mirror of
				https://github.com/RfidResearchGroup/proxmark3.git
				synced 2025-10-31 08:26:15 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			2348 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2348 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Multi-precision integer library
 | |
|  *
 | |
|  *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 | |
|  *  SPDX-License-Identifier: GPL-2.0
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 | |
|  *
 | |
|  *  This file is part of mbed TLS (https://tls.mbed.org)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *  The following sources were referenced in the design of this Multi-precision
 | |
|  *  Integer library:
 | |
|  *
 | |
|  *  [1] Handbook of Applied Cryptography - 1997
 | |
|  *      Menezes, van Oorschot and Vanstone
 | |
|  *
 | |
|  *  [2] Multi-Precision Math
 | |
|  *      Tom St Denis
 | |
|  *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf
 | |
|  *
 | |
|  *  [3] GNU Multi-Precision Arithmetic Library
 | |
|  *      https://gmplib.org/manual/index.html
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if !defined(MBEDTLS_CONFIG_FILE)
 | |
| #include "mbedtls/config.h"
 | |
| #else
 | |
| #include MBEDTLS_CONFIG_FILE
 | |
| #endif
 | |
| 
 | |
| #if defined(MBEDTLS_BIGNUM_C)
 | |
| 
 | |
| #include "mbedtls/bignum.h"
 | |
| #include "mbedtls/bn_mul.h"
 | |
| #include "mbedtls/platform_util.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if defined(MBEDTLS_PLATFORM_C)
 | |
| #include "mbedtls/platform.h"
 | |
| #else
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #define mbedtls_printf     printf
 | |
| #define mbedtls_calloc    calloc
 | |
| #define mbedtls_free       free
 | |
| #endif
 | |
| 
 | |
| #define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */
 | |
| #define biL    (ciL << 3)               /* bits  in limb  */
 | |
| #define biH    (ciL << 2)               /* half limb size */
 | |
| 
 | |
| #define MPI_SIZE_T_MAX  ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
 | |
| 
 | |
| /*
 | |
|  * Convert between bits/chars and number of limbs
 | |
|  * Divide first in order to avoid potential overflows
 | |
|  */
 | |
| #define BITS_TO_LIMBS(i)  ( (i) / biL + ( (i) % biL != 0 ) )
 | |
| #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
 | |
| 
 | |
| /* Implementation that should never be optimized out by the compiler */
 | |
| static void mbedtls_mpi_zeroize(mbedtls_mpi_uint *v, size_t n) {
 | |
|     mbedtls_platform_zeroize(v, ciL * n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize one MPI
 | |
|  */
 | |
| void mbedtls_mpi_init(mbedtls_mpi *X) {
 | |
|     if (X == NULL)
 | |
|         return;
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unallocate one MPI
 | |
|  */
 | |
| void mbedtls_mpi_free(mbedtls_mpi *X) {
 | |
|     if (X == NULL)
 | |
|         return;
 | |
| 
 | |
|     if (X->p != NULL) {
 | |
|         mbedtls_mpi_zeroize(X->p, X->n);
 | |
|         mbedtls_free(X->p);
 | |
|     }
 | |
| 
 | |
|     X->s = 1;
 | |
|     X->n = 0;
 | |
|     X->p = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enlarge to the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs) {
 | |
|     mbedtls_mpi_uint *p;
 | |
| 
 | |
|     if (nblimbs > MBEDTLS_MPI_MAX_LIMBS)
 | |
|         return (MBEDTLS_ERR_MPI_ALLOC_FAILED);
 | |
| 
 | |
|     if (X->n < nblimbs) {
 | |
|         if ((p = (mbedtls_mpi_uint *)mbedtls_calloc(nblimbs, ciL)) == NULL)
 | |
|             return (MBEDTLS_ERR_MPI_ALLOC_FAILED);
 | |
| 
 | |
|         if (X->p != NULL) {
 | |
|             memcpy(p, X->p, X->n * ciL);
 | |
|             mbedtls_mpi_zeroize(X->p, X->n);
 | |
|             mbedtls_free(X->p);
 | |
|         }
 | |
| 
 | |
|         X->n = nblimbs;
 | |
|         X->p = p;
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resize down as much as possible,
 | |
|  * while keeping at least the specified number of limbs
 | |
|  */
 | |
| int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs) {
 | |
|     mbedtls_mpi_uint *p;
 | |
|     size_t i;
 | |
| 
 | |
|     /* Actually resize up in this case */
 | |
|     if (X->n <= nblimbs)
 | |
|         return (mbedtls_mpi_grow(X, nblimbs));
 | |
| 
 | |
|     for (i = X->n - 1; i > 0; i--)
 | |
|         if (X->p[i] != 0)
 | |
|             break;
 | |
|     i++;
 | |
| 
 | |
|     if (i < nblimbs)
 | |
|         i = nblimbs;
 | |
| 
 | |
|     if ((p = (mbedtls_mpi_uint *)mbedtls_calloc(i, ciL)) == NULL)
 | |
|         return (MBEDTLS_ERR_MPI_ALLOC_FAILED);
 | |
| 
 | |
|     if (X->p != NULL) {
 | |
|         memcpy(p, X->p, i * ciL);
 | |
|         mbedtls_mpi_zeroize(X->p, X->n);
 | |
|         mbedtls_free(X->p);
 | |
|     }
 | |
| 
 | |
|     X->n = i;
 | |
|     X->p = p;
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the contents of Y into X
 | |
|  */
 | |
| int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y) {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
| 
 | |
|     if (X == Y)
 | |
|         return (0);
 | |
| 
 | |
|     if (Y->p == NULL) {
 | |
|         mbedtls_mpi_free(X);
 | |
|         return (0);
 | |
|     }
 | |
| 
 | |
|     for (i = Y->n - 1; i > 0; i--)
 | |
|         if (Y->p[i] != 0)
 | |
|             break;
 | |
|     i++;
 | |
| 
 | |
|     X->s = Y->s;
 | |
| 
 | |
|     if (X->n < i) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
 | |
|     } else {
 | |
|         memset(X->p + i, 0, (X->n - i) * ciL);
 | |
|     }
 | |
| 
 | |
|     memcpy(X->p, Y->p, i * ciL);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap the contents of X and Y
 | |
|  */
 | |
| void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y) {
 | |
|     mbedtls_mpi T;
 | |
| 
 | |
|     memcpy(&T,  X, sizeof(mbedtls_mpi));
 | |
|     memcpy(X,  Y, sizeof(mbedtls_mpi));
 | |
|     memcpy(Y, &T, sizeof(mbedtls_mpi));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally assign X = Y, without leaking information
 | |
|  * about whether the assignment was made or not.
 | |
|  * (Leaking information about the respective sizes of X and Y is ok however.)
 | |
|  */
 | |
| int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign) {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
| 
 | |
|     /* make sure assign is 0 or 1 in a time-constant manner */
 | |
|     assign = (assign | (unsigned char) - assign) >> 7;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
 | |
| 
 | |
|     X->s = X->s * (1 - assign) + Y->s * assign;
 | |
| 
 | |
|     for (i = 0; i < Y->n; i++)
 | |
|         X->p[i] = X->p[i] * (1 - assign) + Y->p[i] * assign;
 | |
| 
 | |
|     for (; i < X->n; i++)
 | |
|         X->p[i] *= (1 - assign);
 | |
| 
 | |
| cleanup:
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally swap X and Y, without leaking information
 | |
|  * about whether the swap was made or not.
 | |
|  * Here it is not ok to simply swap the pointers, which whould lead to
 | |
|  * different memory access patterns when X and Y are used afterwards.
 | |
|  */
 | |
| int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap) {
 | |
|     int ret, s;
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint tmp;
 | |
| 
 | |
|     if (X == Y)
 | |
|         return (0);
 | |
| 
 | |
|     /* make sure swap is 0 or 1 in a time-constant manner */
 | |
|     swap = (swap | (unsigned char) - swap) >> 7;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
 | |
| 
 | |
|     s = X->s;
 | |
|     X->s = X->s * (1 - swap) + Y->s * swap;
 | |
|     Y->s = Y->s * (1 - swap) +    s * swap;
 | |
| 
 | |
| 
 | |
|     for (i = 0; i < X->n; i++) {
 | |
|         tmp = X->p[i];
 | |
|         X->p[i] = X->p[i] * (1 - swap) + Y->p[i] * swap;
 | |
|         Y->p[i] = Y->p[i] * (1 - swap) +     tmp * swap;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set value from integer
 | |
|  */
 | |
| int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z) {
 | |
|     int ret;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
 | |
|     memset(X->p, 0, X->n * ciL);
 | |
| 
 | |
|     X->p[0] = (z < 0) ? -z : z;
 | |
|     X->s    = (z < 0) ? -1 : 1;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a specific bit
 | |
|  */
 | |
| int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos) {
 | |
|     if (X->n * biL <= pos)
 | |
|         return (0);
 | |
| 
 | |
|     return ((X->p[pos / biL] >> (pos % biL)) & 0x01);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a bit to a specific value of 0 or 1
 | |
|  */
 | |
| int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val) {
 | |
|     int ret = 0;
 | |
|     size_t off = pos / biL;
 | |
|     size_t idx = pos % biL;
 | |
| 
 | |
|     if (val != 0 && val != 1)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     if (X->n * biL <= pos) {
 | |
|         if (val == 0)
 | |
|             return (0);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
 | |
|     }
 | |
| 
 | |
|     X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
 | |
|     X->p[off] |= (mbedtls_mpi_uint) val << idx;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of less significant zero-bits
 | |
|  */
 | |
| size_t mbedtls_mpi_lsb(const mbedtls_mpi *X) {
 | |
|     size_t i, j, count = 0;
 | |
| 
 | |
|     for (i = 0; i < X->n; i++)
 | |
|         for (j = 0; j < biL; j++, count++)
 | |
|             if (((X->p[i] >> j) & 1) != 0)
 | |
|                 return (count);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Count leading zero bits in a given integer
 | |
|  */
 | |
| static size_t mbedtls_clz(const mbedtls_mpi_uint x) {
 | |
|     size_t j;
 | |
|     mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
 | |
| 
 | |
|     for (j = 0; j < biL; j++) {
 | |
|         if (x & mask) break;
 | |
| 
 | |
|         mask >>= 1;
 | |
|     }
 | |
| 
 | |
|     return j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of bits
 | |
|  */
 | |
| size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X) {
 | |
|     size_t i, j;
 | |
| 
 | |
|     if (X->n == 0)
 | |
|         return (0);
 | |
| 
 | |
|     for (i = X->n - 1; i > 0; i--)
 | |
|         if (X->p[i] != 0)
 | |
|             break;
 | |
| 
 | |
|     j = biL - mbedtls_clz(X->p[i]);
 | |
| 
 | |
|     return ((i * biL) + j);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the total size in bytes
 | |
|  */
 | |
| size_t mbedtls_mpi_size(const mbedtls_mpi *X) {
 | |
|     return ((mbedtls_mpi_bitlen(X) + 7) >> 3);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert an ASCII character to digit value
 | |
|  */
 | |
| static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c) {
 | |
|     *d = 255;
 | |
| 
 | |
|     if (c >= 0x30 && c <= 0x39) *d = c - 0x30;
 | |
|     if (c >= 0x41 && c <= 0x46) *d = c - 0x37;
 | |
|     if (c >= 0x61 && c <= 0x66) *d = c - 0x57;
 | |
| 
 | |
|     if (*d >= (mbedtls_mpi_uint) radix)
 | |
|         return (MBEDTLS_ERR_MPI_INVALID_CHARACTER);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Import from an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s) {
 | |
|     int ret;
 | |
|     size_t i, j, slen, n;
 | |
|     mbedtls_mpi_uint d;
 | |
|     mbedtls_mpi T;
 | |
| 
 | |
|     if (radix < 2 || radix > 16)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
|     slen = strlen(s);
 | |
| 
 | |
|     if (radix == 16) {
 | |
|         if (slen > MPI_SIZE_T_MAX >> 2)
 | |
|             return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|         n = BITS_TO_LIMBS(slen << 2);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|         for (i = slen, j = 0; i > 0; i--, j++) {
 | |
|             if (i == 1 && s[i - 1] == '-') {
 | |
|                 X->s = -1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
 | |
|             X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|         for (i = 0; i < slen; i++) {
 | |
|             if (i == 0 && s[i] == '-') {
 | |
|                 X->s = -1;
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
 | |
| 
 | |
|             if (X->s == 1) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
 | |
|             } else {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, &T, d));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper to write the digits high-order first
 | |
|  */
 | |
| static int mpi_write_hlp(mbedtls_mpi *X, int radix, char **p) {
 | |
|     int ret;
 | |
|     mbedtls_mpi_uint r;
 | |
| 
 | |
|     if (radix < 2 || radix > 16)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(X, 0) != 0)
 | |
|         MBEDTLS_MPI_CHK(mpi_write_hlp(X, radix, p));
 | |
| 
 | |
|     if (r < 10)
 | |
|         *(*p)++ = (char)(r + 0x30);
 | |
|     else
 | |
|         *(*p)++ = (char)(r + 0x37);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export into an ASCII string
 | |
|  */
 | |
| int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
 | |
|                              char *buf, size_t buflen, size_t *olen) {
 | |
|     int ret = 0;
 | |
|     size_t n;
 | |
|     char *p;
 | |
|     mbedtls_mpi T;
 | |
| 
 | |
|     if (radix < 2 || radix > 16)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     n = mbedtls_mpi_bitlen(X);
 | |
|     if (radix >=  4) n >>= 1;
 | |
|     if (radix >= 16) n >>= 1;
 | |
|     /*
 | |
|      * Round up the buffer length to an even value to ensure that there is
 | |
|      * enough room for hexadecimal values that can be represented in an odd
 | |
|      * number of digits.
 | |
|      */
 | |
|     n += 3 + ((n + 1) & 1);
 | |
| 
 | |
|     if (buflen < n) {
 | |
|         *olen = n;
 | |
|         return (MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL);
 | |
|     }
 | |
| 
 | |
|     p = buf;
 | |
|     mbedtls_mpi_init(&T);
 | |
| 
 | |
|     if (X->s == -1)
 | |
|         *p++ = '-';
 | |
| 
 | |
|     if (radix == 16) {
 | |
|         int c;
 | |
|         size_t i, j, k;
 | |
| 
 | |
|         for (i = X->n, k = 0; i > 0; i--) {
 | |
|             for (j = ciL; j > 0; j--) {
 | |
|                 c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
 | |
| 
 | |
|                 if (c == 0 && k == 0 && (i + j) != 2)
 | |
|                     continue;
 | |
| 
 | |
|                 *(p++) = "0123456789ABCDEF" [c / 16];
 | |
|                 *(p++) = "0123456789ABCDEF" [c % 16];
 | |
|                 k = 1;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
 | |
| 
 | |
|         if (T.s == -1)
 | |
|             T.s = 1;
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p));
 | |
|     }
 | |
| 
 | |
|     *p++ = '\0';
 | |
|     *olen = p - buf;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&T);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_FS_IO)
 | |
| /*
 | |
|  * Read X from an opened file
 | |
|  */
 | |
| int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin) {
 | |
|     mbedtls_mpi_uint d;
 | |
|     size_t slen;
 | |
|     char *p;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
 | |
| 
 | |
|     memset(s, 0, sizeof(s));
 | |
|     if (fgets(s, sizeof(s) - 1, fin) == NULL)
 | |
|         return (MBEDTLS_ERR_MPI_FILE_IO_ERROR);
 | |
| 
 | |
|     slen = strlen(s);
 | |
|     if (slen == sizeof(s) - 2)
 | |
|         return (MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL);
 | |
| 
 | |
|     if (slen > 0 && s[slen - 1] == '\n') { slen--; s[slen] = '\0'; }
 | |
|     if (slen > 0 && s[slen - 1] == '\r') { slen--; s[slen] = '\0'; }
 | |
| 
 | |
|     p = s + slen;
 | |
|     while (p-- > s)
 | |
|         if (mpi_get_digit(&d, radix, *p) != 0)
 | |
|             break;
 | |
| 
 | |
|     return (mbedtls_mpi_read_string(X, radix, p + 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write X into an opened file (or stdout if fout == NULL)
 | |
|  */
 | |
| int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout) {
 | |
|     int ret;
 | |
|     size_t n, slen, plen;
 | |
|     /*
 | |
|      * Buffer should have space for (short) label and decimal formatted MPI,
 | |
|      * newline characters and '\0'
 | |
|      */
 | |
|     char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
 | |
| 
 | |
|     memset(s, 0, sizeof(s));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
 | |
| 
 | |
|     if (p == NULL) p = "";
 | |
| 
 | |
|     plen = strlen(p);
 | |
|     slen = strlen(s);
 | |
|     s[slen++] = '\r';
 | |
|     s[slen++] = '\n';
 | |
| 
 | |
|     if (fout != NULL) {
 | |
|         if (fwrite(p, 1, plen, fout) != plen ||
 | |
|                 fwrite(s, 1, slen, fout) != slen)
 | |
|             return (MBEDTLS_ERR_MPI_FILE_IO_ERROR);
 | |
|     } else
 | |
|         mbedtls_printf("%s%s", p, s);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| #endif /* MBEDTLS_FS_IO */
 | |
| 
 | |
| /*
 | |
|  * Import X from unsigned binary data, big endian
 | |
|  */
 | |
| int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen) {
 | |
|     int ret;
 | |
|     size_t i, j;
 | |
|     size_t const limbs = CHARS_TO_LIMBS(buflen);
 | |
| 
 | |
|     /* Ensure that target MPI has exactly the necessary number of limbs */
 | |
|     if (X->n != limbs) {
 | |
|         mbedtls_mpi_free(X);
 | |
|         mbedtls_mpi_init(X);
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, limbs));
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|     for (i = buflen, j = 0; i > 0; i--, j++)
 | |
|         X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Export X into unsigned binary data, big endian
 | |
|  */
 | |
| int mbedtls_mpi_write_binary(const mbedtls_mpi *X, unsigned char *buf, size_t buflen) {
 | |
|     size_t i, j, n;
 | |
| 
 | |
|     n = mbedtls_mpi_size(X);
 | |
| 
 | |
|     if (buflen < n)
 | |
|         return (MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL);
 | |
| 
 | |
|     memset(buf, 0, buflen);
 | |
| 
 | |
|     for (i = buflen - 1, j = 0; n > 0; i--, j++, n--)
 | |
|         buf[i] = (unsigned char)(X->p[j / ciL] >> ((j % ciL) << 3));
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Left-shift: X <<= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count) {
 | |
|     int ret;
 | |
|     size_t i, v0, t1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
| 
 | |
|     v0 = count / (biL);
 | |
|     t1 = count & (biL - 1);
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen(X) + count;
 | |
| 
 | |
|     if (X->n * biL < i)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = X->n; i > v0; i--)
 | |
|             X->p[i - 1] = X->p[i - v0 - 1];
 | |
| 
 | |
|         for (; i > 0; i--)
 | |
|             X->p[i - 1] = 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (t1 > 0) {
 | |
|         for (i = v0; i < X->n; i++) {
 | |
|             r1 = X->p[i] >> (biL - t1);
 | |
|             X->p[i] <<= t1;
 | |
|             X->p[i] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Right-shift: X >>= count
 | |
|  */
 | |
| int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count) {
 | |
|     size_t i, v0, v1;
 | |
|     mbedtls_mpi_uint r0 = 0, r1;
 | |
| 
 | |
|     v0 = count /  biL;
 | |
|     v1 = count & (biL - 1);
 | |
| 
 | |
|     if (v0 > X->n || (v0 == X->n && v1 > 0))
 | |
|         return mbedtls_mpi_lset(X, 0);
 | |
| 
 | |
|     /*
 | |
|      * shift by count / limb_size
 | |
|      */
 | |
|     if (v0 > 0) {
 | |
|         for (i = 0; i < X->n - v0; i++)
 | |
|             X->p[i] = X->p[i + v0];
 | |
| 
 | |
|         for (; i < X->n; i++)
 | |
|             X->p[i] = 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * shift by count % limb_size
 | |
|      */
 | |
|     if (v1 > 0) {
 | |
|         for (i = X->n; i > 0; i--) {
 | |
|             r1 = X->p[i - 1] << (biL - v1);
 | |
|             X->p[i - 1] >>= v1;
 | |
|             X->p[i - 1] |= r0;
 | |
|             r0 = r1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare unsigned values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y) {
 | |
|     size_t i, j;
 | |
| 
 | |
|     for (i = X->n; i > 0; i--)
 | |
|         if (X->p[i - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     for (j = Y->n; j > 0; j--)
 | |
|         if (Y->p[j - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     if (i == 0 && j == 0)
 | |
|         return (0);
 | |
| 
 | |
|     if (i > j) return (1);
 | |
|     if (j > i) return (-1);
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         if (X->p[i - 1] > Y->p[i - 1]) return (1);
 | |
|         if (X->p[i - 1] < Y->p[i - 1]) return (-1);
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y) {
 | |
|     size_t i, j;
 | |
| 
 | |
|     for (i = X->n; i > 0; i--)
 | |
|         if (X->p[i - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     for (j = Y->n; j > 0; j--)
 | |
|         if (Y->p[j - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     if (i == 0 && j == 0)
 | |
|         return (0);
 | |
| 
 | |
|     if (i > j) return (X->s);
 | |
|     if (j > i) return (-Y->s);
 | |
| 
 | |
|     if (X->s > 0 && Y->s < 0) return (1);
 | |
|     if (Y->s > 0 && X->s < 0) return (-1);
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         if (X->p[i - 1] > Y->p[i - 1]) return (X->s);
 | |
|         if (X->p[i - 1] < Y->p[i - 1]) return (-X->s);
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare signed values
 | |
|  */
 | |
| int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z) {
 | |
|     mbedtls_mpi Y;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     *p  = (z < 0) ? -z : z;
 | |
|     Y.s = (z < 0) ? -1 : 1;
 | |
|     Y.n = 1;
 | |
|     Y.p = p;
 | |
| 
 | |
|     return (mbedtls_mpi_cmp_mpi(X, &Y));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned addition: X = |A| + |B|  (HAC 14.7)
 | |
|  */
 | |
| int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret;
 | |
|     size_t i, j;
 | |
|     mbedtls_mpi_uint *o, *p, c, tmp;
 | |
| 
 | |
|     if (X == B) {
 | |
|         const mbedtls_mpi *T = A;
 | |
|         A = X;
 | |
|         B = T;
 | |
|     }
 | |
| 
 | |
|     if (X != A)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | |
| 
 | |
|     /*
 | |
|      * X should always be positive as a result of unsigned additions.
 | |
|      */
 | |
|     X->s = 1;
 | |
| 
 | |
|     for (j = B->n; j > 0; j--)
 | |
|         if (B->p[j - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
 | |
| 
 | |
|     o = B->p;
 | |
|     p = X->p;
 | |
|     c = 0;
 | |
| 
 | |
|     /*
 | |
|      * tmp is used because it might happen that p == o
 | |
|      */
 | |
|     for (i = 0; i < j; i++, o++, p++) {
 | |
|         tmp = *o;
 | |
|         *p +=  c;
 | |
|         c  = (*p <  c);
 | |
|         *p += tmp;
 | |
|         c += (*p < tmp);
 | |
|     }
 | |
| 
 | |
|     while (c != 0) {
 | |
|         if (i >= X->n) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + 1));
 | |
|             p = X->p + i;
 | |
|         }
 | |
| 
 | |
|         *p += c;
 | |
|         c = (*p < c);
 | |
|         i++;
 | |
|         p++;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for mbedtls_mpi subtraction
 | |
|  */
 | |
| static void mpi_sub_hlp(size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d) {
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint c, z;
 | |
| 
 | |
|     for (i = c = 0; i < n; i++, s++, d++) {
 | |
|         z = (*d <  c);
 | |
|         *d -=  c;
 | |
|         c = (*d < *s) + z;
 | |
|         *d -= *s;
 | |
|     }
 | |
| 
 | |
|     while (c != 0) {
 | |
|         z = (*d < c);
 | |
|         *d -= c;
 | |
|         c = z;
 | |
|         d++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned subtraction: X = |A| - |B|  (HAC 14.9)
 | |
|  */
 | |
| int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     mbedtls_mpi TB;
 | |
|     int ret;
 | |
|     size_t n;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_abs(A, B) < 0)
 | |
|         return (MBEDTLS_ERR_MPI_NEGATIVE_VALUE);
 | |
| 
 | |
|     mbedtls_mpi_init(&TB);
 | |
| 
 | |
|     if (X == B) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
 | |
|         B = &TB;
 | |
|     }
 | |
| 
 | |
|     if (X != A)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
 | |
| 
 | |
|     /*
 | |
|      * X should always be positive as a result of unsigned subtractions.
 | |
|      */
 | |
|     X->s = 1;
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
|     for (n = B->n; n > 0; n--)
 | |
|         if (B->p[n - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     mpi_sub_hlp(n, B->p, X->p);
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TB);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + B
 | |
|  */
 | |
| int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret, s = A->s;
 | |
| 
 | |
|     if (A->s * B->s < 0) {
 | |
|         if (mbedtls_mpi_cmp_abs(A, B) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
 | |
|             X->s =  s;
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
 | |
|             X->s = -s;
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
 | |
|         X->s = s;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - B
 | |
|  */
 | |
| int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret, s = A->s;
 | |
| 
 | |
|     if (A->s * B->s > 0) {
 | |
|         if (mbedtls_mpi_cmp_abs(A, B) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
 | |
|             X->s =  s;
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
 | |
|             X->s = -s;
 | |
|         }
 | |
|     } else {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
 | |
|         X->s = s;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed addition: X = A + b
 | |
|  */
 | |
| int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) {
 | |
|     mbedtls_mpi _B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     p[0] = (b < 0) ? -b : b;
 | |
|     _B.s = (b < 0) ? -1 : 1;
 | |
|     _B.n = 1;
 | |
|     _B.p = p;
 | |
| 
 | |
|     return (mbedtls_mpi_add_mpi(X, A, &_B));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signed subtraction: X = A - b
 | |
|  */
 | |
| int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b) {
 | |
|     mbedtls_mpi _B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     p[0] = (b < 0) ? -b : b;
 | |
|     _B.s = (b < 0) ? -1 : 1;
 | |
|     _B.n = 1;
 | |
|     _B.p = p;
 | |
| 
 | |
|     return (mbedtls_mpi_sub_mpi(X, A, &_B));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper for mbedtls_mpi multiplication
 | |
|  */
 | |
| static
 | |
| #if defined(__APPLE__) && defined(__arm__)
 | |
| /*
 | |
|  * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
 | |
|  * appears to need this to prevent bad ARM code generation at -O3.
 | |
|  */
 | |
| __attribute__((noinline))
 | |
| #endif
 | |
| void mpi_mul_hlp(size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b) {
 | |
|     mbedtls_mpi_uint c = 0, t = 0;
 | |
| 
 | |
| #if defined(MULADDC_HUIT)
 | |
|     for (; i >= 8; i -= 8) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_HUIT
 | |
|         MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE
 | |
|         MULADDC_STOP
 | |
|     }
 | |
| #else /* MULADDC_HUIT */
 | |
|     for (; i >= 16; i -= 16) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
| 
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i >= 8; i -= 8) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
| 
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_CORE   MULADDC_CORE
 | |
|         MULADDC_STOP
 | |
|     }
 | |
| 
 | |
|     for (; i > 0; i--) {
 | |
|         MULADDC_INIT
 | |
|         MULADDC_CORE
 | |
|         MULADDC_STOP
 | |
|     }
 | |
| #endif /* MULADDC_HUIT */
 | |
| 
 | |
|     t++;
 | |
| 
 | |
|     do {
 | |
|         *d += c;
 | |
|         c = (*d < c);
 | |
|         d++;
 | |
|     } while (c != 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * B  (HAC 14.12)
 | |
|  */
 | |
| int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret;
 | |
|     size_t i, j;
 | |
|     mbedtls_mpi TA, TB;
 | |
| 
 | |
|     mbedtls_mpi_init(&TA);
 | |
|     mbedtls_mpi_init(&TB);
 | |
| 
 | |
|     if (X == A) { MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA; }
 | |
|     if (X == B) { MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB; }
 | |
| 
 | |
|     for (i = A->n; i > 0; i--)
 | |
|         if (A->p[i - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     for (j = B->n; j > 0; j--)
 | |
|         if (B->p[j - 1] != 0)
 | |
|             break;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
 | |
| 
 | |
|     for (; j > 0; j--)
 | |
|         mpi_mul_hlp(i, A->p, X->p + j - 1, B->p[j - 1]);
 | |
| 
 | |
|     X->s = A->s * B->s;
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TB);
 | |
|     mbedtls_mpi_free(&TA);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baseline multiplication: X = A * b
 | |
|  */
 | |
| int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b) {
 | |
|     mbedtls_mpi _B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     _B.s = 1;
 | |
|     _B.n = 1;
 | |
|     _B.p = p;
 | |
|     p[0] = b;
 | |
| 
 | |
|     return (mbedtls_mpi_mul_mpi(X, A, &_B));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
 | |
|  * mbedtls_mpi_uint divisor, d
 | |
|  */
 | |
| static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
 | |
|                                             mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r) {
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     mbedtls_t_udbl dividend, quotient;
 | |
| #else
 | |
|     const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
 | |
|     const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
 | |
|     mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
 | |
|     mbedtls_mpi_uint u0_msw, u0_lsw;
 | |
|     size_t s;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Check for overflow
 | |
|      */
 | |
|     if (0 == d || u1 >= d) {
 | |
|         if (r != NULL) *r = ~0;
 | |
| 
 | |
|         return (~0);
 | |
|     }
 | |
| 
 | |
| #if defined(MBEDTLS_HAVE_UDBL)
 | |
|     dividend  = (mbedtls_t_udbl) u1 << biL;
 | |
|     dividend |= (mbedtls_t_udbl) u0;
 | |
|     quotient = dividend / d;
 | |
|     if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1)
 | |
|         quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
 | |
| 
 | |
|     if (r != NULL)
 | |
|         *r = (mbedtls_mpi_uint)(dividend - (quotient * d));
 | |
| 
 | |
|     return (mbedtls_mpi_uint) quotient;
 | |
| #else
 | |
| 
 | |
|     /*
 | |
|      * Algorithm D, Section 4.3.1 - The Art of Computer Programming
 | |
|      *   Vol. 2 - Seminumerical Algorithms, Knuth
 | |
|      */
 | |
| 
 | |
|     /*
 | |
|      * Normalize the divisor, d, and dividend, u0, u1
 | |
|      */
 | |
|     s = mbedtls_clz(d);
 | |
|     d = d << s;
 | |
| 
 | |
|     u1 = u1 << s;
 | |
|     u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint)s >> (biL - 1));
 | |
|     u0 =  u0 << s;
 | |
| 
 | |
|     d1 = d >> biH;
 | |
|     d0 = d & uint_halfword_mask;
 | |
| 
 | |
|     u0_msw = u0 >> biH;
 | |
|     u0_lsw = u0 & uint_halfword_mask;
 | |
| 
 | |
|     /*
 | |
|      * Find the first quotient and remainder
 | |
|      */
 | |
|     q1 = u1 / d1;
 | |
|     r0 = u1 - d1 * q1;
 | |
| 
 | |
|     while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
 | |
|         q1 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if (r0 >= radix) break;
 | |
|     }
 | |
| 
 | |
|     rAX = (u1 * radix) + (u0_msw - q1 * d);
 | |
|     q0 = rAX / d1;
 | |
|     r0 = rAX - q0 * d1;
 | |
| 
 | |
|     while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
 | |
|         q0 -= 1;
 | |
|         r0 += d1;
 | |
| 
 | |
|         if (r0 >= radix) break;
 | |
|     }
 | |
| 
 | |
|     if (r != NULL)
 | |
|         *r = (rAX * radix + u0_lsw - q0 * d) >> s;
 | |
| 
 | |
|     quotient = q1 * radix + q0;
 | |
| 
 | |
|     return quotient;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20)
 | |
|  */
 | |
| int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret;
 | |
|     size_t i, n, t, k;
 | |
|     mbedtls_mpi X, Y, Z, T1, T2;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(B, 0) == 0)
 | |
|         return (MBEDTLS_ERR_MPI_DIVISION_BY_ZERO);
 | |
| 
 | |
|     mbedtls_mpi_init(&X);
 | |
|     mbedtls_mpi_init(&Y);
 | |
|     mbedtls_mpi_init(&Z);
 | |
|     mbedtls_mpi_init(&T1);
 | |
|     mbedtls_mpi_init(&T2);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_abs(A, B) < 0) {
 | |
|         if (Q != NULL) MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
 | |
|         if (R != NULL) MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
 | |
|         return (0);
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
 | |
|     X.s = Y.s = 1;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z,  0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, 2));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T2, 3));
 | |
| 
 | |
|     k = mbedtls_mpi_bitlen(&Y) % biL;
 | |
|     if (k < biL - 1) {
 | |
|         k = biL - 1 - k;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
 | |
|     } else k = 0;
 | |
| 
 | |
|     n = X.n - 1;
 | |
|     t = Y.n - 1;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
 | |
|         Z.p[n - t]++;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
 | |
|     }
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
 | |
| 
 | |
|     for (i = n; i > t ; i--) {
 | |
|         if (X.p[i] >= Y.p[t])
 | |
|             Z.p[i - t - 1] = ~0;
 | |
|         else {
 | |
|             Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
 | |
|                                                  Y.p[t], NULL);
 | |
|         }
 | |
| 
 | |
|         Z.p[i - t - 1]++;
 | |
|         do {
 | |
|             Z.p[i - t - 1]--;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
 | |
|             T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
 | |
|             T1.p[1] = Y.p[t];
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T2, 0));
 | |
|             T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
 | |
|             T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
 | |
|             T2.p[2] = X.p[i];
 | |
|         } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1,  biL * (i - t - 1)));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
 | |
|             Z.p[i - t - 1]--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (Q != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
 | |
|         Q->s = A->s * B->s;
 | |
|     }
 | |
| 
 | |
|     if (R != NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
 | |
|         X.s = A->s;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(R, 0) == 0)
 | |
|             R->s = 1;
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&X);
 | |
|     mbedtls_mpi_free(&Y);
 | |
|     mbedtls_mpi_free(&Z);
 | |
|     mbedtls_mpi_free(&T1);
 | |
|     mbedtls_mpi_free(&T2);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Division by int: A = Q * b + R
 | |
|  */
 | |
| int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b) {
 | |
|     mbedtls_mpi _B;
 | |
|     mbedtls_mpi_uint p[1];
 | |
| 
 | |
|     p[0] = (b < 0) ? -b : b;
 | |
|     _B.s = (b < 0) ? -1 : 1;
 | |
|     _B.n = 1;
 | |
|     _B.p = p;
 | |
| 
 | |
|     return (mbedtls_mpi_div_mpi(Q, R, A, &_B));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: R = A mod B
 | |
|  */
 | |
| int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(B, 0) < 0)
 | |
|         return (MBEDTLS_ERR_MPI_NEGATIVE_VALUE);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_int(R, 0) < 0)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(R, B) >= 0)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modulo: r = A mod b
 | |
|  */
 | |
| int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b) {
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint x, y, z;
 | |
| 
 | |
|     if (b == 0)
 | |
|         return (MBEDTLS_ERR_MPI_DIVISION_BY_ZERO);
 | |
| 
 | |
|     if (b < 0)
 | |
|         return (MBEDTLS_ERR_MPI_NEGATIVE_VALUE);
 | |
| 
 | |
|     /*
 | |
|      * handle trivial cases
 | |
|      */
 | |
|     if (b == 1) {
 | |
|         *r = 0;
 | |
|         return (0);
 | |
|     }
 | |
| 
 | |
|     if (b == 2) {
 | |
|         *r = A->p[0] & 1;
 | |
|         return (0);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * general case
 | |
|      */
 | |
|     for (i = A->n, y = 0; i > 0; i--) {
 | |
|         x  = A->p[i - 1];
 | |
|         y  = (y << biH) | (x >> biH);
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
| 
 | |
|         x <<= biH;
 | |
|         y  = (y << biH) | (x >> biH);
 | |
|         z  = y / b;
 | |
|         y -= z * b;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If A is negative, then the current y represents a negative value.
 | |
|      * Flipping it to the positive side.
 | |
|      */
 | |
|     if (A->s < 0 && y != 0)
 | |
|         y = b - y;
 | |
| 
 | |
|     *r = y;
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast Montgomery initialization (thanks to Tom St Denis)
 | |
|  */
 | |
| static void mpi_montg_init(mbedtls_mpi_uint *mm, const mbedtls_mpi *N) {
 | |
|     mbedtls_mpi_uint x, m0 = N->p[0];
 | |
|     unsigned int i;
 | |
| 
 | |
|     x  = m0;
 | |
|     x += ((m0 + 2) & 4) << 1;
 | |
| 
 | |
|     for (i = biL; i >= 8; i /= 2)
 | |
|         x *= (2 - (m0 * x));
 | |
| 
 | |
|     *mm = ~x + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36)
 | |
|  */
 | |
| static int mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
 | |
|                        const mbedtls_mpi *T) {
 | |
|     size_t i, n, m;
 | |
|     mbedtls_mpi_uint u0, u1, *d;
 | |
| 
 | |
|     if (T->n < N->n + 1 || T->p == NULL)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     memset(T->p, 0, T->n * ciL);
 | |
| 
 | |
|     d = T->p;
 | |
|     n = N->n;
 | |
|     m = (B->n < n) ? B->n : n;
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         /*
 | |
|          * T = (T + u0*B + u1*N) / 2^biL
 | |
|          */
 | |
|         u0 = A->p[i];
 | |
|         u1 = (d[0] + u0 * B->p[0]) * mm;
 | |
| 
 | |
|         mpi_mul_hlp(m, B->p, d, u0);
 | |
|         mpi_mul_hlp(n, N->p, d, u1);
 | |
| 
 | |
|         *d++ = u0;
 | |
|         d[n + 1] = 0;
 | |
|     }
 | |
| 
 | |
|     memcpy(A->p, d, (n + 1) * ciL);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_abs(A, N) >= 0)
 | |
|         mpi_sub_hlp(n, N->p, A->p);
 | |
|     else
 | |
|         /* prevent timing attacks */
 | |
|         mpi_sub_hlp(n, A->p, T->p);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Montgomery reduction: A = A * R^-1 mod N
 | |
|  */
 | |
| static int mpi_montred(mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T) {
 | |
|     mbedtls_mpi_uint z = 1;
 | |
|     mbedtls_mpi U;
 | |
| 
 | |
|     U.n = U.s = (int) z;
 | |
|     U.p = &z;
 | |
| 
 | |
|     return (mpi_montmul(A, &U, N, mm, T));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85)
 | |
|  */
 | |
| int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR) {
 | |
|     int ret;
 | |
|     size_t wbits, wsize, one = 1;
 | |
|     size_t i, j, nblimbs;
 | |
|     size_t bufsize, nbits;
 | |
|     mbedtls_mpi_uint ei, mm, state;
 | |
|     mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
 | |
|     int neg;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(E, 0) < 0)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     /*
 | |
|      * Init temps and window size
 | |
|      */
 | |
|     mpi_montg_init(&mm, N);
 | |
|     mbedtls_mpi_init(&RR);
 | |
|     mbedtls_mpi_init(&T);
 | |
|     mbedtls_mpi_init(&Apos);
 | |
|     memset(W, 0, sizeof(W));
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen(E);
 | |
| 
 | |
|     wsize = (i > 671) ? 6 : (i > 239) ? 5 :
 | |
|             (i >  79) ? 4 : (i >  23) ? 3 : 1;
 | |
| 
 | |
|     if (wsize > MBEDTLS_MPI_WINDOW_SIZE)
 | |
|         wsize = MBEDTLS_MPI_WINDOW_SIZE;
 | |
| 
 | |
|     j = N->n + 1;
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[1],  j));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T, j * 2));
 | |
| 
 | |
|     /*
 | |
|      * Compensate for negative A (and correct at the end)
 | |
|      */
 | |
|     neg = (A->s == -1);
 | |
|     if (neg) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Apos, A));
 | |
|         Apos.s = 1;
 | |
|         A = &Apos;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If 1st call, pre-compute R^2 mod N
 | |
|      */
 | |
|     if (_RR == NULL || _RR->p == NULL) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&RR, 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&RR, N->n * 2 * biL));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&RR, &RR, N));
 | |
| 
 | |
|         if (_RR != NULL)
 | |
|             memcpy(_RR, &RR, sizeof(mbedtls_mpi));
 | |
|     } else
 | |
|         memcpy(&RR, _RR, sizeof(mbedtls_mpi));
 | |
| 
 | |
|     /*
 | |
|      * W[1] = A * R^2 * R^-1 mod N = A * R mod N
 | |
|      */
 | |
|     if (mbedtls_mpi_cmp_mpi(A, N) >= 0)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&W[1], A, N));
 | |
|     else
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[1], A));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mpi_montmul(&W[1], &RR, N, mm, &T));
 | |
| 
 | |
|     /*
 | |
|      * X = R^2 * R^-1 mod N = R mod N
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &RR));
 | |
|     MBEDTLS_MPI_CHK(mpi_montred(X, N, mm, &T));
 | |
| 
 | |
|     if (wsize > 1) {
 | |
|         /*
 | |
|          * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
 | |
|          */
 | |
|         j =  one << (wsize - 1);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[j], N->n + 1));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[j], &W[1]));
 | |
| 
 | |
|         for (i = 0; i < wsize - 1; i++)
 | |
|             MBEDTLS_MPI_CHK(mpi_montmul(&W[j], &W[j], N, mm, &T));
 | |
| 
 | |
|         /*
 | |
|          * W[i] = W[i - 1] * W[1]
 | |
|          */
 | |
|         for (i = j + 1; i < (one << wsize); i++) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&W[i], N->n + 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&W[i], &W[i - 1]));
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mpi_montmul(&W[i], &W[1], N, mm, &T));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nblimbs = E->n;
 | |
|     bufsize = 0;
 | |
|     nbits   = 0;
 | |
|     wbits   = 0;
 | |
|     state   = 0;
 | |
| 
 | |
|     while (1) {
 | |
|         if (bufsize == 0) {
 | |
|             if (nblimbs == 0)
 | |
|                 break;
 | |
| 
 | |
|             nblimbs--;
 | |
| 
 | |
|             bufsize = sizeof(mbedtls_mpi_uint) << 3;
 | |
|         }
 | |
| 
 | |
|         bufsize--;
 | |
| 
 | |
|         ei = (E->p[nblimbs] >> bufsize) & 1;
 | |
| 
 | |
|         /*
 | |
|          * skip leading 0s
 | |
|          */
 | |
|         if (ei == 0 && state == 0)
 | |
|             continue;
 | |
| 
 | |
|         if (ei == 0 && state == 1) {
 | |
|             /*
 | |
|              * out of window, square X
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mpi_montmul(X, X, N, mm, &T));
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * add ei to current window
 | |
|          */
 | |
|         state = 2;
 | |
| 
 | |
|         nbits++;
 | |
|         wbits |= (ei << (wsize - nbits));
 | |
| 
 | |
|         if (nbits == wsize) {
 | |
|             /*
 | |
|              * X = X^wsize R^-1 mod N
 | |
|              */
 | |
|             for (i = 0; i < wsize; i++)
 | |
|                 MBEDTLS_MPI_CHK(mpi_montmul(X, X, N, mm, &T));
 | |
| 
 | |
|             /*
 | |
|              * X = X * W[wbits] R^-1 mod N
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mpi_montmul(X, &W[wbits], N, mm, &T));
 | |
| 
 | |
|             state--;
 | |
|             nbits = 0;
 | |
|             wbits = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * process the remaining bits
 | |
|      */
 | |
|     for (i = 0; i < nbits; i++) {
 | |
|         MBEDTLS_MPI_CHK(mpi_montmul(X, X, N, mm, &T));
 | |
| 
 | |
|         wbits <<= 1;
 | |
| 
 | |
|         if ((wbits & (one << wsize)) != 0)
 | |
|             MBEDTLS_MPI_CHK(mpi_montmul(X, &W[1], N, mm, &T));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * X = A^E * R * R^-1 mod N = A^E mod N
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mpi_montred(X, N, mm, &T));
 | |
| 
 | |
|     if (neg && E->n != 0 && (E->p[0] & 1) != 0) {
 | |
|         X->s = -1;
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     for (i = (one << (wsize - 1)); i < (one << wsize); i++)
 | |
|         mbedtls_mpi_free(&W[i]);
 | |
| 
 | |
|     mbedtls_mpi_free(&W[1]);
 | |
|     mbedtls_mpi_free(&T);
 | |
|     mbedtls_mpi_free(&Apos);
 | |
| 
 | |
|     if (_RR == NULL || _RR->p == NULL)
 | |
|         mbedtls_mpi_free(&RR);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Greatest common divisor: G = gcd(A, B)  (HAC 14.54)
 | |
|  */
 | |
| int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B) {
 | |
|     int ret;
 | |
|     size_t lz, lzt;
 | |
|     mbedtls_mpi TG, TA, TB;
 | |
| 
 | |
|     mbedtls_mpi_init(&TG);
 | |
|     mbedtls_mpi_init(&TA);
 | |
|     mbedtls_mpi_init(&TB);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
 | |
| 
 | |
|     lz = mbedtls_mpi_lsb(&TA);
 | |
|     lzt = mbedtls_mpi_lsb(&TB);
 | |
| 
 | |
|     if (lzt < lz)
 | |
|         lz = lzt;
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, lz));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, lz));
 | |
| 
 | |
|     TA.s = TB.s = 1;
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TG);
 | |
|     mbedtls_mpi_free(&TA);
 | |
|     mbedtls_mpi_free(&TB);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill X with size bytes of random.
 | |
|  *
 | |
|  * Use a temporary bytes representation to make sure the result is the same
 | |
|  * regardless of the platform endianness (useful when f_rng is actually
 | |
|  * deterministic, eg for tests).
 | |
|  */
 | |
| int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng) {
 | |
|     int ret;
 | |
|     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
 | |
| 
 | |
|     if (size > MBEDTLS_MPI_MAX_SIZE)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(f_rng(p_rng, buf, size));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(X, buf, size));
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_platform_zeroize(buf, sizeof(buf));
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64)
 | |
|  */
 | |
| int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N) {
 | |
|     int ret;
 | |
|     mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(N, 1) <= 0)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     mbedtls_mpi_init(&TA);
 | |
|     mbedtls_mpi_init(&TU);
 | |
|     mbedtls_mpi_init(&U1);
 | |
|     mbedtls_mpi_init(&U2);
 | |
|     mbedtls_mpi_init(&G);
 | |
|     mbedtls_mpi_init(&TB);
 | |
|     mbedtls_mpi_init(&TV);
 | |
|     mbedtls_mpi_init(&V1);
 | |
|     mbedtls_mpi_init(&V2);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
 | |
|         ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
 | |
| 
 | |
|     do {
 | |
|         while ((TU.p[0] & 1) == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
 | |
| 
 | |
|             if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
 | |
|         }
 | |
| 
 | |
|         while ((TV.p[0] & 1) == 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
 | |
| 
 | |
|             if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
 | |
|             }
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
 | |
|         }
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
 | |
|         } else {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
 | |
|         }
 | |
|     } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_int(&V1, 0) < 0)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
 | |
| 
 | |
|     while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0)
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&TA);
 | |
|     mbedtls_mpi_free(&TU);
 | |
|     mbedtls_mpi_free(&U1);
 | |
|     mbedtls_mpi_free(&U2);
 | |
|     mbedtls_mpi_free(&G);
 | |
|     mbedtls_mpi_free(&TB);
 | |
|     mbedtls_mpi_free(&TV);
 | |
|     mbedtls_mpi_free(&V1);
 | |
|     mbedtls_mpi_free(&V2);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| #if defined(MBEDTLS_GENPRIME)
 | |
| 
 | |
| static const int small_prime[] = {
 | |
|     3,    5,    7,   11,   13,   17,   19,   23,
 | |
|     29,   31,   37,   41,   43,   47,   53,   59,
 | |
|     61,   67,   71,   73,   79,   83,   89,   97,
 | |
|     101,  103,  107,  109,  113,  127,  131,  137,
 | |
|     139,  149,  151,  157,  163,  167,  173,  179,
 | |
|     181,  191,  193,  197,  199,  211,  223,  227,
 | |
|     229,  233,  239,  241,  251,  257,  263,  269,
 | |
|     271,  277,  281,  283,  293,  307,  311,  313,
 | |
|     317,  331,  337,  347,  349,  353,  359,  367,
 | |
|     373,  379,  383,  389,  397,  401,  409,  419,
 | |
|     421,  431,  433,  439,  443,  449,  457,  461,
 | |
|     463,  467,  479,  487,  491,  499,  503,  509,
 | |
|     521,  523,  541,  547,  557,  563,  569,  571,
 | |
|     577,  587,  593,  599,  601,  607,  613,  617,
 | |
|     619,  631,  641,  643,  647,  653,  659,  661,
 | |
|     673,  677,  683,  691,  701,  709,  719,  727,
 | |
|     733,  739,  743,  751,  757,  761,  769,  773,
 | |
|     787,  797,  809,  811,  821,  823,  827,  829,
 | |
|     839,  853,  857,  859,  863,  877,  881,  883,
 | |
|     887,  907,  911,  919,  929,  937,  941,  947,
 | |
|     953,  967,  971,  977,  983,  991,  997, -103
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Small divisors test (X must be positive)
 | |
|  *
 | |
|  * Return values:
 | |
|  * 0: no small factor (possible prime, more tests needed)
 | |
|  * 1: certain prime
 | |
|  * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
 | |
|  * other negative: error
 | |
|  */
 | |
| static int mpi_check_small_factors(const mbedtls_mpi *X) {
 | |
|     int ret = 0;
 | |
|     size_t i;
 | |
|     mbedtls_mpi_uint r;
 | |
| 
 | |
|     if ((X->p[0] & 1) == 0)
 | |
|         return (MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
 | |
| 
 | |
|     for (i = 0; small_prime[i] > 0; i++) {
 | |
|         if (mbedtls_mpi_cmp_int(X, small_prime[i]) <= 0)
 | |
|             return (1);
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, small_prime[i]));
 | |
| 
 | |
|         if (r == 0)
 | |
|             return (MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Miller-Rabin pseudo-primality test  (HAC 4.24)
 | |
|  */
 | |
| static int mpi_miller_rabin(const mbedtls_mpi *X,
 | |
|                             int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                             void *p_rng) {
 | |
|     int ret, count;
 | |
|     size_t i, j, k, n, s;
 | |
|     mbedtls_mpi W, R, T, A, RR;
 | |
| 
 | |
|     mbedtls_mpi_init(&W);
 | |
|     mbedtls_mpi_init(&R);
 | |
|     mbedtls_mpi_init(&T);
 | |
|     mbedtls_mpi_init(&A);
 | |
|     mbedtls_mpi_init(&RR);
 | |
| 
 | |
|     /*
 | |
|      * W = |X| - 1
 | |
|      * R = W >> lsb( W )
 | |
|      */
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
 | |
|     s = mbedtls_mpi_lsb(&W);
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
 | |
| 
 | |
|     i = mbedtls_mpi_bitlen(X);
 | |
|     /*
 | |
|      * HAC, table 4.4
 | |
|      */
 | |
|     n = ((i >= 1300) ?  2 : (i >=  850) ?  3 :
 | |
|          (i >=  650) ?  4 : (i >=  350) ?  8 :
 | |
|          (i >=  250) ? 12 : (i >=  150) ? 18 : 27);
 | |
| 
 | |
|     for (i = 0; i < n; i++) {
 | |
|         /*
 | |
|          * pick a random A, 1 < A < |X| - 1
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&A, &W) >= 0) {
 | |
|             j = mbedtls_mpi_bitlen(&A) - mbedtls_mpi_bitlen(&W);
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&A, j + 1));
 | |
|         }
 | |
|         A.p[0] |= 3;
 | |
| 
 | |
|         count = 0;
 | |
|         do {
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
 | |
| 
 | |
|             j = mbedtls_mpi_bitlen(&A);
 | |
|             k = mbedtls_mpi_bitlen(&W);
 | |
|             if (j > k) {
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&A, j - k));
 | |
|             }
 | |
| 
 | |
|             if (count++ > 30) {
 | |
|                 return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             }
 | |
| 
 | |
|         } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
 | |
|                  mbedtls_mpi_cmp_int(&A, 1)  <= 0);
 | |
| 
 | |
|         /*
 | |
|          * A = A^R mod |X|
 | |
|          */
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
 | |
|                 mbedtls_mpi_cmp_int(&A,  1) == 0)
 | |
|             continue;
 | |
| 
 | |
|         j = 1;
 | |
|         while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
 | |
|             /*
 | |
|              * A = A * A mod |X|
 | |
|              */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
 | |
| 
 | |
|             if (mbedtls_mpi_cmp_int(&A, 1) == 0)
 | |
|                 break;
 | |
| 
 | |
|             j++;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * not prime if A != |X| - 1 or A == 1
 | |
|          */
 | |
|         if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
 | |
|                 mbedtls_mpi_cmp_int(&A,  1) == 0) {
 | |
|             ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
|     mbedtls_mpi_free(&W);
 | |
|     mbedtls_mpi_free(&R);
 | |
|     mbedtls_mpi_free(&T);
 | |
|     mbedtls_mpi_free(&A);
 | |
|     mbedtls_mpi_free(&RR);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pseudo-primality test: small factors, then Miller-Rabin
 | |
|  */
 | |
| int mbedtls_mpi_is_prime(const mbedtls_mpi *X,
 | |
|                          int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                          void *p_rng) {
 | |
|     int ret;
 | |
|     mbedtls_mpi XX;
 | |
| 
 | |
|     XX.s = 1;
 | |
|     XX.n = X->n;
 | |
|     XX.p = X->p;
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
 | |
|             mbedtls_mpi_cmp_int(&XX, 1) == 0)
 | |
|         return (MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_int(&XX, 2) == 0)
 | |
|         return (0);
 | |
| 
 | |
|     if ((ret = mpi_check_small_factors(&XX)) != 0) {
 | |
|         if (ret == 1)
 | |
|             return (0);
 | |
| 
 | |
|         return (ret);
 | |
|     }
 | |
| 
 | |
|     return (mpi_miller_rabin(&XX, f_rng, p_rng));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prime number generation
 | |
|  *
 | |
|  * If dh_flag is 0 and nbits is at least 1024, then the procedure
 | |
|  * follows the RSA probably-prime generation method of FIPS 186-4.
 | |
|  * NB. FIPS 186-4 only allows the specific bit lengths of 1024 and 1536.
 | |
|  */
 | |
| int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int dh_flag,
 | |
|                           int (*f_rng)(void *, unsigned char *, size_t),
 | |
|                           void *p_rng) {
 | |
| #ifdef MBEDTLS_HAVE_INT64
 | |
| // ceil(2^63.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
 | |
| #else
 | |
| // ceil(2^31.5)
 | |
| #define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
 | |
| #endif
 | |
|     int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
 | |
|     size_t k, n;
 | |
|     mbedtls_mpi_uint r;
 | |
|     mbedtls_mpi Y;
 | |
| 
 | |
|     if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS)
 | |
|         return (MBEDTLS_ERR_MPI_BAD_INPUT_DATA);
 | |
| 
 | |
|     mbedtls_mpi_init(&Y);
 | |
| 
 | |
|     n = BITS_TO_LIMBS(nbits);
 | |
| 
 | |
|     while (1) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
 | |
|         /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
 | |
|         if (X->p[n - 1] < CEIL_MAXUINT_DIV_SQRT2) continue;
 | |
| 
 | |
|         k = n * biL;
 | |
|         if (k > nbits) MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
 | |
|         X->p[0] |= 1;
 | |
| 
 | |
|         if (dh_flag == 0) {
 | |
|             ret = mbedtls_mpi_is_prime(X, f_rng, p_rng);
 | |
| 
 | |
|             if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE)
 | |
|                 goto cleanup;
 | |
|         } else {
 | |
|             /*
 | |
|              * An necessary condition for Y and X = 2Y + 1 to be prime
 | |
|              * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
 | |
|              * Make sure it is satisfied, while keeping X = 3 mod 4
 | |
|              */
 | |
| 
 | |
|             X->p[0] |= 2;
 | |
| 
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
 | |
|             if (r == 0)
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
 | |
|             else if (r == 1)
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
 | |
| 
 | |
|             /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
 | |
|             MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
 | |
| 
 | |
|             while (1) {
 | |
|                 /*
 | |
|                  * First, check small factors for X and Y
 | |
|                  * before doing Miller-Rabin on any of them
 | |
|                  */
 | |
|                 if ((ret = mpi_check_small_factors(X)) == 0 &&
 | |
|                         (ret = mpi_check_small_factors(&Y)) == 0 &&
 | |
|                         (ret = mpi_miller_rabin(X, f_rng, p_rng)) == 0 &&
 | |
|                         (ret = mpi_miller_rabin(&Y, f_rng, p_rng)) == 0)
 | |
|                     goto cleanup;
 | |
| 
 | |
|                 if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE)
 | |
|                     goto cleanup;
 | |
| 
 | |
|                 /*
 | |
|                  * Next candidates. We want to preserve Y = (X-1) / 2 and
 | |
|                  * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
 | |
|                  * so up Y by 6 and X by 12.
 | |
|                  */
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X,  X, 12));
 | |
|                 MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     mbedtls_mpi_free(&Y);
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_GENPRIME */
 | |
| 
 | |
| #if defined(MBEDTLS_SELF_TEST)
 | |
| 
 | |
| #define GCD_PAIR_COUNT  3
 | |
| 
 | |
| static const int gcd_pairs[GCD_PAIR_COUNT][3] = {
 | |
|     { 693, 609, 21 },
 | |
|     { 1764, 868, 28 },
 | |
|     { 768454923, 542167814, 1 }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Checkup routine
 | |
|  */
 | |
| int mbedtls_mpi_self_test(int verbose) {
 | |
|     int ret, i;
 | |
|     mbedtls_mpi A, E, N, X, Y, U, V;
 | |
| 
 | |
|     mbedtls_mpi_init(&A);
 | |
|     mbedtls_mpi_init(&E);
 | |
|     mbedtls_mpi_init(&N);
 | |
|     mbedtls_mpi_init(&X);
 | |
|     mbedtls_mpi_init(&Y);
 | |
|     mbedtls_mpi_init(&U);
 | |
|     mbedtls_mpi_init(&V);
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
 | |
|                                             "EFE021C2645FD1DC586E69184AF4A31E" \
 | |
|                                             "D5F53E93B5F123FA41680867BA110131" \
 | |
|                                             "944FE7952E2517337780CB0DB80E61AA" \
 | |
|                                             "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
 | |
|                                             "B2E7EFD37075B9F03FF989C7C5051C20" \
 | |
|                                             "34D2A323810251127E7BF8625A4F49A5" \
 | |
|                                             "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
 | |
|                                             "5B5C25763222FEFCCFC38B832366C29E"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
 | |
|                                             "0066A198186C18C10B2F5ED9B522752A" \
 | |
|                                             "9830B69916E535C8F047518A889A43A5" \
 | |
|                                             "94B6BED27A168D31D4A52F88925AA8F5"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "602AB7ECA597A3D6B56FF9829A5E8B85" \
 | |
|                                             "9E857EA95A03512E2BAE7391688D264A" \
 | |
|                                             "A5663B0341DB9CCFD2C4C5F421FEC814" \
 | |
|                                             "8001B72E848A38CAE1C65F78E56ABDEF" \
 | |
|                                             "E12D3C039B8A02D6BE593F0BBBDA56F1" \
 | |
|                                             "ECF677152EF804370C1A305CAF3B5BF1" \
 | |
|                                             "30879B56C61DE584A0F53A2447A51E"));
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("  MPI test #1 (mul_mpi): ");
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0)
 | |
|             mbedtls_printf("failed\n");
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("passed\n");
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "256567336059E52CAE22925474705F39A94"));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
 | |
|                                             "6613F26162223DF488E9CD48CC132C7A" \
 | |
|                                             "0AC93C701B001B092E4E5B9F73BCD27B" \
 | |
|                                             "9EE50D0657C77F374E903CDFA4C642"));
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("  MPI test #2 (div_mpi): ");
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
 | |
|             mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
 | |
|         if (verbose != 0)
 | |
|             mbedtls_printf("failed\n");
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("passed\n");
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "36E139AEA55215609D2816998ED020BB" \
 | |
|                                             "BD96C37890F65171D948E9BC7CBAA4D9" \
 | |
|                                             "325D24D6A3C12710F10A09FA08AB87"));
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("  MPI test #3 (exp_mod): ");
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0)
 | |
|             mbedtls_printf("failed\n");
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("passed\n");
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
 | |
| 
 | |
|     MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
 | |
|                                             "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
 | |
|                                             "C3DBA76456363A10869622EAC2DD84EC" \
 | |
|                                             "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("  MPI test #4 (inv_mod): ");
 | |
| 
 | |
|     if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
 | |
|         if (verbose != 0)
 | |
|             mbedtls_printf("failed\n");
 | |
| 
 | |
|         ret = 1;
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("passed\n");
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("  MPI test #5 (simple gcd): ");
 | |
| 
 | |
|     for (i = 0; i < GCD_PAIR_COUNT; i++) {
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
 | |
| 
 | |
|         MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
 | |
| 
 | |
|         if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
 | |
|             if (verbose != 0)
 | |
|                 mbedtls_printf("failed at %d\n", i);
 | |
| 
 | |
|             ret = 1;
 | |
|             goto cleanup;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("passed\n");
 | |
| 
 | |
| cleanup:
 | |
| 
 | |
|     if (ret != 0 && verbose != 0)
 | |
|         mbedtls_printf("Unexpected error, return code = %08X\n", ret);
 | |
| 
 | |
|     mbedtls_mpi_free(&A);
 | |
|     mbedtls_mpi_free(&E);
 | |
|     mbedtls_mpi_free(&N);
 | |
|     mbedtls_mpi_free(&X);
 | |
|     mbedtls_mpi_free(&Y);
 | |
|     mbedtls_mpi_free(&U);
 | |
|     mbedtls_mpi_free(&V);
 | |
| 
 | |
|     if (verbose != 0)
 | |
|         mbedtls_printf("\n");
 | |
| 
 | |
|     return (ret);
 | |
| }
 | |
| 
 | |
| #endif /* MBEDTLS_SELF_TEST */
 | |
| 
 | |
| #endif /* MBEDTLS_BIGNUM_C */
 |