proxmark3/fpga/fpga_icopyx_lf.v
2023-08-24 18:21:07 +02:00

218 lines
8.4 KiB
Verilog

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
//
// The FPGA is responsible for interfacing between the A/D, the coil drivers,
// and the ARM. In the low-frequency modes it passes the data straight
// through, so that the ARM gets raw A/D samples over the SSP. In the high-
// frequency modes, the FPGA might perform some demodulation first, to
// reduce the amount of data that we must send to the ARM.
//-----------------------------------------------------------------------------
module fpga_lf(
input spck,
output miso,
input mosi,
input ncs,
input pck0,
input ck_1356meg,
input ck_1356megb,
output pwr_lo,
output pwr_hi,
output pwr_oe1,
output pwr_oe2,
output pwr_oe3,
output pwr_oe4,
input [7:0] adc_d,
output adc_clk,
output adc_noe,
output ssp_frame,
output ssp_din,
input ssp_dout,
output ssp_clk,
input cross_hi,
input cross_lo,
output debug,
output PWR_LO_EN
);
//-----------------------------------------------------------------------------
// The SPI receiver. This sets up the configuration word, which the rest of
// the logic looks at to determine how to connect the A/D and the coil
// drivers (i.e., which section gets it). Also assign some symbolic names
// to the configuration bits, for use below.
//-----------------------------------------------------------------------------
// Receive 16bits of data from ARM here.
reg [15:0] shift_reg;
always @(posedge spck) if (~ncs) shift_reg <= {shift_reg[14:0], mosi};
reg [11:0] conf_word;
// select module (outputs) based on major mode
wire [2:0] major_mode = conf_word[8:6];
// parameter to be passed to modules
wire lf_field = conf_word[0];
wire lf_ed_toggle_mode = conf_word[1];
reg [7:0] lf_ed_threshold;
wire [7:0] pck_cnt;
wire pck_divclk;
reg [7:0] divisor;
clk_divider div_clk(
.clk (pck0),
.divisor (divisor),
.div_cnt (pck_cnt),
.div_clk (pck_divclk)
);
// We switch modes between transmitting to the 13.56 MHz tag and receiving
// from it, which means that we must make sure that we can do so without
// glitching, or else we will glitch the transmitted carrier.
always @(posedge ncs)
begin
// 4 bit command
case (shift_reg[15:12])
`FPGA_CMD_SET_CONFREG:
begin
// 12 bit data
conf_word <= shift_reg[11:0];
if (shift_reg[8:6] == `FPGA_MAJOR_MODE_LF_EDGE_DETECT)
begin
lf_ed_threshold <= 127; // default threshold
end
end
`FPGA_CMD_SET_DIVISOR:
divisor <= shift_reg[7:0]; // 8bits
`FPGA_CMD_SET_EDGE_DETECT_THRESHOLD:
lf_ed_threshold <= shift_reg[7:0]; // 8 bits
endcase
end
//-----------------------------------------------------------------------------
// And then we instantiate the modules corresponding to each of the FPGA's
// major modes, and use muxes to connect the outputs of the active mode to
// the output pins.
//-----------------------------------------------------------------------------
// 0 -- LF reader (generic)
lo_read lr(
.pck0 (pck0),
.pck_cnt (pck_cnt),
.pck_divclk (pck_divclk),
.pwr_lo (lr_pwr_lo),
.pwr_hi (lr_pwr_hi),
.pwr_oe1 (lr_pwr_oe1),
.pwr_oe2 (lr_pwr_oe2),
.pwr_oe3 (lr_pwr_oe3),
.pwr_oe4 (lr_pwr_oe4),
.adc_d (adc_d),
.adc_clk (lr_adc_clk),
.ssp_frame (lr_ssp_frame),
.ssp_din (lr_ssp_din),
.ssp_clk (lr_ssp_clk),
.debug (lr_debug),
.lf_field (lf_field)
);
// 1 -- LF edge detect (generic)
lo_edge_detect le(
.pck0 (pck0),
.pck_divclk (pck_divclk),
.pwr_lo (le_pwr_lo),
.pwr_hi (le_pwr_hi),
.pwr_oe1 (le_pwr_oe1),
.pwr_oe2 (le_pwr_oe2),
.pwr_oe3 (le_pwr_oe3),
.pwr_oe4 (le_pwr_oe4),
.adc_d (adc_d),
.adc_clk (le_adc_clk),
.ssp_frame (le_ssp_frame),
.ssp_dout (ssp_dout),
.ssp_clk (le_ssp_clk),
.cross_lo (cross_lo),
.debug (le_debug),
.lf_field (lf_field),
.lf_ed_toggle_mode (lf_ed_toggle_mode),
.lf_ed_threshold (lf_ed_threshold)
);
// 2 -- LF passthrough
lo_passthru lp(
.pck_divclk (pck_divclk),
.pwr_lo (lp_pwr_lo),
.pwr_hi (lp_pwr_hi),
.pwr_oe1 (lp_pwr_oe1),
.pwr_oe2 (lp_pwr_oe2),
.pwr_oe3 (lp_pwr_oe3),
.pwr_oe4 (lp_pwr_oe4),
.adc_clk (lp_adc_clk),
.ssp_din (lp_ssp_din),
.ssp_dout (ssp_dout),
.cross_lo (cross_lo),
.debug (lp_debug)
);
// 3 -- LF ADC (read/write)
lo_adc la(
.pck0 (pck0),
.pwr_lo (la_pwr_lo ),
.pwr_hi (la_pwr_hi ),
.pwr_oe1 (la_pwr_oe1),
.pwr_oe2 (la_pwr_oe2),
.pwr_oe3 (la_pwr_oe3),
.pwr_oe4 (la_pwr_oe4),
.adc_d (adc_d),
.adc_clk (la_adc_clk),
.ssp_frame (la_ssp_frame),
.ssp_din (la_ssp_din),
.ssp_dout (ssp_dout),
.ssp_clk (la_ssp_clk),
.debug (la_debug),
.divisor (divisor),
.lf_field (lf_field)
);
// Major modes:
// x0 = LF reader (generic)
// x1 = LF edge detect (generic)
// x2 = LF passthrough
// x3 = LF ADC (read/write)
// x4 = SPARE
// x5 = SPARE
// x6 = SPARE
// x7 = FPGA_MAJOR_MODE_OFF
mux8 mux_ssp_clk (.sel(major_mode), .y(ssp_clk ), .x0(lr_ssp_clk ), .x1(le_ssp_clk ), .x2(1'b0 ), .x3(la_ssp_clk ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_ssp_din (.sel(major_mode), .y(ssp_din ), .x0(lr_ssp_din ), .x1(1'b0 ), .x2(lp_ssp_din), .x3(la_ssp_din ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_ssp_frame (.sel(major_mode), .y(ssp_frame), .x0(lr_ssp_frame), .x1(le_ssp_frame), .x2(1'b0 ), .x3(la_ssp_frame), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_pwr_oe1 (.sel(major_mode), .y(pwr_oe1 ), .x0(lr_pwr_oe1 ), .x1(le_pwr_oe1 ), .x2(lp_pwr_oe1), .x3(la_pwr_oe1 ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_pwr_oe2 (.sel(major_mode), .y(pwr_oe2 ), .x0(lr_pwr_oe2 ), .x1(le_pwr_oe2 ), .x2(lp_pwr_oe2), .x3(la_pwr_oe2 ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_pwr_oe3 (.sel(major_mode), .y(pwr_oe3 ), .x0(lr_pwr_oe3 ), .x1(le_pwr_oe3 ), .x2(lp_pwr_oe3), .x3(la_pwr_oe3 ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_pwr_oe4 (.sel(major_mode), .y(pwr_oe4 ), .x0(lr_pwr_oe4 ), .x1(le_pwr_oe4 ), .x2(lp_pwr_oe4), .x3(la_pwr_oe4 ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_pwr_lo (.sel(major_mode), .y(pwr_lo ), .x0(lr_pwr_lo ), .x1(le_pwr_lo ), .x2(lp_pwr_lo ), .x3(la_pwr_lo ), .x4(1'b0), .x5(1'b0), .x6(1'b1), .x7(1'b0) );
mux8 mux_pwr_hi (.sel(major_mode), .y(pwr_hi ), .x0(lr_pwr_hi ), .x1(le_pwr_hi ), .x2(lp_pwr_hi ), .x3(la_pwr_hi ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_adc_clk (.sel(major_mode), .y(adc_clk ), .x0(lr_adc_clk ), .x1(le_adc_clk ), .x2(lp_adc_clk), .x3(la_adc_clk ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_dbg (.sel(major_mode), .y(debug ), .x0(lr_debug ), .x1(le_debug ), .x2(lp_debug ), .x3(la_debug ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
mux8 mux_ant (.sel(major_mode), .y(PWR_LO_EN), .x0(1'b1 ), .x1(1'b1 ), .x2(1'b1 ), .x3(1'b1 ), .x4(1'b0), .x5(1'b0), .x6(1'b0), .x7(1'b0) );
// In all modes, let the ADC's outputs be enabled.
assign adc_noe = 1'b0;
endmodule