mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-15 20:48:09 +08:00
1088 lines
32 KiB
C
1088 lines
32 KiB
C
//-----------------------------------------------------------------------------
|
|
// Copyright (C) 2020 tharexde
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Low frequency EM4x50 commands
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "fpgaloader.h"
|
|
#include "ticks.h"
|
|
#include "dbprint.h"
|
|
#include "lfadc.h"
|
|
#include "commonutil.h"
|
|
#include "em4x50.h"
|
|
|
|
// 4 data bytes
|
|
// + byte with row parities
|
|
// + column parity byte
|
|
// + byte with stop bit
|
|
|
|
static em4x50_tag_t tag = {
|
|
.sectors = {
|
|
[0] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // password
|
|
[1] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // protection word
|
|
[2] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // control word
|
|
[3] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[4] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[5] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[6] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[7] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[10] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[11] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[12] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[13] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[14] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[15] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[17] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[18] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[19] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[20] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[21] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[22] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[23] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[24] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[25] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[26] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[27] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[28] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[29] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[30] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[31] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // user
|
|
[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // device serial number
|
|
[33] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, // device identification
|
|
},
|
|
};
|
|
|
|
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
|
|
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
|
|
// EM4x50 units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
|
|
// T0 = TIMER_CLOCK1 / 125000 = 192
|
|
|
|
#ifndef T0
|
|
#define T0 192
|
|
#endif
|
|
|
|
#define EM4X50_T_TAG_QUARTER_PERIOD 16
|
|
#define EM4X50_T_TAG_HALF_PERIOD 32
|
|
#define EM4X50_T_TAG_THREE_QUARTER_PERIOD 48
|
|
#define EM4X50_T_TAG_FULL_PERIOD 64
|
|
#define EM4X50_T_TAG_TPP 64
|
|
#define EM4X50_T_TAG_TWA 64
|
|
#define EM4X50_T_WAITING_FOR_SNGLLIW 50
|
|
#define EM4X50_T_WAITING_FOR_DBLLIW 1550
|
|
|
|
#define EM4X50_TAG_TOLERANCE 8
|
|
#define EM4X50_TAG_WORD 45
|
|
|
|
#define EM4X50_BIT_0 0
|
|
#define EM4X50_BIT_1 1
|
|
#define EM4X50_BIT_OTHER 2
|
|
|
|
#define EM4X50_COMMAND_LOGIN 0x01
|
|
#define EM4X50_COMMAND_RESET 0x80
|
|
#define EM4X50_COMMAND_WRITE 0x12
|
|
#define EM4X50_COMMAND_WRITE_PASSWORD 0x11
|
|
#define EM4X50_COMMAND_SELECTIVE_READ 0x0A
|
|
|
|
#define FPGA_TIMER_0 0
|
|
|
|
int gHigh = 0;
|
|
int gLow = 0;
|
|
|
|
// auxiliary functions
|
|
|
|
static void init_tag(void) {
|
|
|
|
// initialize global tag structure
|
|
|
|
for (int i = 0; i < 34; i++)
|
|
for (int j = 0; j < 7; j++)
|
|
tag.sectors[i][j] = 0x00;
|
|
}
|
|
|
|
static uint8_t bits2byte(uint8_t *bits, int length) {
|
|
|
|
// converts <length> separate bits into a single "byte"
|
|
|
|
uint8_t byte = 0;
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
byte |= bits[i];
|
|
|
|
if (i != length-1)
|
|
byte <<= 1;
|
|
}
|
|
|
|
return byte;
|
|
}
|
|
|
|
static void msb2lsb_word(uint8_t *word) {
|
|
|
|
// reorders given <word> according to EM4x50 datasheet (msb -> lsb)
|
|
|
|
uint8_t buff[4];
|
|
|
|
buff[0] = reflect8(word[3]);
|
|
buff[1] = reflect8(word[2]);
|
|
buff[2] = reflect8(word[1]);
|
|
buff[3] = reflect8(word[0]);
|
|
|
|
word[0] = buff[0];
|
|
word[1] = buff[1];
|
|
word[2] = buff[2];
|
|
word[3] = buff[3];
|
|
}
|
|
|
|
static void save_word(int pos, uint8_t bits[EM4X50_TAG_WORD]) {
|
|
|
|
// split "raw" word into data, row and column parity bits and stop bit and
|
|
// save them in global tag structure
|
|
|
|
uint8_t row_parity[4];
|
|
uint8_t col_parity[8];
|
|
|
|
// data and row parities
|
|
for (int i = 0; i < 4; i++) {
|
|
tag.sectors[pos][i] = bits2byte(&bits[9*i],8);
|
|
row_parity[i] = bits[9*i+8];
|
|
}
|
|
|
|
tag.sectors[pos][4] = bits2byte(row_parity,4);
|
|
|
|
// column parities
|
|
for (int i = 0; i < 8; i++)
|
|
col_parity[i] = bits[36+i];
|
|
|
|
tag.sectors[pos][5] = bits2byte(col_parity,8);
|
|
|
|
// stop bit
|
|
tag.sectors[pos][6] = bits[44];
|
|
}
|
|
|
|
static void wait_timer(int timer, uint32_t period) {
|
|
|
|
// do nothing for <period> using timer <timer>
|
|
|
|
if (timer == FPGA_TIMER_0) {
|
|
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
|
while (AT91C_BASE_TC0->TC_CV < period);
|
|
|
|
} else {
|
|
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
|
|
while (AT91C_BASE_TC1->TC_CV < period);
|
|
|
|
}
|
|
}
|
|
|
|
static void em4x50_setup_read(void) {
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
|
|
// 50ms for the resonant antenna to settle.
|
|
SpinDelay(50);
|
|
// Now set up the SSC to get the ADC samples that are now streaming at us.
|
|
FpgaSetupSsc();
|
|
// start a 1.5ticks is 1us
|
|
StartTicks();
|
|
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
|
|
|
|
// Connect the A/D to the peak-detected low-frequency path.
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
|
|
// Steal this pin from the SSP (SPI communication channel with fpga) and
|
|
// use it to control the modulation
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
|
|
// Disable modulation at default, which means enable the field
|
|
LOW(GPIO_SSC_DOUT);
|
|
|
|
// Enable Peripheral Clock for
|
|
// TIMER_CLOCK0, used to measure exact timing before answering
|
|
// TIMER_CLOCK1, used to capture edges of the tag frames
|
|
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
|
|
|
|
// Disable timer during configuration
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
|
|
|
|
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
|
|
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
|
|
|
|
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
|
|
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
|
|
|
|
// Enable and reset counters
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
|
|
|
// synchronized startup procedure
|
|
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC1 returned to zero
|
|
|
|
// Watchdog hit
|
|
WDT_HIT();
|
|
}
|
|
|
|
// functions for "reader" use case
|
|
|
|
static bool get_signalproperties(void) {
|
|
|
|
// calculate signal properties (mean amplitudes) from measured data:
|
|
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
|
|
|
|
bool signal_found = false;
|
|
int no_periods = 32, pct = 75, noise = 140;
|
|
uint8_t sample = 0, sample_ref = 127;
|
|
uint8_t sample_max_mean = 0;
|
|
uint8_t sample_max[no_periods];
|
|
uint32_t sample_max_sum = 0;
|
|
|
|
|
|
// wait until signal/noise > 1 (max. 32 periods)
|
|
for (int i = 0; i < T0 * no_periods; i++) {
|
|
|
|
// about 2 samples per bit period
|
|
wait_timer(0, T0 * EM4X50_T_TAG_HALF_PERIOD);
|
|
|
|
if (AT91C_BASE_SSC->SSC_RHR > noise) {
|
|
signal_found = true;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
if (!signal_found)
|
|
return false;
|
|
|
|
// calculate mean maximum value of 32 periods, each period has a length of
|
|
// 3 single "full periods" to eliminate the influence of a listen window
|
|
for (int i = 0; i < no_periods; i++) {
|
|
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
|
|
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
if (sample > sample_max[i])
|
|
sample_max[i] = sample;
|
|
|
|
}
|
|
|
|
sample_max_sum += sample_max[i];
|
|
}
|
|
|
|
sample_max_mean = sample_max_sum / no_periods;
|
|
|
|
// set global envelope variables
|
|
gHigh = sample_ref + pct * (sample_max_mean - sample_ref) / 100;
|
|
gLow = sample_ref - pct * (sample_max_mean - sample_ref) / 100;
|
|
|
|
return true;
|
|
}
|
|
|
|
static int get_next_bit(void) {
|
|
|
|
// returns bit value (or EM4X50_BIT_OTHER -> no bit pattern) by evaluating
|
|
// a single sample within a bit period (given there is no LIW, ACK or NAK)
|
|
// This function is not used for decoding, it is only used for identifying
|
|
// a listen window (return value = EM4X50_BIT_OTHER) in functions
|
|
// "find_double_listen_window" and "check_ack"
|
|
|
|
uint8_t sample;
|
|
|
|
// get sample at 3/4 of bit period
|
|
wait_timer(0, T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
// wait until end of bit period
|
|
wait_timer(0, T0 * EM4X50_T_TAG_QUARTER_PERIOD);
|
|
|
|
// decide wether "0" or "1"
|
|
if (sample > gHigh)
|
|
return EM4X50_BIT_0;
|
|
else if (sample < gLow)
|
|
return EM4X50_BIT_1;
|
|
|
|
return EM4X50_BIT_OTHER;
|
|
}
|
|
|
|
static uint32_t get_pulse_length(void) {
|
|
|
|
// iterates pulse length (low -> high -> low)
|
|
|
|
uint8_t sample = 0;
|
|
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
while (sample > gLow)
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
|
|
|
|
while (sample < gHigh)
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
while (sample > gLow)
|
|
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
|
|
|
|
return (uint32_t)AT91C_BASE_TC1->TC_CV;
|
|
}
|
|
|
|
static bool check_pulse_length(uint32_t pl, int length) {
|
|
|
|
// check if pulse length <pl> corresponds to given length <length>
|
|
|
|
if ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) &
|
|
(pl <= T0 * (length + EM4X50_TAG_TOLERANCE)))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void em4x50_send_bit(int bit) {
|
|
|
|
// send single bit according to EM4x50 application note and datasheet
|
|
|
|
// reset clock for the next bit
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
|
|
|
if (bit == 0) {
|
|
|
|
// disable modulation (drop the field) for 7 cycles of carrier
|
|
// period (Opt64)
|
|
LOW(GPIO_SSC_DOUT);
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * 7);
|
|
|
|
// enable modulation (activates the field) for remaining first
|
|
// half of bit period
|
|
HIGH(GPIO_SSC_DOUT);
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
|
|
|
|
// disable modulation for second half of bit period
|
|
LOW(GPIO_SSC_DOUT);
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
|
|
|
|
} else {
|
|
|
|
// bit = "1" means disable modulation for full bit period
|
|
LOW(GPIO_SSC_DOUT);
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
|
|
}
|
|
}
|
|
|
|
static void em4x50_send_byte(uint8_t byte) {
|
|
|
|
// send byte (without parity)
|
|
|
|
for (int i = 0; i < 8; i++)
|
|
em4x50_send_bit((byte >> (7-i)) & 1);
|
|
|
|
}
|
|
|
|
static void em4x50_send_byte_with_parity(uint8_t byte) {
|
|
|
|
// send byte followed by its (equal) parity bit
|
|
|
|
int parity = 0, bit = 0;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
bit = (byte >> (7-i)) & 1;
|
|
em4x50_send_bit(bit);
|
|
parity ^= bit;
|
|
}
|
|
|
|
em4x50_send_bit(parity);
|
|
}
|
|
|
|
static void em4x50_send_word(const uint8_t bytes[4]) {
|
|
|
|
// send 32 bit word with parity bits according to EM4x50 datasheet
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
em4x50_send_byte_with_parity(bytes[i]);
|
|
|
|
// send column parities
|
|
em4x50_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]);
|
|
|
|
// send final stop bit (always "0")
|
|
em4x50_send_bit(0);
|
|
}
|
|
|
|
static bool find_single_listen_window(void) {
|
|
|
|
// find single listen window
|
|
|
|
int cnt_pulses = 0;
|
|
|
|
while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) {
|
|
|
|
// identification of listen window is done via evaluation of
|
|
// pulse lengths
|
|
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// listen window found
|
|
return true;
|
|
|
|
}
|
|
} else {
|
|
|
|
cnt_pulses++;
|
|
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool find_double_listen_window(bool bcommand) {
|
|
|
|
// find two successive listen windows that indicate the beginning of
|
|
// data transmission
|
|
// double listen window to be detected within 1600 pulses -> worst case
|
|
// reason: first detectable double listen window after 34 words
|
|
// -> 34 words + 34 single listen windows -> about 1600 pulses
|
|
|
|
int cnt_pulses = 0;
|
|
|
|
while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) {
|
|
|
|
// identification of listen window is done via evaluation of
|
|
// pulse lengths
|
|
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// first listen window found
|
|
|
|
if (bcommand) {
|
|
|
|
// data transmission from card has to be stopped, because
|
|
// a commamd shall be issued
|
|
|
|
// unfortunately the posititon in listen window (where
|
|
// command request has to be sent) has gone, so if a
|
|
// second window follows - sync on this to issue a command
|
|
|
|
// skip the next bit...
|
|
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_FULL_PERIOD);
|
|
|
|
// ...and check if the following bit does make sense
|
|
// (if not it is the correct position within the second
|
|
// listen window)
|
|
if (get_next_bit() == EM4X50_BIT_OTHER) {
|
|
|
|
// send RM for request mode
|
|
em4x50_send_bit(0);
|
|
em4x50_send_bit(0);
|
|
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// return although second listen window consists of one
|
|
// more bit period but this period is necessary for
|
|
// evaluating further pulse lengths
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
cnt_pulses++;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool find_em4x50_tag(void) {
|
|
|
|
// function is used to check wether a tag on the proxmark is an
|
|
// EM4x50 tag or not -> speed up "lf search" process
|
|
|
|
return (find_single_listen_window());
|
|
|
|
}
|
|
|
|
static bool request_receive_mode(void) {
|
|
|
|
// To issue a command we have to find a listen window first.
|
|
// Because identification and sychronization at the same time is not
|
|
// possible when using pulse lengths a double listen window is used.
|
|
|
|
bool bcommand = true;
|
|
|
|
return find_double_listen_window(bcommand);
|
|
}
|
|
|
|
static bool check_ack(bool bliw) {
|
|
|
|
// returns true if signal structue corresponds to ACK, anything else is
|
|
// counted as NAK (-> false)
|
|
// Only relevant for pasword writing function:
|
|
// If <bliw> is true then within the single listen window right after the
|
|
// ack signal a RM request has to be sent.
|
|
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
|
|
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
|
|
|
|
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// The received signal is either ACK or NAK.
|
|
|
|
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// Now the signal must be ACK.
|
|
|
|
if (!bliw) {
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
// send RM request after ack signal
|
|
|
|
// wait for 2 bits (remaining "bit" of ACK signal + first
|
|
// "bit" of listen window)
|
|
wait_timer(FPGA_TIMER_0, T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
|
|
|
|
// check for listen window (if first bit cannot be inerpreted
|
|
// as a valid bit it must belong to a listen window)
|
|
if (get_next_bit() == EM4X50_BIT_OTHER) {
|
|
|
|
// send RM for request mode
|
|
em4x50_send_bit(0);
|
|
em4x50_send_bit(0);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
|
|
// It's NAK -> stop searching
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
|
|
|
|
// decodes one word by evaluating pulse lengths and previous bit;
|
|
// word must have 45 bits in total:
|
|
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
|
|
|
|
bool bbitchange = false;
|
|
int i = 0;
|
|
uint32_t pl = 0;
|
|
|
|
// initial bit value depends on last pulse length of listen window
|
|
pl = get_pulse_length();
|
|
if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
|
|
|
|
// pulse length = 1.5
|
|
bits[0] = 1;
|
|
|
|
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// pulse length = 2
|
|
bits[0] = 0;
|
|
bbitchange = true;
|
|
|
|
} else {
|
|
|
|
// pulse length = 2.5
|
|
bits[0] = 0;
|
|
bits[1] = 1;
|
|
i++;
|
|
}
|
|
|
|
// identify remaining bits based on pulse lengths
|
|
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
|
|
while (true) {
|
|
|
|
i++;
|
|
pl = get_pulse_length();
|
|
|
|
if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// pulse length = 1 -> keep former bit value
|
|
bits[i] = bits[i-1];
|
|
|
|
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
|
|
|
|
// pulse length = 1.5 -> decision on bit change
|
|
|
|
if (bbitchange) {
|
|
|
|
// if number of pulse lengths with 1.5 periods is even -> add bit
|
|
bits[i] = (bits[i-1] == 1) ? 1 : 0;
|
|
|
|
// pulse length of 1.5 changes bit value
|
|
bits[i+1] = (bits[i] == 1) ? 0 : 1;
|
|
i++;
|
|
|
|
// next time add only one bit
|
|
bbitchange = false;
|
|
|
|
} else {
|
|
|
|
bits[i] = (bits[i-1] == 1) ? 0 : 1;
|
|
|
|
// next time two bits have to be added
|
|
bbitchange = true;
|
|
}
|
|
|
|
} else if (check_pulse_length(pl, 2 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// pulse length of 2 means: adding 2 bits "01"
|
|
bits[i] = 0;
|
|
bits[i+1] = 1;
|
|
i++;
|
|
|
|
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) {
|
|
|
|
// pulse length of 3 indicates listen window -> clear last
|
|
// bit (= 0) and return
|
|
return --i;
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
//==============================================================================
|
|
// login function
|
|
//==============================================================================
|
|
|
|
static bool login(uint8_t password[4]) {
|
|
|
|
// simple login to EM4x50,
|
|
// used in operations that require authentication
|
|
|
|
if (request_receive_mode ()) {
|
|
|
|
// send login command
|
|
em4x50_send_byte_with_parity(EM4X50_COMMAND_LOGIN);
|
|
|
|
// send password
|
|
em4x50_send_word(password);
|
|
|
|
// check if ACK is returned
|
|
if (check_ack(false))
|
|
return true;
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("error in command request");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//==============================================================================
|
|
// reset function
|
|
//==============================================================================
|
|
|
|
static bool reset(void) {
|
|
|
|
// resets EM4x50 tag (used by write function)
|
|
|
|
if (request_receive_mode ()) {
|
|
|
|
// send login command
|
|
em4x50_send_byte_with_parity(EM4X50_COMMAND_RESET);
|
|
|
|
if (check_ack(false))
|
|
return true;
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("error in command request");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
//==============================================================================
|
|
// read functions
|
|
//==============================================================================
|
|
|
|
static bool standard_read(int *now) {
|
|
|
|
// reads data that tag transmits when exposed to reader field
|
|
// (standard read mode); number of read words is saved in <now>
|
|
|
|
int fwr = *now;
|
|
uint8_t bits[EM4X50_TAG_WORD] = {0};
|
|
|
|
// start with the identification of two succsessive listening windows
|
|
if (find_double_listen_window(false)) {
|
|
|
|
// read and save words until following double listen window is detected
|
|
while (get_word_from_bitstream(bits) == EM4X50_TAG_WORD)
|
|
save_word((*now)++, bits);
|
|
|
|
// number of detected words
|
|
*now -= fwr;
|
|
|
|
return true;
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("didn't find a listen window");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool selective_read(uint8_t addresses[4]) {
|
|
|
|
// reads from "first word read" (fwr = addresses[3]) to "last word read"
|
|
// (lwr = addresses[2])
|
|
// result is verified by "standard read mode"
|
|
|
|
int fwr = addresses[3]; // first word read
|
|
int lwr = addresses[2]; // last word read
|
|
int now = fwr; // number of words
|
|
|
|
if (request_receive_mode()) {
|
|
|
|
// send selective read command
|
|
em4x50_send_byte_with_parity(EM4X50_COMMAND_SELECTIVE_READ);
|
|
|
|
// send address data
|
|
em4x50_send_word(addresses);
|
|
|
|
// look for ACK sequence
|
|
if (check_ack(false))
|
|
|
|
// save and verify via standard read mode (compare number of words)
|
|
if (standard_read(&now))
|
|
if (now == (lwr - fwr + 1))
|
|
return true;
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("error in command request");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void em4x50_info(em4x50_data_t *etd) {
|
|
|
|
// collects as much information as possible via selective read mode
|
|
// if no password is given -> try with standard password "0x00000000"
|
|
// otherwise continue without login
|
|
|
|
bool bsuccess = false, blogin = false;
|
|
uint8_t status = 0;
|
|
uint8_t addresses[] = {0x00, 0x00, 0x21, 0x00}; // fwr = 0, lwr = 33
|
|
uint8_t password[] = {0x00, 0x00, 0x00, 0x00}; // default password
|
|
|
|
init_tag();
|
|
em4x50_setup_read();
|
|
|
|
// set gHigh and gLow
|
|
if (get_signalproperties() && find_em4x50_tag()) {
|
|
|
|
if (etd->pwd_given) {
|
|
|
|
// try to login with given password
|
|
blogin = login(etd->password);
|
|
|
|
} else {
|
|
|
|
// if no password is given, try to login with "0x00000000"
|
|
blogin = login(password);
|
|
|
|
}
|
|
|
|
bsuccess = selective_read(addresses);
|
|
}
|
|
|
|
status = (bsuccess << 1) + blogin;
|
|
|
|
lf_finalize();
|
|
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
|
|
}
|
|
|
|
void em4x50_read(em4x50_data_t *etd) {
|
|
|
|
// reads in two different ways:
|
|
// - using "selective read mode" -> bidirectional communication
|
|
// - using "standard read mode" -> unidirectional communication (read
|
|
// data that tag transmits "voluntarily")
|
|
|
|
bool bsuccess = false, blogin = false;
|
|
int now = 0;
|
|
uint8_t status = 0;
|
|
uint8_t addresses[] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
init_tag();
|
|
em4x50_setup_read();
|
|
|
|
// set gHigh and gLow
|
|
if (get_signalproperties() && find_em4x50_tag()) {
|
|
|
|
if (etd->addr_given) {
|
|
|
|
// selective read mode
|
|
|
|
// try to login with given password
|
|
if (etd->pwd_given)
|
|
blogin = login(etd->password);
|
|
|
|
// only one word has to be read -> first word read = last word read
|
|
addresses[2] = addresses[3] = etd->address;
|
|
bsuccess = selective_read(addresses);
|
|
|
|
} else {
|
|
|
|
// standard read mode
|
|
bsuccess = standard_read(&now);
|
|
|
|
}
|
|
}
|
|
|
|
status = (now << 2) + (bsuccess << 1) + blogin;
|
|
|
|
lf_finalize();
|
|
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
|
|
}
|
|
|
|
//==============================================================================
|
|
// write functions
|
|
//==============================================================================
|
|
|
|
static bool write(uint8_t word[4], uint8_t address) {
|
|
|
|
// writes <word> to specified <address>
|
|
|
|
if (request_receive_mode()) {
|
|
|
|
// send write command
|
|
em4x50_send_byte_with_parity(EM4X50_COMMAND_WRITE);
|
|
|
|
// send address data
|
|
em4x50_send_byte_with_parity(address);
|
|
|
|
// send data
|
|
em4x50_send_word(word);
|
|
|
|
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
|
|
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TWA);
|
|
|
|
// look for ACK sequence
|
|
if (check_ack(false)) {
|
|
|
|
// now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time)
|
|
// for saving data and should return with ACK
|
|
if (check_ack(false))
|
|
return true;
|
|
|
|
}
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("error in command request");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool write_password(uint8_t password[4], uint8_t new_password[4]) {
|
|
|
|
// changes password from <password> to <new_password>
|
|
|
|
if (request_receive_mode()) {
|
|
|
|
// send write password command
|
|
em4x50_send_byte_with_parity(EM4X50_COMMAND_WRITE_PASSWORD);
|
|
|
|
// send address data
|
|
em4x50_send_word(password);
|
|
|
|
// wait for T0 * EM4x50_T_TAG_TPP (processing pause time)
|
|
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TPP);
|
|
|
|
// look for ACK sequence and send rm request
|
|
// during following listen window
|
|
if (check_ack(true)) {
|
|
|
|
// send new password
|
|
em4x50_send_word(new_password);
|
|
|
|
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
|
|
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_TWA);
|
|
|
|
if (check_ack(false))
|
|
if (check_ack(false))
|
|
return true;
|
|
|
|
}
|
|
|
|
} else {
|
|
if (DBGLEVEL >= DBG_DEBUG)
|
|
Dbprintf("error in command request");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void em4x50_write(em4x50_data_t *etd) {
|
|
|
|
// write operation process for EM4x50 tag,
|
|
// single word is written to given address, verified by selective read operation
|
|
|
|
bool bsuccess = false, blogin = false;
|
|
uint8_t status = 0;
|
|
uint8_t word[4] = {0x00, 0x00, 0x00, 0x00};
|
|
uint8_t addresses[4] = {0x00, 0x00, 0x00, 0x00};
|
|
|
|
init_tag();
|
|
em4x50_setup_read();
|
|
|
|
// set gHigh and gLow
|
|
if (get_signalproperties() && find_em4x50_tag()) {
|
|
|
|
// reorder word according to datasheet
|
|
msb2lsb_word(etd->word);
|
|
|
|
// if password is given try to login first
|
|
if (etd->pwd_given)
|
|
blogin = login(etd->password);
|
|
|
|
// write word to given address
|
|
if (write(etd->word, etd->address)) {
|
|
|
|
// to verify result reset EM4x50
|
|
if (reset()) {
|
|
|
|
// if password is given login
|
|
if (etd->pwd_given)
|
|
blogin &= login(etd->password);
|
|
|
|
// call a selective read
|
|
addresses[2] = addresses[3] = etd->address;
|
|
if (selective_read(addresses)) {
|
|
|
|
// compare with given word
|
|
word[0] = tag.sectors[etd->address][0];
|
|
word[1] = tag.sectors[etd->address][1];
|
|
word[2] = tag.sectors[etd->address][2];
|
|
word[3] = tag.sectors[etd->address][3];
|
|
msb2lsb_word(word);
|
|
|
|
bsuccess = true;
|
|
for (int i = 0; i < 4; i++)
|
|
bsuccess &= (word[i] == etd->word[i]) ? true : false;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
status = (bsuccess << 1) + blogin;
|
|
|
|
lf_finalize();
|
|
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
|
|
}
|
|
|
|
void em4x50_write_password(em4x50_data_t *etd) {
|
|
|
|
// sinmple change of password
|
|
|
|
bool bsuccess = false;
|
|
|
|
init_tag();
|
|
em4x50_setup_read();
|
|
|
|
// set gHigh and gLow
|
|
if (get_signalproperties() && find_em4x50_tag()) {
|
|
|
|
// login and change password
|
|
if (login(etd->password)) {
|
|
bsuccess = write_password(etd->password, etd->new_password);
|
|
}
|
|
}
|
|
|
|
lf_finalize();
|
|
reply_ng(CMD_ACK, bsuccess, 0, 0);
|
|
}
|
|
|
|
void em4x50_wipe(em4x50_data_t *etd) {
|
|
|
|
// set all data of EM4x50 tag to 0x0 including password
|
|
|
|
bool bsuccess = false;
|
|
uint8_t zero[4] = {0, 0, 0, 0};
|
|
uint8_t addresses[4] = {0, 0, EM4X50_NO_WORDS - 3, 1};
|
|
|
|
init_tag();
|
|
em4x50_setup_read();
|
|
|
|
// set gHigh and gLow
|
|
if (get_signalproperties() && find_em4x50_tag()) {
|
|
|
|
// login first
|
|
if (login(etd->password)) {
|
|
|
|
// write 0x0 to each address but ignore addresses
|
|
// 0 -> password, 32 -> serial, 33 -> uid
|
|
// writing 34 words takes about 3.6 seconds -> high timeout needed
|
|
for (int i = 1; i <= EM4X50_NO_WORDS - 3; i++)
|
|
write(zero, i);
|
|
|
|
// to verify result reset EM4x50
|
|
if (reset()) {
|
|
|
|
// login not necessary because protectd word has been set to 0
|
|
// -> no read protected words
|
|
// -> selective read can be called immediately
|
|
if (selective_read(addresses)) {
|
|
|
|
// check if everything is zero
|
|
bsuccess = true;
|
|
for (int i = 1; i <= EM4X50_NO_WORDS - 3; i++)
|
|
for (int j = 0; j < 4; j++)
|
|
bsuccess &= (tag.sectors[i][j] == 0) ? true : false;
|
|
|
|
}
|
|
|
|
if (bsuccess) {
|
|
|
|
// so far everything is fine
|
|
// last task: reset password
|
|
if (login(etd->password))
|
|
bsuccess = write_password(etd->password, zero);
|
|
|
|
// verify by login with new password
|
|
if (bsuccess)
|
|
bsuccess = login(zero);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
lf_finalize();
|
|
reply_ng(CMD_ACK, bsuccess, (uint8_t *)tag.sectors, 238);
|
|
}
|