint8_t ratspacket[currentcard.ATS_len];
memcpy(ratspacket,currentcard.ATS, currentcard.ATS_len);
AppendCrc14443a(ratspacket,sizeof(ratspacket)-2);
// Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present,
// TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1
// TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us)
// TC(1) = 0x02: CID supported, NAD not supported
//ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
//Receive Acknowledge responses differ by PCB byte
uint8_t rack0packet[] = {0xa2,0x00,0x00};
AppendCrc14443a(rack0packet,1);
uint8_t rack1packet[] = {0xa3,0x00,0x00};
AppendCrc14443a(rack1packet,1);
//Negative Acknowledge
uint8_t rnak0packet[] = {0xb2,0x00,0x00};
uint8_t rnak1packet[] = {0xb3,0x00,0x00};
AppendCrc14443a(rnak0packet,1);
AppendCrc14443a(rnak1packet,1);
//Protocol and parameter selection response, just say yes
uint8_t ppspacket[] = {0xd0,0x00,0x00};
AppendCrc14443a(ppspacket,1);
//hardcoded WTX packet - set to max time (49)
uint8_t wtxpacket[] ={0xf2,0x31,0x00,0x00};
AppendCrc14443a(wtxpacket,2);
//added additional responses for different readers, namely protocol parameter select and Receive acknowledments. - peter fillmore.
//added defininitions for predone responses to aid readability
#define ATR 0
#define UID1 1
#define UID2 2
#define SELACK1 3
#define SELACK2 4
#define AUTH_ANS 5
#define ATS 6
#define RACK0 7
#define RACK1 8
#define RNAK0 9
#define RNAK1 10
#define PPSresponse 11
#define WTX 12
#define TAG_RESPONSE_COUNT 13
tag_response_info_t responses[TAG_RESPONSE_COUNT] = {
{ .response = currentcard.ATQA, .response_n = sizeof(currentcard.ATQA) }, // Answer to request - respond with card type
{ .response = uid0packet, .response_n = sizeof(uid0packet) }, // Anticollision cascade1 - respond with uid
{ .response = uid1packet, .response_n = sizeof(uid1packet) }, // Anticollision cascade2 - respond with 2nd half of uid if asked
{ .response = sak0packet, .response_n = sizeof(sak0packet) }, // Acknowledge select - cascade 1
{ .response = sak1packet, .response_n = sizeof(sak1packet) }, // Acknowledge select - cascade 2
{ .response = authanspacket, .response_n = sizeof(authanspacket) }, // Authentication answer (random nonce)
{ .response = ratspacket, .response_n = sizeof(ratspacket) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = rack0packet, .response_n = sizeof(rack0packet) }, //R(ACK)0
{ .response = rack1packet, .response_n = sizeof(rack1packet) }, //R(ACK)0
{ .response = rnak0packet, .response_n = sizeof(rnak0packet) }, //R(NAK)0
{ .response = rnak1packet, .response_n = sizeof(rnak1packet) }, //R(NAK)1
{ .response = ppspacket, .response_n = sizeof(ppspacket)}, //PPS packet
{ .response = wtxpacket, .response_n = sizeof(wtxpacket)}, //WTX packet
};
//calculated length of predone responses
uint16_t allocatedtaglen = 0;
for(int i=0;i<TAG_RESPONSE_COUNT;i++){
allocatedtaglen += responses[i].response_n;
}
//uint8_t selectOrder = 0;
BigBuf_free_keep_EM();
// Allocate 512 bytes for the dynamic modulation, created when the reader queries for it
// Such a response is less time critical, so we can prepare them on the fly
#define DYNAMIC_RESPONSE_BUFFER_SIZE 64
#define DYNAMIC_MODULATION_BUFFER_SIZE 512
//uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE];
//uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE];
uint8_t *dynamic_response_buffer = BigBuf_malloc(DYNAMIC_RESPONSE_BUFFER_SIZE);
uint8_t *dynamic_modulation_buffer = BigBuf_malloc(DYNAMIC_MODULATION_BUFFER_SIZE);
tag_response_info_t dynamic_response_info = {
.response = dynamic_response_buffer,
.response_n = 0,
.modulation = dynamic_modulation_buffer,
.modulation_n = 0
};
// allocate buffers from BigBuf (so we're not in the stack)
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
//uint8_t* free_buffer_pointer;
//free_buffer_pointer = BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3));
BigBuf_malloc((allocatedtaglen*8) +(allocatedtaglen) + (TAG_RESPONSE_COUNT * 3));
// clear trace
clear_trace();
set_tracing(true);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<TAG_RESPONSE_COUNT; i++)
prepare_allocated_tag_modulation(&responses[i]);
int len = 0;
// To control where we are in the protocol
int order = 0;
int lastorder;
int currentblock = 1; //init to 1
int previousblock = 0; //used to store previous block counter
// Just to allow some checks
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
cmdsRecvd = 0;
tag_response_info_t* p_response;
LED_A_ON();
for(;;) {
// Clean receive command buffer
if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) {
DbpString("Button press");
break;
}
p_response = NULL;
// Okay, look at the command now.
previousblock = currentblock; //get previous block
lastorder = order;
currentblock = receivedCmd[0] & 0x01;
if(receivedCmd[0] == 0x26) { // Received a REQUEST
p_response = &responses[ATR]; order = ISO14443A_CMD_REQA;
} else if(receivedCmd[0] == 0x52) { // Received a WAKEUP
p_response = &responses[ATR]; order = ISO14443A_CMD_WUPA;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[UID1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT;
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2)
p_response = &responses[UID2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[SELACK1]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT;
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2)
p_response = &responses[SELACK2]; order = ISO14443A_CMD_ANTICOLL_OR_SELECT_2;
} else if((receivedCmd[0] & 0xA2) == 0xA2){ //R-Block received
if(previousblock == currentblock){ //rule 11, retransmit last block
p_response = &dynamic_response_info;
} else {
if((receivedCmd[0] & 0xB2) == 0xB2){ //RNAK, rule 12
if(currentblock == 0)
p_response = &responses[RACK0];
else
p_response = &responses[RACK1];
} else {
//rule 13
//TODO: implement chaining
}
}
}
else if(receivedCmd[0] == 0xD0){ //Protocol and parameter selection response
p_response = &responses[PPSresponse];
order = PPS;
}
else if(receivedCmd[0] == 0x30) { // Received a (plain) READ
//we're an EMV card - so no read commands
p_response = NULL;
} else if(receivedCmd[0] == 0x50) { // Received a HALT
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
p_response = NULL;
order = HLTA;
} else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request
p_response = &responses[AUTH_ANS];
order = AUTH;
} else if(receivedCmd[0] == 0xE0) { // Received a RATS request
readerPacketLen = GetReaderLength(receivedCmd); //get length of supported packet
p_response = &responses[ATS];
order = RATS;
} else if (order == AUTH && len == 8) { // Received {nr] and {ar} (part of authentication)
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
case 0x0B:
case 0x0A: // IBlock (command)
case 0x02:
case 0x03: {
dynamic_response_info.response_n = 0;
dynamic_response_info.response[0] = receivedCmd[0]; // copy PCB
//dynamic_response_info.response[1] = receivedCmd[1]; // copy PCB
dynamic_response_info.response_n++ ;
switch(receivedCmd[1]) {
case 0x00:
switch(receivedCmd[2]){
case 0xA4: //select
if(receivedCmd[5] == 0x0E){
}
else if(receivedCmd[5] == 0x07){
//selectOrder = 0;
}
else{ //send not supported msg
memcpy(dynamic_response_info.response+1, "\x6a\x82", 2);
dynamic_response_info.response_n += 2;
}
break;
case 0xB2: //read record
if(receivedCmd[3] == 0x01 && receivedCmd[4] == 0x0C){
dynamic_response_info.response_n += 2;
Dbprintf("READ RECORD 1 1");
}
break;
}
break;
case 0x80:
switch(receivedCmd[2]){
case 0xA8: //get processing options
break;
}
}
}break;
case 0x1A:
case 0x1B: { // Chaining command
dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1);
dynamic_response_info.response_n = 2;
} break;
case 0xaa:
case 0xbb: {
dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11;
dynamic_response_info.response_n = 2;
} break;
case 0xBA: { //
memcpy(dynamic_response_info.response,"\xAB\x00",2);
dynamic_response_info.response_n = 2;
} break;
case 0xCA:
case 0xC2: { // Readers sends deselect command
//we send the command back - this is what tags do in android implemenation i believe - peterfillmore
memcpy(dynamic_response_info.response,receivedCmd,1);
dynamic_response_info.response_n = 1;
} break;
default: {
// Never seen this command before
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
Dbprintf("Received unknown command (len=%d):",len);
Dbhexdump(len,receivedCmd,false);
// Do not respond
dynamic_response_info.response_n = 0;
} break;
}
if (dynamic_response_info.response_n > 0) {
// Copy the CID from the reader query
//dynamic_response_info.response[1] = receivedCmd[1];
// Add CRC bytes, always used in ISO 14443A-4 compliant cards
AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n);
dynamic_response_info.response_n += 2;
if(dynamic_response_info.response_n > readerPacketLen){ //throw error if our reader doesn't support the send packet length
Dbprintf("Error: tag response is longer then what the reader supports, TODO:implement command chaining");
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) {
Dbprintf("Error preparing tag response");
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, true);
break;
}
p_response = &dynamic_response_info;
}
}
// Count number of wakeups received after a halt
if(order == HLTA && lastorder == PPS) { happened++; }
// Count number of other messages after a halt
if(order != HLTA && lastorder == PPS) { happened2++; }
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
}
cmdsRecvd++;
if (p_response != NULL) {
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n);
// do the tracing for the previous reader request and this tag answer:
// EmLogTrace(Uart.output,
// Uart.len,
// Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG,
// Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG,
// Uart.parity,
// p_response->response,
// p_response->response_n,
// LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG,
// (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
// par);
}
// if (!tracing) {
// Dbprintf("Trace Full. Simulation stopped.");
// break;
// }
}
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
BigBuf_free_keep_EM();
*/
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void EMVFuzz_RATS(uint8_t ratslen, uint8_t* RATS)
{
int len;
uint8_t sak = 0x28;
//copy input rats into a buffer
uint8_t ratscmd[ratslen+2];
memcpy(ratscmd, RATS, ratslen);
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
uint8_t atqa[2] = {0x04, 0x00};
// The second response contains the (mandatory) first 24 bits of the UID
uint8_t uid0[5] = {0x12,0x34,0x56,0x78,0x9A};
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
uid0[4] = uid0[0] ^ uid0[1] ^ uid0[2] ^ uid0[3];
// Prepare the mandatory SAK (for 4 and 7 byte UID)
uint8_t sakresponse[3];
sakresponse[0] = sak;
ComputeCrc14443(CRC_14443_A, sakresponse, 1, &sakresponse[1], &sakresponse[2]);
// Prepare the optional second SAK (for 7 byte UID), drop the cascade bit
uint8_t ACK1[] = {0xa3,0x6f,0xc6}; //ACK packets
uint8_t ACK2[] = {0xa2,0x00,0x00};
AppendCrc14443a(ACK2, 1);
AppendCrc14443a(ratscmd, sizeof(ratscmd)-2);
//handle the PPS selection
uint8_t PPSR[3] = {0xD0,0x00,0x00};
AppendCrc14443a(PPSR, 1);
//#define TAG_RESPONSE_COUNT 9
tag_response_info_t responses[7] = {
{ .response = atqa, .response_n = sizeof(atqa) }, // Answer to request - respond with card type
{ .response = uid0, .response_n = sizeof(uid0) }, // Anticollision cascade1 - respond with uid
{ .response = sakresponse, .response_n = sizeof(sakresponse) }, // Acknowledge select - cascade 1
{ .response = ratscmd, .response_n = sizeof(ratscmd) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = ACK1, .response_n = sizeof(ACK1) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = ACK2, .response_n = sizeof(ACK2) }, // dummy ATS (pseudo-ATR), answer to RATS
{ .response = PPSR, .response_n = sizeof(PPSR) }, // dummy ATS (pseudo-ATR), answer to RATS
};
// Reset the offset pointer of the free buffer
//reset_free_buffer();
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
for (size_t i=0; i<7; i++) {
prepare_allocated_tag_modulation(&responses[i]);
}
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE);
// To control where we are in the protocol
int order = 0;
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
tag_response_info_t* p_response;
LED_C_ON();
// Clean receive command buffer
for(;;){
if (!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)){
break;
}
p_response = NULL;
if ((receivedCmd[0] == 0x26) || (receivedCmd[0] == 0x52)) { // Received a REQUEST
p_response = &responses[0]; order = 1;
}
if (receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1)
p_response = &responses[1]; order = 2; //send the UID
}
if (receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1)
p_response = &responses[2]; order = 3; //send the SAK
}
if (receivedCmd[0] == 0xD0) { // Received a PPS request
p_response = &responses[6]; order = 70;
}
if (receivedCmd[0] == 0xE0) { // Received a RATS request
p_response = &responses[3]; order = 70;
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n);
break;
}
if (p_response != NULL){
EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n);
} else {
break;
}
}
if (order && (MF_DBGLEVEL >= 2)) DbpString("just using order vars");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_C_OFF();
return;
}