mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-11 01:55:38 +08:00
2573 lines
88 KiB
C
2573 lines
88 KiB
C
//-----------------------------------------------------------------------------
|
||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||
// the license.
|
||
//-----------------------------------------------------------------------------
|
||
// Miscellaneous routines for low frequency tag operations.
|
||
// Tags supported here so far are Texas Instruments (TI), HID, EM4x05, EM410x
|
||
// Also routines for raw mode reading/simulating of LF waveform
|
||
//-----------------------------------------------------------------------------
|
||
|
||
#include "lfops.h"
|
||
|
||
#include "proxmark3_arm.h"
|
||
#include "cmd.h"
|
||
#include "BigBuf.h"
|
||
#include "fpgaloader.h"
|
||
#include "ticks.h"
|
||
#include "dbprint.h"
|
||
#include "util.h"
|
||
#include "commonutil.h"
|
||
|
||
#include "crc16.h"
|
||
#include "string.h"
|
||
#include "printf.h"
|
||
#include "lfdemod.h"
|
||
#include "lfsampling.h"
|
||
#include "protocols.h"
|
||
#include "pmflash.h"
|
||
#include "flashmem.h" // persistence on flash
|
||
|
||
/*
|
||
Notes about EM4xxx timings.
|
||
|
||
The timing values differs between cards, we got EM410x, EM43x5, EM445x etc.
|
||
We are trying to unify and enable the Proxmark to easily detect and select correct timings automatic.
|
||
The measures from datasheets doesn't always match correct the hardware features of RDV4 antenans and we still wanted to let other devices with other custom antennas
|
||
still benefit from this repo. This is why its configurable and we use to set these dynamic settings in device external flash memory.
|
||
|
||
|
||
// VALUES TAKEN FROM EM4x function: SendForward
|
||
// START_GAP = 440; (55*8) cycles at 125kHz (8us = 1cycle)
|
||
// WRITE_GAP = 128; (16*8)
|
||
// WRITE_1 = 256 32*8; (32*8)
|
||
|
||
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
||
// WRITE_0 = 23*8 , 9*8
|
||
|
||
Not about ARM TIMERS
|
||
Short note about timers on Proxmark device ARM. They are a bit differently implemented and gives decent correctness.
|
||
|
||
SAM7S has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
|
||
TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
|
||
|
||
New timer implemenation in ticks.c, which is used in LFOPS.c
|
||
1 μs = 1.5 ticks
|
||
1 fc = 8 μs = 12 ticks
|
||
|
||
Terms you find in different datasheets and how they match.
|
||
1 Cycle = 8 microseconds (μs) == 1 field clock (fc)
|
||
|
||
Note about HITAG timing
|
||
Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
|
||
T0 = TIMER_CLOCK1 / 125000 = 192
|
||
|
||
|
||
==========================================================================================================
|
||
T55x7 Timing
|
||
==========================================================================================================
|
||
|
||
ATA5577 Downlink Protocol Timings.
|
||
Note: All absolute times assume TC = 1 / fC = 8 μs (fC = 125 kHz)
|
||
|
||
Note: These timings are from the datasheet and doesn't map the best to the features of the RVD4 LF antenna.
|
||
RDV4 LF antenna has high voltage and the drop of power when turning off the rf field takes about 1-2 TC longer.
|
||
|
||
-----------------------------------------------------------------------
|
||
Fixed-bit-length Protocol | Normal Downlink | Fast Downlink |
|
||
------------------------------+-----------------------------------+-----------------------------------+------
|
||
| Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit |
|
||
|------------+--------+--------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Start gap | | Sgap | 8 | 15 | 50 | 8 | 15 | 50 | Tc |
|
||
| Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc |
|
||
|------------+--------+--------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| coding | 0 data | d0 | 16 | 24 | 32 | 8 | 12 | 16 | Tc |
|
||
| | 1 data | d1 | 48 | 56 | 64 | 24 | 28 | 32 | Tc |
|
||
-------------------------------------------------------------------------------------------------------------
|
||
|
||
-----------------------------------------------------------------------
|
||
Long Leading Reference | Normal Downlink | Fast Downlink |
|
||
------------------------------+-----------------------------------+-----------------------------------+------
|
||
| Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc |
|
||
| Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Write | Ref | | 152 | 160 | 168 | 140 | 144 | 148 | Tc |
|
||
| data | Pulse | dref | 136 clocks + 0 data bit | 132 clocks + 0 data bit | Tc |
|
||
| coding |--------+---------+-----------------------------------+-----------------------------------+------|
|
||
| | 0 data | d0 |dref – 143 |dref – 136 |dref – 128 |dref – 135 |dref – 132 |dref – 124 | Tc |
|
||
| | 1 data | d1 |dref – 111 |dref – 104 |dref – 96 |dref – 119 |dref – 116 |dref – 112 | Tc |
|
||
-------------------------------------------------------------------------------------------------------------
|
||
|
||
-----------------------------------------------------------------------
|
||
Leading-zero Reference | Normal Downlink | Fast Downlink |
|
||
------------------------------+-----------------------------------+-----------------------------------+------
|
||
| Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc |
|
||
| Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Write | Ref | dref | 12 | – | 72 | 8 | – | 68 | Tc |
|
||
| data | 0 data | d0 | dref – 7 | dref | dref + 8 | dref – 3 | dref | dref + 4 | Tc |
|
||
| coding | 1 data | d1 | dref + 9 | dref + 16 | dref + 24 | dref + 5 | dref + 8 | dref + 12 | Tc |
|
||
-------------------------------------------------------------------------------------------------------------
|
||
|
||
-----------------------------------------------------------------------
|
||
1-of-4 Coding | Normal Downlink | Fast Downlink |
|
||
------------------------------+-----------------------------------+-----------------------------------+------
|
||
| Parameter | Remark | Symbol | Min. | Typ. | Max. | Min. | Typ. | Max. | Unit |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Start gap | | Sgap | 8 | 10 | 50 | 8 | 10 | 50 | Tc |
|
||
| Write gap | | Wgap | 8 | 10 | 20 | 8 | 10 | 20 | Tc |
|
||
|-----------+--------+---------+-----------+-----------+-----------+-----------+-----------+-----------+------|
|
||
| Write | Ref 00 | dref | 8 | – | 68 | 12 | – | 72 | Tc |
|
||
| data |00 data | d00 | dref – 7 | dref | dref + 8 | dref – 3 | dref | dref+ 4 | Tc |
|
||
| coding |01 data | d01 | dref + 9 | dref + 16 | dref + 24 | dref + 5 | dref + 8 | dref + 12 | Tc |
|
||
| |10 data | d10 | dref + 25 | dref + 32 | dref + 40 | dref + 13 | dref + 16 | dref + 20 | Tc |
|
||
| |11 data | d11 | dref + 41 | dref + 48 | dref + 56 | dref + 21 | dref + 24 | dref + 28 | Tc |
|
||
-------------------------------------------------------------------------------------------------------------
|
||
|
||
Initial values if not in flash
|
||
|
||
SG = Start gap
|
||
WG = Write gap
|
||
RG = Read gap
|
||
|
||
Explainations for array T55xx_Timing below
|
||
|
||
0 1 2 3
|
||
SG WG Bit 00 Bit 01 Bit 10 Bit 11 RG
|
||
--------------------------------------------------------------------
|
||
{ 29 , 17 , 15 , 47 , 0 , 0 , 15 }, // Default Fixed
|
||
{ 29 , 17 , 15 , 50 , 0 , 0 , 15 }, // Long Leading Ref.
|
||
{ 29 , 17 , 15 , 40 , 0 , 0 , 15 }, // Leading 0
|
||
{ 29 , 17 , 15 , 31 , 47 , 63 , 15 } // 1 of 4
|
||
*/
|
||
t55xx_configurations_t T55xx_Timing = {
|
||
{
|
||
#ifdef WITH_FLASH
|
||
// PM3RDV4
|
||
{ 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8, 0, 0 }, // Default Fixed
|
||
{ 29 * 8, 17 * 8, 15 * 8, 47 * 8, 15 * 8, 0, 0 }, // Long Leading Ref.
|
||
{ 29 * 8, 17 * 8, 15 * 8, 40 * 8, 15 * 8, 0, 0 }, // Leading 0
|
||
{ 29 * 8, 17 * 8, 15 * 8, 31 * 8, 15 * 8, 47 * 8, 63 * 8 } // 1 of 4
|
||
#else
|
||
// PM3OTHER or like offical repo
|
||
{ 31 * 8, 20 * 8, 18 * 8, 50 * 8, 15 * 8, 0, 0 }, // Default Fixed
|
||
{ 31 * 8, 20 * 8, 18 * 8, 50 * 8, 15 * 8, 0, 0 }, // Long Leading Ref.
|
||
{ 31 * 8, 20 * 8, 18 * 8, 40 * 8, 15 * 8, 0, 0 }, // Leading 0
|
||
{ 31 * 8, 20 * 8, 18 * 8, 34 * 8, 15 * 8, 50 * 8, 66 * 8 } // 1 of 4
|
||
#endif
|
||
}
|
||
};
|
||
|
||
|
||
// Some defines for readability
|
||
#define T55XX_DLMODE_FIXED 0 // Default Mode
|
||
#define T55XX_DLMODE_LLR 1 // Long Leading Reference
|
||
#define T55XX_DLMODE_LEADING_ZERO 2 // Leading Zero
|
||
#define T55XX_DLMODE_1OF4 3 // 1 of 4
|
||
#define T55XX_LONGLEADINGREFERENCE 4 // Value to tell Write Bit to send long reference
|
||
|
||
// ATA55xx shared presets & routines
|
||
static uint32_t GetT55xxClockBit(uint32_t clock) {
|
||
switch (clock) {
|
||
case 128:
|
||
return T55x7_BITRATE_RF_128;
|
||
case 100:
|
||
return T55x7_BITRATE_RF_100;
|
||
case 64:
|
||
return T55x7_BITRATE_RF_64;
|
||
case 50:
|
||
return T55x7_BITRATE_RF_50;
|
||
case 40:
|
||
return T55x7_BITRATE_RF_40;
|
||
case 32:
|
||
return T55x7_BITRATE_RF_32;
|
||
case 16:
|
||
return T55x7_BITRATE_RF_16;
|
||
case 8:
|
||
return T55x7_BITRATE_RF_8;
|
||
default :
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
void printT55xxConfig(void) {
|
||
|
||
#define PRN_NA sprintf(s + strlen(s), _RED_("N/A") " | ");
|
||
|
||
DbpString(_CYAN_("LF T55XX config"));
|
||
Dbprintf(" [r] [a] [b] [c] [d] [e] [f] [g]");
|
||
Dbprintf(" mode |start|write|write|write| read|write|write");
|
||
Dbprintf(" | gap | gap | 0 | 1 | gap | 2 | 3");
|
||
Dbprintf("---------------------------+-----+-----+-----+-----+-----+-----+------");
|
||
|
||
for (uint8_t i = 0; i < 4; i++) {
|
||
|
||
char s[160];
|
||
memset(s, 0, sizeof(s));
|
||
|
||
switch (i) {
|
||
case T55XX_DLMODE_FIXED :
|
||
sprintf(s, _YELLOW_("fixed bit length") _GREEN_(" (default)") " |");
|
||
break;
|
||
case T55XX_DLMODE_LLR :
|
||
sprintf(s, _YELLOW_(" long leading reference") " |");
|
||
break;
|
||
case T55XX_DLMODE_LEADING_ZERO :
|
||
sprintf(s, _YELLOW_(" leading zero") " |");
|
||
break;
|
||
case T55XX_DLMODE_1OF4 :
|
||
sprintf(s, _YELLOW_(" 1 of 4 coding reference") " |");
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (T55xx_Timing.m[i].start_gap != 0xFFFF)
|
||
sprintf(s + strlen(s), " %3d | ", T55xx_Timing.m[i].start_gap / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
if (T55xx_Timing.m[i].write_gap != 0xFFFF)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_gap / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
if (T55xx_Timing.m[i].write_0 != 0xFFFF)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_0 / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
if (T55xx_Timing.m[i].write_1 != 0xFFFF)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_1 / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
if (T55xx_Timing.m[i].read_gap != 0xFFFF)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].read_gap / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
if (T55xx_Timing.m[i].write_2 != 0xFFFF && i == T55XX_DLMODE_1OF4)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_2 / 8);
|
||
else
|
||
PRN_NA
|
||
|
||
if (T55xx_Timing.m[i].write_3 != 0xFFFF && i == T55XX_DLMODE_1OF4)
|
||
sprintf(s + strlen(s), "%3d | ", T55xx_Timing.m[i].write_3 / 8);
|
||
else
|
||
PRN_NA;
|
||
|
||
// remove last space
|
||
s[strlen(s)] = 0;
|
||
DbpStringEx(FLAG_LOG, s, sizeof(s));
|
||
}
|
||
DbpString("");
|
||
}
|
||
|
||
void setT55xxConfig(uint8_t arg0, t55xx_configurations_t *c) {
|
||
for (uint8_t i = 0; i < 4; i++) {
|
||
if (c->m[i].start_gap != 0)
|
||
T55xx_Timing.m[i].start_gap = c->m[i].start_gap;
|
||
|
||
if (c->m[i].write_gap != 0)
|
||
T55xx_Timing.m[i].write_gap = c->m[i].write_gap;
|
||
|
||
if (c->m[i].write_0 != 0)
|
||
T55xx_Timing.m[i].write_0 = c->m[i].write_0;
|
||
|
||
if (c->m[i].write_1 != 0)
|
||
T55xx_Timing.m[i].write_1 = c->m[i].write_1;
|
||
|
||
if (i == T55XX_DLMODE_1OF4) {
|
||
if (c->m[i].write_2 != 0)
|
||
T55xx_Timing.m[i].write_2 = c->m[i].write_2;
|
||
|
||
if (c->m[i].write_3 != 0)
|
||
T55xx_Timing.m[i].write_3 = c->m[i].write_3;
|
||
|
||
} else {
|
||
T55xx_Timing.m[i].write_2 = 0x00;
|
||
T55xx_Timing.m[i].write_3 = 0x00;
|
||
}
|
||
if (c->m[i].read_gap != 0)
|
||
T55xx_Timing.m[i].read_gap = c->m[i].read_gap;
|
||
}
|
||
|
||
printT55xxConfig();
|
||
|
||
#ifdef WITH_FLASH
|
||
// shall persist to flashmem
|
||
if (arg0 == 0) {
|
||
BigBuf_free();
|
||
return;
|
||
}
|
||
|
||
if (!FlashInit()) {
|
||
BigBuf_free();
|
||
return;
|
||
}
|
||
|
||
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
|
||
Flash_CheckBusy(BUSY_TIMEOUT);
|
||
uint16_t res = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
||
if (res == 0) {
|
||
FlashStop();
|
||
BigBuf_free();
|
||
return;
|
||
}
|
||
|
||
memcpy(buf, &T55xx_Timing, T55XX_CONFIG_LEN);
|
||
|
||
// delete old configuration
|
||
Flash_CheckBusy(BUSY_TIMEOUT);
|
||
Flash_WriteEnable();
|
||
Flash_Erase4k(3, 0xD);
|
||
|
||
// write new
|
||
res = Flash_Write(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
||
|
||
if (res == T55XX_CONFIG_LEN && DBGLEVEL > 1) {
|
||
DbpString("T55XX Config save " _GREEN_("success"));
|
||
}
|
||
|
||
BigBuf_free();
|
||
#endif
|
||
}
|
||
|
||
t55xx_configurations_t *getT55xxConfig(void) {
|
||
return &T55xx_Timing;//_FixedBit;
|
||
}
|
||
|
||
void loadT55xxConfig(void) {
|
||
#ifdef WITH_FLASH
|
||
|
||
if (!FlashInit()) {
|
||
return;
|
||
}
|
||
|
||
uint8_t *buf = BigBuf_malloc(T55XX_CONFIG_LEN);
|
||
|
||
Flash_CheckBusy(BUSY_TIMEOUT);
|
||
uint16_t isok = Flash_ReadDataCont(T55XX_CONFIG_OFFSET, buf, T55XX_CONFIG_LEN);
|
||
FlashStop();
|
||
|
||
// verify read mem is actual data.
|
||
uint8_t cntA = T55XX_CONFIG_LEN, cntB = T55XX_CONFIG_LEN;
|
||
for (int i = 0; i < T55XX_CONFIG_LEN; i++) {
|
||
if (buf[i] == 0xFF) cntA--;
|
||
if (buf[i] == 0x00) cntB--;
|
||
}
|
||
if (!cntA || !cntB) {
|
||
BigBuf_free();
|
||
return;
|
||
}
|
||
|
||
if (buf[0] != 0xFF) // if not set for clear
|
||
memcpy((uint8_t *)&T55xx_Timing, buf, T55XX_CONFIG_LEN);
|
||
|
||
if (isok == T55XX_CONFIG_LEN) {
|
||
if (DBGLEVEL > 1) DbpString("T55XX Config load success");
|
||
}
|
||
#endif
|
||
}
|
||
|
||
/**
|
||
* Function to do a modulation and then get samples.
|
||
* @param delay_off
|
||
* @param period_0
|
||
* @param period_1
|
||
* @param command (in binary char array)
|
||
*/
|
||
void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) {
|
||
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
|
||
// use lf config settings
|
||
sample_config *sc = getSamplingConfig();
|
||
|
||
|
||
// Make sure the tag is reset
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
|
||
// start timer
|
||
StartTicks();
|
||
|
||
WaitMS(100);
|
||
|
||
// clear read buffer
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
LFSetupFPGAForADC(sc->divisor, true);
|
||
|
||
// little more time for the tag to fully power up
|
||
WaitMS(20);
|
||
|
||
// if delay_off = 0 then just bitbang 1 = antenna on 0 = off for respective periods.
|
||
bool bitbang = (delay_off == 0);
|
||
// now modulate the reader field
|
||
if (bitbang) {
|
||
// HACK it appears the loop and if statements take up about 7us so adjust waits accordingly...
|
||
uint8_t hack_cnt = 7;
|
||
if (period_0 < hack_cnt || period_1 < hack_cnt) {
|
||
DbpString("[!] Warning periods cannot be less than 7us in bit bang mode");
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
LED_D_OFF();
|
||
reply_ng(CMD_LF_MOD_THEN_ACQ_RAW_ADC, PM3_EINVARG, NULL, 0);
|
||
return;
|
||
}
|
||
|
||
// hack2 needed--- it appears to take about 8-16us to turn the antenna back on
|
||
// leading to ~ 1 to 2 125kHz samples extra in every off period
|
||
// so we should test for last 0 before next 1 and reduce period_0 by this extra amount...
|
||
// but is this time different for every antenna or other hw builds??? more testing needed
|
||
|
||
// prime cmd_len to save time comparing strings while modulating
|
||
int cmd_len = 0;
|
||
while (command[cmd_len] != '\0' && command[cmd_len] != ' ')
|
||
cmd_len++;
|
||
|
||
int counter = 0;
|
||
bool off = false;
|
||
for (counter = 0; counter < cmd_len; counter++) {
|
||
// if cmd = 0 then turn field off
|
||
if (command[counter] == '0') {
|
||
// if field already off leave alone (affects timing otherwise)
|
||
if (off == false) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
LED_D_OFF();
|
||
off = true;
|
||
}
|
||
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
||
WaitUS(period_0 - hack_cnt);
|
||
// else if cmd = 1 then turn field on
|
||
} else {
|
||
// if field already on leave alone (affects timing otherwise)
|
||
if (off) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD);
|
||
LED_D_ON();
|
||
off = false;
|
||
}
|
||
// note we appear to take about 7us to switch over (or run the if statements/loop...)
|
||
WaitUS(period_1 - hack_cnt);
|
||
}
|
||
}
|
||
} else { // old mode of cmd read using delay as off period
|
||
while (*command != '\0' && *command != ' ') {
|
||
LED_D_ON();
|
||
if (*(command++) == '0')
|
||
TurnReadLFOn(period_0);
|
||
else
|
||
TurnReadLFOn(period_1);
|
||
|
||
LED_D_OFF();
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
WaitUS(delay_off);
|
||
}
|
||
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
||
}
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD);
|
||
|
||
// now do the read
|
||
DoAcquisition_config(true, 0);
|
||
|
||
// Turn off antenna
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
|
||
// tell client we are done
|
||
reply_ng(CMD_LF_MOD_THEN_ACQ_RAW_ADC, PM3_SUCCESS, NULL, 0);
|
||
}
|
||
|
||
/* blank r/w tag data stream
|
||
...0000000000000000 01111111
|
||
1010101010101010101010101010101010101010101010101010101010101010
|
||
0011010010100001
|
||
01111111
|
||
101010101010101[0]000...
|
||
|
||
[5555fe852c5555555555555555fe0000]
|
||
*/
|
||
void ReadTItag(void) {
|
||
StartTicks();
|
||
// some hardcoded initial params
|
||
// when we read a TI tag we sample the zerocross line at 2MHz
|
||
// TI tags modulate a 1 as 16 cycles of 123.2kHz
|
||
// TI tags modulate a 0 as 16 cycles of 134.2kHz
|
||
#define FSAMPLE 2000000
|
||
#define FREQLO 123200
|
||
#define FREQHI 134200
|
||
|
||
signed char *dest = (signed char *)BigBuf_get_addr();
|
||
uint16_t n = BigBuf_max_traceLen();
|
||
// 128 bit shift register [shift3:shift2:shift1:shift0]
|
||
uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
|
||
|
||
int i, cycles = 0, samples = 0;
|
||
// how many sample points fit in 16 cycles of each frequency
|
||
uint32_t sampleslo = (FSAMPLE << 4) / FREQLO, sampleshi = (FSAMPLE << 4) / FREQHI;
|
||
// when to tell if we're close enough to one freq or another
|
||
uint32_t threshold = (sampleslo - sampleshi + 1) >> 1;
|
||
|
||
// TI tags charge at 134.2kHz
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz
|
||
|
||
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
||
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
||
// whether we're modulating the antenna (high)
|
||
// or listening to the antenna (low)
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
||
|
||
// get TI tag data into the buffer
|
||
AcquireTiType();
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
|
||
for (i = 0; i < n - 1; i++) {
|
||
// count cycles by looking for lo to hi zero crossings
|
||
if ((dest[i] < 0) && (dest[i + 1] > 0)) {
|
||
cycles++;
|
||
// after 16 cycles, measure the frequency
|
||
if (cycles > 15) {
|
||
cycles = 0;
|
||
samples = i - samples; // number of samples in these 16 cycles
|
||
|
||
// TI bits are coming to us lsb first so shift them
|
||
// right through our 128 bit right shift register
|
||
shift0 = (shift0 >> 1) | (shift1 << 31);
|
||
shift1 = (shift1 >> 1) | (shift2 << 31);
|
||
shift2 = (shift2 >> 1) | (shift3 << 31);
|
||
shift3 >>= 1;
|
||
|
||
// check if the cycles fall close to the number
|
||
// expected for either the low or high frequency
|
||
if ((samples > (sampleslo - threshold)) && (samples < (sampleslo + threshold))) {
|
||
// low frequency represents a 1
|
||
shift3 |= (1u << 31);
|
||
} else if ((samples > (sampleshi - threshold)) && (samples < (sampleshi + threshold))) {
|
||
// high frequency represents a 0
|
||
} else {
|
||
// probably detected a gay waveform or noise
|
||
// use this as gaydar or discard shift register and start again
|
||
shift3 = shift2 = shift1 = shift0 = 0;
|
||
}
|
||
samples = i;
|
||
|
||
// for each bit we receive, test if we've detected a valid tag
|
||
|
||
// if we see 17 zeroes followed by 6 ones, we might have a tag
|
||
// remember the bits are backwards
|
||
if (((shift0 & 0x7fffff) == 0x7e0000)) {
|
||
// if start and end bytes match, we have a tag so break out of the loop
|
||
if (((shift0 >> 16) & 0xff) == ((shift3 >> 8) & 0xff)) {
|
||
cycles = 0xF0B; //use this as a flag (ugly but whatever)
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// if flag is set we have a tag
|
||
if (cycles != 0xF0B) {
|
||
DbpString("Info: No valid tag detected.");
|
||
} else {
|
||
// put 64 bit data into shift1 and shift0
|
||
shift0 = (shift0 >> 24) | (shift1 << 8);
|
||
shift1 = (shift1 >> 24) | (shift2 << 8);
|
||
|
||
// align 16 bit crc into lower half of shift2
|
||
shift2 = ((shift2 >> 24) | (shift3 << 8)) & 0x0ffff;
|
||
|
||
// if r/w tag, check ident match
|
||
if (shift3 & (1 << 15)) {
|
||
DbpString("Info: TI tag is rewriteable");
|
||
// only 15 bits compare, last bit of ident is not valid
|
||
if (((shift3 >> 16) ^ shift0) & 0x7fff) {
|
||
DbpString("Error: Ident mismatch!");
|
||
} else {
|
||
DbpString("Info: TI tag ident is valid");
|
||
}
|
||
} else {
|
||
DbpString("Info: TI tag is readonly");
|
||
}
|
||
|
||
// WARNING the order of the bytes in which we calc crc below needs checking
|
||
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
|
||
// bytes in reverse or something
|
||
// calculate CRC
|
||
uint32_t crc = 0;
|
||
|
||
crc = update_crc16(crc, (shift0) & 0xff);
|
||
crc = update_crc16(crc, (shift0 >> 8) & 0xff);
|
||
crc = update_crc16(crc, (shift0 >> 16) & 0xff);
|
||
crc = update_crc16(crc, (shift0 >> 24) & 0xff);
|
||
crc = update_crc16(crc, (shift1) & 0xff);
|
||
crc = update_crc16(crc, (shift1 >> 8) & 0xff);
|
||
crc = update_crc16(crc, (shift1 >> 16) & 0xff);
|
||
crc = update_crc16(crc, (shift1 >> 24) & 0xff);
|
||
|
||
Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
|
||
if (crc != (shift2 & 0xffff)) {
|
||
Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
|
||
} else {
|
||
DbpString("Info: CRC is good");
|
||
}
|
||
}
|
||
StopTicks();
|
||
}
|
||
|
||
static void WriteTIbyte(uint8_t b) {
|
||
int i = 0;
|
||
|
||
// modulate 8 bits out to the antenna
|
||
for (i = 0; i < 8; i++) {
|
||
if (b & (1 << i)) {
|
||
// stop modulating antenna 1ms
|
||
LOW(GPIO_SSC_DOUT);
|
||
WaitUS(1000);
|
||
// modulate antenna 1ms
|
||
HIGH(GPIO_SSC_DOUT);
|
||
WaitUS(1000);
|
||
} else {
|
||
// stop modulating antenna 0.3ms
|
||
LOW(GPIO_SSC_DOUT);
|
||
WaitUS(300);
|
||
// modulate antenna 1.7ms
|
||
HIGH(GPIO_SSC_DOUT);
|
||
WaitUS(1700);
|
||
}
|
||
}
|
||
}
|
||
|
||
void AcquireTiType(void) {
|
||
int i, j, n;
|
||
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
|
||
// each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
|
||
#define TIBUFLEN 1250
|
||
|
||
// clear buffer
|
||
uint32_t *buf = (uint32_t *)BigBuf_get_addr();
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_ext(false);
|
||
|
||
// Set up the synchronous serial port
|
||
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
|
||
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
|
||
|
||
// steal this pin from the SSP and use it to control the modulation
|
||
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
||
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
||
|
||
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
||
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
|
||
|
||
// Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
|
||
// 48/2 = 24 MHz clock must be divided by 12
|
||
AT91C_BASE_SSC->SSC_CMR = 12;
|
||
|
||
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
|
||
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
|
||
// Transmit Clock Mode Register
|
||
AT91C_BASE_SSC->SSC_TCMR = 0;
|
||
// Transmit Frame Mode Register
|
||
AT91C_BASE_SSC->SSC_TFMR = 0;
|
||
// iceman, FpgaSetupSsc() ?? the code above? can it be replaced?
|
||
LED_D_ON();
|
||
|
||
// modulate antenna
|
||
HIGH(GPIO_SSC_DOUT);
|
||
|
||
// Charge TI tag for 50ms.
|
||
WaitMS(50);
|
||
|
||
// stop modulating antenna and listen
|
||
LOW(GPIO_SSC_DOUT);
|
||
|
||
LED_D_OFF();
|
||
|
||
i = 0;
|
||
for (;;) {
|
||
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
|
||
buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
|
||
i++;
|
||
if (i >= TIBUFLEN) break;
|
||
}
|
||
WDT_HIT();
|
||
}
|
||
|
||
// return stolen pin to SSP
|
||
AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
|
||
AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
|
||
|
||
char *dest = (char *)BigBuf_get_addr();
|
||
n = TIBUFLEN * 32;
|
||
|
||
// unpack buffer
|
||
for (i = TIBUFLEN - 1; i >= 0; i--) {
|
||
for (j = 0; j < 32; j++) {
|
||
if (buf[i] & (1u << j)) {
|
||
dest[--n] = 1;
|
||
} else {
|
||
dest[--n] = -1;
|
||
}
|
||
}
|
||
}
|
||
|
||
// reset SSC
|
||
FpgaSetupSsc();
|
||
}
|
||
|
||
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
|
||
// if crc provided, it will be written with the data verbatim (even if bogus)
|
||
// if not provided a valid crc will be computed from the data and written.
|
||
void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) {
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
if (crc == 0) {
|
||
crc = update_crc16(crc, (idlo) & 0xff);
|
||
crc = update_crc16(crc, (idlo >> 8) & 0xff);
|
||
crc = update_crc16(crc, (idlo >> 16) & 0xff);
|
||
crc = update_crc16(crc, (idlo >> 24) & 0xff);
|
||
crc = update_crc16(crc, (idhi) & 0xff);
|
||
crc = update_crc16(crc, (idhi >> 8) & 0xff);
|
||
crc = update_crc16(crc, (idhi >> 16) & 0xff);
|
||
crc = update_crc16(crc, (idhi >> 24) & 0xff);
|
||
}
|
||
Dbprintf("Writing to tag: %x%08x, crc=%x", idhi, idlo, crc);
|
||
|
||
// TI tags charge at 134.2kHz
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz
|
||
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
|
||
// connects to SSP_DIN and the SSP_DOUT logic level controls
|
||
// whether we're modulating the antenna (high)
|
||
// or listening to the antenna (low)
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
|
||
StartTicks();
|
||
|
||
LED_A_ON();
|
||
|
||
// steal this pin from the SSP and use it to control the modulation
|
||
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
||
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
||
|
||
// writing algorithm:
|
||
// a high bit consists of a field off for 1ms and field on for 1ms
|
||
// a low bit consists of a field off for 0.3ms and field on for 1.7ms
|
||
// initiate a charge time of 50ms (field on) then immediately start writing bits
|
||
// start by writing 0xBB (keyword) and 0xEB (password)
|
||
// then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
|
||
// finally end with 0x0300 (write frame)
|
||
// all data is sent lsb first
|
||
// finish with 50ms programming time
|
||
|
||
// modulate antenna
|
||
HIGH(GPIO_SSC_DOUT);
|
||
WaitMS(50); // charge time
|
||
|
||
WriteTIbyte(0xbb); // keyword
|
||
WriteTIbyte(0xeb); // password
|
||
WriteTIbyte((idlo) & 0xff);
|
||
WriteTIbyte((idlo >> 8) & 0xff);
|
||
WriteTIbyte((idlo >> 16) & 0xff);
|
||
WriteTIbyte((idlo >> 24) & 0xff);
|
||
WriteTIbyte((idhi) & 0xff);
|
||
WriteTIbyte((idhi >> 8) & 0xff);
|
||
WriteTIbyte((idhi >> 16) & 0xff);
|
||
WriteTIbyte((idhi >> 24) & 0xff); // data hi to lo
|
||
WriteTIbyte((crc) & 0xff); // crc lo
|
||
WriteTIbyte((crc >> 8) & 0xff); // crc hi
|
||
WriteTIbyte(0x00); // write frame lo
|
||
WriteTIbyte(0x03); // write frame hi
|
||
HIGH(GPIO_SSC_DOUT);
|
||
WaitMS(50); // programming time
|
||
|
||
LED_A_OFF();
|
||
|
||
// get TI tag data into the buffer
|
||
AcquireTiType();
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("Now use `lf ti read` to check");
|
||
StopTicks();
|
||
}
|
||
|
||
// note: a call to FpgaDownloadAndGo(FPGA_BITSTREAM_LF) must be done before, but
|
||
// this may destroy the bigbuf so be sure this is called before calling SimulateTagLowFrequencyEx
|
||
void SimulateTagLowFrequencyEx(int period, int gap, bool ledcontrol, int numcycles) {
|
||
|
||
// start us timer
|
||
StartTicks();
|
||
|
||
//FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE );
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
|
||
WaitMS(20);
|
||
|
||
int i = 0, x = 0;
|
||
uint8_t *buf = BigBuf_get_addr();
|
||
|
||
// set frequency, get values from 'lf config' command
|
||
sample_config *sc = getSamplingConfig();
|
||
|
||
if ((sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255))
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz
|
||
else if (sc->divisor == 0)
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz
|
||
else
|
||
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor);
|
||
|
||
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
|
||
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
||
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
|
||
|
||
uint16_t check = 0;
|
||
|
||
for (;;) {
|
||
|
||
if (numcycles > -1) {
|
||
if (x != numcycles) {
|
||
++x;
|
||
} else {
|
||
// exit without turning off field
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (ledcontrol) LED_D_ON();
|
||
|
||
// wait until SSC_CLK goes HIGH
|
||
// used as a simple detection of a reader field?
|
||
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
|
||
WDT_HIT();
|
||
if (check == 1000) {
|
||
if (data_available() || BUTTON_PRESS())
|
||
goto OUT;
|
||
check = 0;
|
||
}
|
||
++check;
|
||
}
|
||
|
||
if (ledcontrol) LED_D_OFF();
|
||
|
||
if (buf[i])
|
||
OPEN_COIL();
|
||
else
|
||
SHORT_COIL();
|
||
|
||
check = 0;
|
||
|
||
//wait until SSC_CLK goes LOW
|
||
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
|
||
WDT_HIT();
|
||
if (check == 1000) {
|
||
if (data_available() || BUTTON_PRESS())
|
||
goto OUT;
|
||
check = 0;
|
||
}
|
||
++check;
|
||
}
|
||
|
||
i++;
|
||
if (i == period) {
|
||
i = 0;
|
||
if (gap) {
|
||
SHORT_COIL();
|
||
WaitUS(gap);
|
||
}
|
||
}
|
||
}
|
||
OUT:
|
||
StopTicks();
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
LED_D_OFF();
|
||
}
|
||
|
||
void SimulateTagLowFrequency(int period, int gap, bool ledcontrol) {
|
||
SimulateTagLowFrequencyEx(period, gap, ledcontrol, -1);
|
||
}
|
||
|
||
|
||
#define DEBUG_FRAME_CONTENTS 1
|
||
void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen) {
|
||
}
|
||
|
||
// compose fc/X fc/Y waveform (FSKx)
|
||
static void fcAll(uint8_t fc, int *n, uint8_t clock, int16_t *remainder) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
uint8_t halfFC = fc >> 1;
|
||
uint8_t wavesPerClock = (clock + *remainder) / fc;
|
||
// loop through clock - step field clock
|
||
for (uint8_t idx = 0; idx < wavesPerClock; idx++) {
|
||
// put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
|
||
memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here
|
||
memset(dest + (*n) + (fc - halfFC), 1, halfFC);
|
||
*n += fc;
|
||
}
|
||
*remainder = (clock + *remainder) % fc;
|
||
// if we've room for more than a half wave, add a full wave and use negative remainder
|
||
if (*remainder > halfFC) {
|
||
memset(dest + (*n), 0, fc - halfFC); //in case of odd number use extra here
|
||
memset(dest + (*n) + (fc - halfFC), 1, halfFC);
|
||
*n += fc;
|
||
*remainder -= fc;
|
||
}
|
||
}
|
||
|
||
// prepare a waveform pattern in the buffer based on the ID given then
|
||
// simulate a HID tag until the button is pressed
|
||
void CmdHIDsimTAGEx(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, bool ledcontrol, int numcycles) {
|
||
|
||
/*
|
||
HID tag bitstream format
|
||
The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
|
||
A 1 bit is represented as 6 fc8 and 5 fc10 patterns (manchester 10) during 2 clock periods. (1bit = 1clock period)
|
||
A 0 bit is represented as 5 fc10 and 6 fc8 patterns (manchester 01)
|
||
A fc8 is inserted before every 4 bits
|
||
A special start of frame pattern is used consisting a0b0 where a and b are neither 0
|
||
nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
|
||
|
||
FSK2a
|
||
bit 1 = fc10
|
||
bit 0 = fc8
|
||
*/
|
||
|
||
// special start of frame marker containing invalid Manchester bit sequences
|
||
uint8_t bits[8 + 8 * 2 + 84 * 2] = { 0, 0, 0, 1, 1, 1, 0, 1 };
|
||
uint8_t bitlen = 0;
|
||
uint16_t n = 8;
|
||
|
||
if (longFMT) {
|
||
// Ensure no more than 84 bits supplied
|
||
if (hi2 > 0xFFFFF) {
|
||
DbpString("Tags can only have 84 bits.");
|
||
return;
|
||
}
|
||
bitlen = 8 + 8 * 2 + 84 * 2;
|
||
hi2 |= 0x9E00000; // 9E: long format identifier
|
||
manchesterEncodeUint32(hi2, 16 + 12, bits, &n);
|
||
manchesterEncodeUint32(hi, 32, bits, &n);
|
||
manchesterEncodeUint32(lo, 32, bits, &n);
|
||
} else {
|
||
|
||
if (hi > 0xFFF) {
|
||
DbpString("[!] tags can only have 44 bits. - USE lf simfsk for larger tags");
|
||
return;
|
||
}
|
||
bitlen = 8 + 44 * 2;
|
||
manchesterEncodeUint32(hi, 12, bits, &n);
|
||
manchesterEncodeUint32(lo, 32, bits, &n);
|
||
}
|
||
CmdFSKsimTAGEx(10, 8, 0, 50, bitlen, bits, ledcontrol, numcycles);
|
||
}
|
||
|
||
void CmdHIDsimTAG(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT, bool ledcontrol) {
|
||
CmdHIDsimTAGEx(hi2, hi, lo, longFMT, ledcontrol, -1);
|
||
reply_ng(CMD_LF_HID_SIMULATE, PM3_EOPABORTED, NULL, 0);
|
||
}
|
||
|
||
// prepare a waveform pattern in the buffer based on the ID given then
|
||
// simulate a FSK tag until the button is pressed
|
||
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
|
||
void CmdFSKsimTAGEx(uint8_t fchigh, uint8_t fclow, uint8_t separator, uint8_t clk, uint16_t bitslen, uint8_t *bits, bool ledcontrol, int numcycles) {
|
||
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
|
||
// free eventually allocated BigBuf memory
|
||
BigBuf_free();
|
||
BigBuf_Clear_ext(false);
|
||
clear_trace();
|
||
set_tracing(false);
|
||
|
||
int n = 0, i = 0;
|
||
int16_t remainder = 0;
|
||
|
||
if (separator) {
|
||
//int fsktype = ( fchigh == 8 && fclow == 5) ? 1 : 2;
|
||
//fcSTT(&n);
|
||
}
|
||
for (i = 0; i < bitslen; i++) {
|
||
if (bits[i])
|
||
fcAll(fchigh, &n, clk, &remainder);
|
||
else
|
||
fcAll(fclow, &n, clk, &remainder);
|
||
}
|
||
|
||
WDT_HIT();
|
||
|
||
Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, STT: %d, n: %d", fchigh, fclow, clk, separator, n);
|
||
|
||
if (ledcontrol) LED_A_ON();
|
||
SimulateTagLowFrequencyEx(n, 0, ledcontrol, numcycles);
|
||
if (ledcontrol) LED_A_OFF();
|
||
}
|
||
|
||
// prepare a waveform pattern in the buffer based on the ID given then
|
||
// simulate a FSK tag until the button is pressed
|
||
// arg1 contains fcHigh and fcLow, arg2 contains STT marker and clock
|
||
void CmdFSKsimTAG(uint8_t fchigh, uint8_t fclow, uint8_t separator, uint8_t clk, uint16_t bitslen, uint8_t *bits, bool ledcontrol) {
|
||
CmdFSKsimTAGEx(fchigh, fclow, separator, clk, bitslen, bits, ledcontrol, -1);
|
||
reply_ng(CMD_LF_FSK_SIMULATE, PM3_EOPABORTED, NULL, 0);
|
||
}
|
||
|
||
// compose ask waveform for one bit(ASK)
|
||
static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
uint8_t halfClk = clock / 2;
|
||
// c = current bit 1 or 0
|
||
if (manchester == 1) {
|
||
memset(dest + (*n), c, halfClk);
|
||
memset(dest + (*n) + halfClk, c ^ 1, halfClk);
|
||
} else {
|
||
memset(dest + (*n), c, clock);
|
||
}
|
||
*n += clock;
|
||
}
|
||
|
||
static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
uint8_t halfClk = clock / 2;
|
||
if (c) {
|
||
memset(dest + (*n), c ^ 1 ^ *phase, halfClk);
|
||
memset(dest + (*n) + halfClk, c ^ *phase, halfClk);
|
||
} else {
|
||
memset(dest + (*n), c ^ *phase, clock);
|
||
*phase ^= 1;
|
||
}
|
||
*n += clock;
|
||
}
|
||
|
||
static void stAskSimBit(int *n, uint8_t clock) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
uint8_t halfClk = clock / 2;
|
||
//ST = .5 high .5 low 1.5 high .5 low 1 high
|
||
memset(dest + (*n), 1, halfClk);
|
||
memset(dest + (*n) + halfClk, 0, halfClk);
|
||
memset(dest + (*n) + clock, 1, clock + halfClk);
|
||
memset(dest + (*n) + clock * 2 + halfClk, 0, halfClk);
|
||
memset(dest + (*n) + clock * 3, 1, clock);
|
||
*n += clock * 4;
|
||
}
|
||
static void leadingZeroAskSimBits(int *n, uint8_t clock) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
memset(dest + (*n), 0, clock * 8);
|
||
*n += clock * 8;
|
||
}
|
||
/*
|
||
static void leadingZeroBiphaseSimBits(int *n, uint8_t clock, uint8_t *phase) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
for (uint8_t i = 0; i < 8; i++) {
|
||
memset(dest + (*n), 0 ^ *phase, clock);
|
||
*phase ^= 1;
|
||
*n += clock;
|
||
}
|
||
}
|
||
*/
|
||
|
||
|
||
// args clock, ask/man or askraw, invert, transmission separator
|
||
void CmdASKsimTAG(uint8_t encoding, uint8_t invert, uint8_t separator, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) {
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
set_tracing(false);
|
||
|
||
int n = 0, i = 0;
|
||
|
||
if (encoding == 2) { //biphase
|
||
uint8_t phase = 0;
|
||
|
||
// iceman, if I add this, the demod includes these extra zero and detection fails.
|
||
// now, I only need to figure out just to add carrier without modulation
|
||
// the old bug, with adding ask zeros messed up the phase variable and deteion failed because of it in LF FDX
|
||
// leadingZeroBiphaseSimBits(&n, clk, &phase);
|
||
|
||
for (i = 0; i < size; i++) {
|
||
biphaseSimBit(bits[i] ^ invert, &n, clk, &phase);
|
||
}
|
||
if (phase == 1) { //run a second set inverted to keep phase in check
|
||
for (i = 0; i < size; i++) {
|
||
biphaseSimBit(bits[i] ^ invert, &n, clk, &phase);
|
||
}
|
||
}
|
||
} else { // ask/manchester || ask/raw
|
||
|
||
leadingZeroAskSimBits(&n, clk);
|
||
|
||
for (i = 0; i < size; i++) {
|
||
askSimBit(bits[i] ^ invert, &n, clk, encoding);
|
||
}
|
||
if (encoding == 0 && bits[0] == bits[size - 1]) { //run a second set inverted (for ask/raw || biphase phase)
|
||
for (i = 0; i < size; i++) {
|
||
askSimBit(bits[i] ^ invert ^ 1, &n, clk, encoding);
|
||
}
|
||
}
|
||
}
|
||
if (separator == 1 && encoding == 1)
|
||
stAskSimBit(&n, clk);
|
||
else if (separator == 1)
|
||
Dbprintf("sorry but separator option not yet available");
|
||
|
||
WDT_HIT();
|
||
|
||
Dbprintf("Simulating with clk: %d, invert: %d, encoding: %s (%d), separator: %d, n: %d"
|
||
, clk
|
||
, invert
|
||
, (encoding == 2) ? "BI" : (encoding == 1) ? "ASK" : "RAW"
|
||
, encoding
|
||
, separator
|
||
, n
|
||
);
|
||
|
||
if (ledcontrol) LED_A_ON();
|
||
SimulateTagLowFrequency(n, 0, ledcontrol);
|
||
if (ledcontrol) LED_A_OFF();
|
||
reply_ng(CMD_LF_ASK_SIMULATE, PM3_EOPABORTED, NULL, 0);
|
||
}
|
||
|
||
//carrier can be 2,4 or 8
|
||
static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
uint8_t halfWave = waveLen / 2;
|
||
//uint8_t idx;
|
||
int i = 0;
|
||
if (phaseChg) {
|
||
// write phase change
|
||
memset(dest + (*n), *curPhase ^ 1, halfWave);
|
||
memset(dest + (*n) + halfWave, *curPhase, halfWave);
|
||
*n += waveLen;
|
||
*curPhase ^= 1;
|
||
i += waveLen;
|
||
}
|
||
//write each normal clock wave for the clock duration
|
||
for (; i < clk; i += waveLen) {
|
||
memset(dest + (*n), *curPhase, halfWave);
|
||
memset(dest + (*n) + halfWave, *curPhase ^ 1, halfWave);
|
||
*n += waveLen;
|
||
}
|
||
}
|
||
|
||
// args clock, carrier, invert,
|
||
void CmdPSKsimTAG(uint8_t carrier, uint8_t invert, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) {
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
set_tracing(false);
|
||
|
||
int n = 0, i = 0;
|
||
uint8_t curPhase = 0;
|
||
for (i = 0; i < size; i++) {
|
||
if (bits[i] == curPhase) {
|
||
pskSimBit(carrier, &n, clk, &curPhase, false);
|
||
} else {
|
||
pskSimBit(carrier, &n, clk, &curPhase, true);
|
||
}
|
||
}
|
||
|
||
WDT_HIT();
|
||
|
||
Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d", carrier, clk, invert, n);
|
||
|
||
if (ledcontrol) LED_A_ON();
|
||
SimulateTagLowFrequency(n, 0, ledcontrol);
|
||
if (ledcontrol) LED_A_OFF();
|
||
reply_ng(CMD_LF_PSK_SIMULATE, PM3_EOPABORTED, NULL, 0);
|
||
}
|
||
|
||
// compose nrz waveform for one bit(NRZ)
|
||
static void nrzSimBit(uint8_t c, int *n, uint8_t clock) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
// uint8_t halfClk = clock / 2;
|
||
// c = current bit 1 or 0
|
||
memset(dest + (*n), c, clock);
|
||
*n += clock;
|
||
}
|
||
|
||
// args clock,
|
||
void CmdNRZsimTAG(uint8_t invert, uint8_t separator, uint8_t clk, uint16_t size, uint8_t *bits, bool ledcontrol) {
|
||
|
||
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
||
set_tracing(false);
|
||
|
||
int n = 0, i = 0;
|
||
|
||
// NRZ
|
||
|
||
leadingZeroAskSimBits(&n, clk);
|
||
|
||
for (i = 0; i < size; i++) {
|
||
nrzSimBit(bits[i] ^ invert, &n, clk);
|
||
}
|
||
|
||
if (bits[0] == bits[size - 1]) {
|
||
for (i = 0; i < size; i++) {
|
||
nrzSimBit(bits[i] ^ invert ^ 1, &n, clk);
|
||
}
|
||
}
|
||
|
||
if (separator == 1)
|
||
Dbprintf("sorry but separator option not yet available");
|
||
|
||
WDT_HIT();
|
||
|
||
Dbprintf("Simulating with clk: %d, invert: %d, separator: %d, n: %d"
|
||
, clk
|
||
, invert
|
||
, separator
|
||
, n
|
||
);
|
||
|
||
if (ledcontrol) LED_A_ON();
|
||
SimulateTagLowFrequency(n, 0, ledcontrol);
|
||
if (ledcontrol) LED_A_OFF();
|
||
reply_ng(CMD_LF_NRZ_SIMULATE, PM3_EOPABORTED, NULL, 0);
|
||
}
|
||
|
||
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
||
void CmdHIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
size_t size;
|
||
uint32_t hi2 = 0, hi = 0, lo = 0;
|
||
int dummyIdx = 0;
|
||
// Configure to go in 125kHz listen mode
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
//clear read buffer
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
while (!BUTTON_PRESS() && !data_available()) {
|
||
|
||
WDT_HIT();
|
||
if (ledcontrol) LED_A_ON();
|
||
|
||
DoAcquisition_default(-1, false);
|
||
// FSK demodulator
|
||
size = 50 * 128 * 2; //big enough to catch 2 sequences of largest format
|
||
int idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
|
||
if (idx < 0) continue;
|
||
|
||
if (idx > 0 && lo > 0 && (size == 96 || size == 192)) {
|
||
// go over previously decoded manchester data and decode into usable tag ID
|
||
if (hi2 != 0) { //extra large HID tags 88/192 bits
|
||
Dbprintf("TAG ID: %x%08x%08x (%d)",
|
||
hi2,
|
||
hi,
|
||
lo,
|
||
(lo >> 1) & 0xFFFF
|
||
);
|
||
} else { //standard HID tags 44/96 bits
|
||
uint8_t bitlen = 0;
|
||
uint32_t fac = 0;
|
||
uint32_t cardnum = 0;
|
||
|
||
if (((hi >> 5) & 1) == 1) { //if bit 38 is set then < 37 bit format is used
|
||
uint32_t lo2 = 0;
|
||
lo2 = (((hi & 31) << 12) | (lo >> 20)); //get bits 21-37 to check for format len bit
|
||
uint8_t idx3 = 1;
|
||
while (lo2 > 1) { //find last bit set to 1 (format len bit)
|
||
lo2 >>= 1;
|
||
idx3++;
|
||
}
|
||
bitlen = idx3 + 19;
|
||
fac = 0;
|
||
cardnum = 0;
|
||
if (bitlen == 26) {
|
||
cardnum = (lo >> 1) & 0xFFFF;
|
||
fac = (lo >> 17) & 0xFF;
|
||
}
|
||
if (bitlen == 37) {
|
||
cardnum = (lo >> 1) & 0x7FFFF;
|
||
fac = ((hi & 0xF) << 12) | (lo >> 20);
|
||
}
|
||
if (bitlen == 34) {
|
||
cardnum = (lo >> 1) & 0xFFFF;
|
||
fac = ((hi & 1) << 15) | (lo >> 17);
|
||
}
|
||
if (bitlen == 35) {
|
||
cardnum = (lo >> 1) & 0xFFFFF;
|
||
fac = ((hi & 1) << 11) | (lo >> 21);
|
||
}
|
||
} else { //if bit 38 is not set then 37 bit format is used
|
||
bitlen = 37;
|
||
cardnum = (lo >> 1) & 0x7FFFF;
|
||
fac = ((hi & 0xF) << 12) | (lo >> 20);
|
||
}
|
||
Dbprintf("TAG ID: " _GREEN_("%x%08x (%d)") " - Format Len: " _GREEN_("%d") " bit - FC: " _GREEN_("%d") " - Card: "_GREEN_("%d"),
|
||
hi,
|
||
lo,
|
||
(lo >> 1) & 0xFFFF,
|
||
bitlen,
|
||
fac,
|
||
cardnum
|
||
);
|
||
}
|
||
if (findone) {
|
||
*high = hi;
|
||
*low = lo;
|
||
break;
|
||
}
|
||
// reset
|
||
}
|
||
hi2 = hi = lo = idx = 0;
|
||
}
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("HID fsk demod stopped");
|
||
if (ledcontrol) LED_A_OFF();
|
||
}
|
||
|
||
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
|
||
void CmdAWIDdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
||
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
size_t size;
|
||
int dummyIdx = 0;
|
||
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
while (!BUTTON_PRESS() && !data_available()) {
|
||
|
||
WDT_HIT();
|
||
if (ledcontrol) LED_A_ON();
|
||
|
||
DoAcquisition_default(-1, false);
|
||
// FSK demodulator
|
||
|
||
size = MIN(12800, BigBuf_max_traceLen());
|
||
|
||
//askdemod and manchester decode
|
||
int idx = detectAWID(dest, &size, &dummyIdx);
|
||
|
||
if (idx <= 0 || size != 96) continue;
|
||
// Index map
|
||
// 0 10 20 30 40 50 60
|
||
// | | | | | | |
|
||
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
|
||
// -----------------------------------------------------------------------------
|
||
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
|
||
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
|
||
// |---26 bit---| |-----117----||-------------142-------------|
|
||
// b = format bit len, o = odd parity of last 3 bits
|
||
// f = facility code, c = card number
|
||
// w = wiegand parity
|
||
// (26 bit format shown)
|
||
|
||
//get raw ID before removing parities
|
||
uint32_t rawLo = bytebits_to_byte(dest + idx + 64, 32);
|
||
uint32_t rawHi = bytebits_to_byte(dest + idx + 32, 32);
|
||
uint32_t rawHi2 = bytebits_to_byte(dest + idx, 32);
|
||
|
||
size = removeParity(dest, idx + 8, 4, 1, 88);
|
||
if (size != 66) continue;
|
||
// ok valid card found!
|
||
|
||
// Index map
|
||
// 0 10 20 30 40 50 60
|
||
// | | | | | | |
|
||
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
|
||
// -----------------------------------------------------------------------------
|
||
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
|
||
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
||
// |26 bit| |-117--| |-----142------|
|
||
// b = format bit len, o = odd parity of last 3 bits
|
||
// f = facility code, c = card number
|
||
// w = wiegand parity
|
||
// (26 bit format shown)
|
||
|
||
uint8_t fmtLen = bytebits_to_byte(dest, 8);
|
||
if (fmtLen == 26) {
|
||
uint32_t fac = bytebits_to_byte(dest + 9, 8);
|
||
uint32_t cardnum = bytebits_to_byte(dest + 17, 16);
|
||
uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen);
|
||
Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fac, cardnum, code1, rawHi2, rawHi, rawLo);
|
||
} else {
|
||
uint32_t cardnum = bytebits_to_byte(dest + 8 + (fmtLen - 17), 16);
|
||
if (fmtLen > 32) {
|
||
uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen - 32);
|
||
uint32_t code2 = bytebits_to_byte(dest + 8 + (fmtLen - 32), 32);
|
||
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
|
||
} else {
|
||
uint32_t code1 = bytebits_to_byte(dest + 8, fmtLen);
|
||
Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
|
||
}
|
||
}
|
||
if (findone) {
|
||
if (ledcontrol) LED_A_OFF();
|
||
*high = rawHi;
|
||
*low = rawLo;
|
||
break;
|
||
}
|
||
}
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("AWID fsk demod stopped");
|
||
if (ledcontrol) LED_A_OFF();
|
||
}
|
||
|
||
void CmdEM410xdemod(int findone, uint32_t *high, uint64_t *low, int ledcontrol) {
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
|
||
size_t size, idx = 0;
|
||
int clk = 0, invert = 0, maxErr = 20;
|
||
uint32_t hi = 0;
|
||
uint64_t lo = 0;
|
||
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
while (!BUTTON_PRESS() && !data_available()) {
|
||
|
||
WDT_HIT();
|
||
if (ledcontrol) LED_A_ON();
|
||
|
||
DoAcquisition_default(-1, false);
|
||
|
||
size = MIN(16385, BigBuf_max_traceLen());
|
||
|
||
//askdemod and manchester decode
|
||
int errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
|
||
WDT_HIT();
|
||
|
||
if (errCnt > 50) continue;
|
||
|
||
errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
|
||
if (errCnt == 1) {
|
||
if (size == 128) {
|
||
Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
|
||
hi,
|
||
(uint32_t)(lo >> 32),
|
||
(uint32_t)lo,
|
||
(uint32_t)(lo & 0xFFFF),
|
||
(uint32_t)((lo >> 16LL) & 0xFF),
|
||
(uint32_t)(lo & 0xFFFFFF));
|
||
} else {
|
||
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
|
||
(uint32_t)(lo >> 32),
|
||
(uint32_t)lo,
|
||
(uint32_t)(lo & 0xFFFF),
|
||
(uint32_t)((lo >> 16LL) & 0xFF),
|
||
(uint32_t)(lo & 0xFFFFFF));
|
||
}
|
||
|
||
if (findone) {
|
||
if (ledcontrol) LED_A_OFF();
|
||
*high = hi;
|
||
*low = lo;
|
||
break;
|
||
}
|
||
}
|
||
hi = lo = size = idx = 0;
|
||
clk = invert = 0;
|
||
}
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("EM man/ask demod stopped");
|
||
if (ledcontrol) LED_A_OFF();
|
||
}
|
||
|
||
void CmdIOdemodFSK(int findone, uint32_t *high, uint32_t *low, int ledcontrol) {
|
||
|
||
uint8_t *dest = BigBuf_get_addr();
|
||
|
||
int dummyIdx = 0;
|
||
uint32_t code = 0, code2 = 0;
|
||
uint8_t version = 0, facilitycode = 0, crc = 0;
|
||
uint16_t number = 0, calccrc = 0;
|
||
|
||
size_t size = BigBuf_max_traceLen();
|
||
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
// Configure to go in 125kHz listen mode
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
while (!BUTTON_PRESS() && !data_available()) {
|
||
WDT_HIT();
|
||
if (ledcontrol) LED_A_ON();
|
||
|
||
DoAcquisition_default(-1, false);
|
||
|
||
size = MIN(12000, BigBuf_max_traceLen());
|
||
|
||
//fskdemod and get start index
|
||
int idx = detectIOProx(dest, &size, &dummyIdx);
|
||
if (idx < 0) continue;
|
||
//valid tag found
|
||
|
||
//Index map
|
||
//0 10 20 30 40 50 60
|
||
//| | | | | | |
|
||
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
|
||
//-----------------------------------------------------------------------------
|
||
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
|
||
//
|
||
//Checksum:
|
||
//00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
|
||
//preamble F0 E0 01 03 B6 75
|
||
// How to calc checksum,
|
||
// http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
|
||
// F0 + E0 + 01 + 03 + B6 = 28A
|
||
// 28A & FF = 8A
|
||
// FF - 8A = 75
|
||
// Checksum: 0x75
|
||
//XSF(version)facility:codeone+codetwo
|
||
//Handle the data
|
||
// if(findone){ //only print binary if we are doing one
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
|
||
// Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
|
||
// }
|
||
code = bytebits_to_byte(dest + idx, 32);
|
||
code2 = bytebits_to_byte(dest + idx + 32, 32);
|
||
version = bytebits_to_byte(dest + idx + 27, 8); //14,4
|
||
facilitycode = bytebits_to_byte(dest + idx + 18, 8);
|
||
number = (bytebits_to_byte(dest + idx + 36, 8) << 8) | (bytebits_to_byte(dest + idx + 45, 8)); //36,9
|
||
|
||
crc = bytebits_to_byte(dest + idx + 54, 8);
|
||
for (uint8_t i = 1; i < 6; ++i)
|
||
calccrc += bytebits_to_byte(dest + idx + 9 * i, 8);
|
||
calccrc &= 0xff;
|
||
calccrc = 0xff - calccrc;
|
||
|
||
const char *crcStr = (crc == calccrc) ? "ok" : "!crc";
|
||
|
||
Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]", version, facilitycode, number, code, code2, crc, crcStr);
|
||
// if we're only looking for one tag
|
||
if (findone) {
|
||
if (ledcontrol) LED_A_OFF();
|
||
*high = code;
|
||
*low = code2;
|
||
break;
|
||
}
|
||
code = code2 = 0;
|
||
version = facilitycode = 0;
|
||
number = 0;
|
||
calccrc = 0;
|
||
}
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
DbpString("IOProx fsk demod stopped");
|
||
if (ledcontrol) LED_A_OFF();
|
||
}
|
||
|
||
/*------------------------------
|
||
* T5555/T5557/T5567/T5577 routines
|
||
*------------------------------
|
||
* NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
|
||
*
|
||
* Relevant communication times in microsecond
|
||
* To compensate antenna falling times shorten the write times
|
||
* and enlarge the gap ones.
|
||
* Q5 tags seems to have issues when these values changes.
|
||
*/
|
||
|
||
void TurnReadLFOn(uint32_t delay) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD);
|
||
|
||
// measure antenna strength.
|
||
//int adcval = ((MAX_ADC_LF_VOLTAGE * (SumAdc(ADC_CHAN_LF, 32) >> 1)) >> 14);
|
||
WaitUS(delay);
|
||
}
|
||
static void TurnReadLF_off(uint32_t delay) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
WaitUS(delay);
|
||
}
|
||
|
||
// Macro for code readability
|
||
#define BITSTREAM_BYTE(x) ((x) >> 3) // iceman note: isn't this NIBBLE???
|
||
#define BITSTREAM_BIT(x) ((x) & 7)
|
||
|
||
#define T55_LLR_REF (136 * 8)
|
||
|
||
// Write one bit to chip
|
||
static void T55xxWriteBit(uint8_t bit, uint8_t downlink_idx) {
|
||
|
||
switch (bit) {
|
||
case 0 :
|
||
// send bit 0/00
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_0);
|
||
break;
|
||
case 1 :
|
||
// send bit 1/01
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_1);
|
||
break;
|
||
case 2 :
|
||
// send bits 10 (1 of 4)
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_2);
|
||
break;
|
||
case 3 :
|
||
// send bits 11 (1 of 4)
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_3);
|
||
break;
|
||
case 4 :
|
||
// send Long Leading Reference
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_idx].write_0 + T55_LLR_REF);
|
||
break;
|
||
}
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
WaitUS(T55xx_Timing.m[downlink_idx].write_gap);
|
||
}
|
||
|
||
// Function to abstract an Arbitrary length byte array to store bit pattern.
|
||
// bit_array - Array to hold data/bit pattern
|
||
// start_offset - bit location to start storing new bits.
|
||
// data - upto 32 bits of data to store
|
||
// num_bits - how many bits (low x bits of data) Max 32 bits at a time
|
||
// max_len - how many bytes can the bit_array hold (ensure no buffer overflow)
|
||
// returns "Next" bit offset / bits stored (for next store)
|
||
static uint8_t T55xx_SetBits(uint8_t *bs, uint8_t start_offset, uint32_t data, uint8_t num_bits, uint8_t max_len) {
|
||
int8_t next_offset = start_offset;
|
||
|
||
// Check if data will fit.
|
||
if ((start_offset + num_bits) <= (max_len * 8)) {
|
||
// Loop through the data and store
|
||
for (int8_t offset = (num_bits - 1); offset >= 0; offset--) {
|
||
|
||
if ((data >> offset) & 1)
|
||
bs[BITSTREAM_BYTE(next_offset)] |= (1 << BITSTREAM_BIT(next_offset)); // Set 1
|
||
else
|
||
bs[BITSTREAM_BYTE(next_offset)] &= (0xff ^ (1 << BITSTREAM_BIT(next_offset))); // Set 0
|
||
|
||
next_offset++;
|
||
}
|
||
} else {
|
||
// Note: This should never happen unless some code changes cause it.
|
||
// So short message for coders when testing.
|
||
Dbprintf(_RED_("T55 too many bits"));
|
||
}
|
||
return next_offset;
|
||
}
|
||
|
||
// Send one downlink command to the card
|
||
static void T55xx_SendCMD(uint32_t data, uint32_t pwd, uint16_t arg) {
|
||
|
||
/*
|
||
arg bits
|
||
xxxx xxxxxxx1 0x001 password mode (Y/N)
|
||
xxxx xxxxxx1x 0x002 page (0|1)
|
||
xxxx xxxxx1xx 0x004 test mode (Y/N)
|
||
xxxx xxx11xxx 0x018 selected downlink mode (0|1|2|3|)
|
||
xxxx xx1xxxxx 0x020 !reg_readmode (ICEMAN ?? Why use negative in the bool ??)
|
||
xxxx x1xxxxxx 0x040 called for a read, so no data packet (Y/N)
|
||
xxxx 1xxxxxxx 0x080 reset (Y/N)
|
||
xxx1 xxxxxxxx 0x100 brute force (Y/N)
|
||
111x xxxxxxxx 0xE00 block to write (0-7)
|
||
*/
|
||
bool t55_send_pwdmode = (arg & 0x1);
|
||
bool t55_send_page = ((arg >> 1) & 0x1);
|
||
bool t55_send_testmode = ((arg >> 2) & 0x1);
|
||
bool t55_send_regreadmode = ((arg >> 5) & 0x1);
|
||
bool t55_send_readcmd = ((arg >> 6) & 0x1);
|
||
bool t55_send_reset = ((arg >> 7) & 0x1);
|
||
bool t55_brute_mem = ((arg >> 8) & 0x1);
|
||
|
||
uint8_t downlink_mode = (arg >> 3) & 0x03;
|
||
uint8_t block_no = (arg >> 9) & 0x07;
|
||
|
||
// no startup delay when in bruteforce command
|
||
uint8_t start_wait = (t55_brute_mem) ? 0 : 4;
|
||
|
||
// Max Downlink Command size ~74 bits, so 10 bytes (80 bits)
|
||
uint8_t bs[10];
|
||
memset(bs, 0x00, sizeof(bs));
|
||
|
||
uint8_t len = 0;
|
||
|
||
// build bit stream to send.
|
||
|
||
// add Leading 0
|
||
if (downlink_mode == T55XX_DLMODE_LEADING_ZERO)
|
||
len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs));
|
||
|
||
// add 1 of 4 reference bit
|
||
if (downlink_mode == T55XX_DLMODE_1OF4) {
|
||
len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs));
|
||
// add extra zero
|
||
len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs));
|
||
}
|
||
|
||
// add Opcode
|
||
if (t55_send_reset) {
|
||
// reset : r*) 00
|
||
len = T55xx_SetBits(bs, len, 0, 2, sizeof(bs));
|
||
} else {
|
||
|
||
if (t55_send_testmode)
|
||
Dbprintf(_YELLOW_("Using Test Mode"));
|
||
|
||
len = T55xx_SetBits(bs, len, t55_send_testmode ? 0 : 1, 1, sizeof(bs));
|
||
|
||
len = T55xx_SetBits(bs, len, t55_send_testmode ? 1 : t55_send_page, 1, sizeof(bs));
|
||
|
||
if (t55_send_pwdmode) {
|
||
// Leading 0 and 1 of 4 00 fixed bits if passsword used
|
||
if ((downlink_mode == T55XX_DLMODE_LEADING_ZERO) || (downlink_mode == T55XX_DLMODE_1OF4)) {
|
||
len = T55xx_SetBits(bs, len, 0, 2, sizeof(bs));
|
||
}
|
||
len = T55xx_SetBits(bs, len, pwd, 32, sizeof(bs));
|
||
}
|
||
|
||
// Add Lock bit 0
|
||
if (t55_send_regreadmode == false)
|
||
len = T55xx_SetBits(bs, len, 0, 1, sizeof(bs));
|
||
|
||
// Add Data if a write command
|
||
if (t55_send_readcmd == false)
|
||
len = T55xx_SetBits(bs, len, data, 32, sizeof(bs));
|
||
|
||
// Add Address
|
||
if (t55_send_regreadmode == false)
|
||
len = T55xx_SetBits(bs, len, block_no, 3, sizeof(bs));
|
||
}
|
||
|
||
// Send Bits to T55xx
|
||
// Set up FPGA, 125kHz
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
// make sure tag is fully powered up...
|
||
WaitMS(start_wait);
|
||
|
||
// Trigger T55x7 in mode.
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
WaitUS(T55xx_Timing.m[downlink_mode].start_gap);
|
||
|
||
// If long leading 0 send long reference pulse
|
||
if (downlink_mode == T55XX_DLMODE_LLR)
|
||
T55xxWriteBit(T55XX_LONGLEADINGREFERENCE, downlink_mode);//Timing); // Send Long Leading Start Reference
|
||
|
||
uint8_t sendbits;
|
||
if ((downlink_mode == T55XX_DLMODE_1OF4) && (len > 0)) { // 1 of 4 need to send 2 bits at a time
|
||
for (uint8_t i = 0; i < len - 1; i += 2) {
|
||
sendbits = (bs[BITSTREAM_BYTE(i)] >> (BITSTREAM_BIT(i)) & 1) << 1; // Bit i
|
||
sendbits += (bs[BITSTREAM_BYTE(i + 1)] >> (BITSTREAM_BIT(i + 1)) & 1); // Bit i+1;
|
||
T55xxWriteBit(sendbits & 3, downlink_mode);
|
||
}
|
||
} else {
|
||
for (uint8_t i = 0; i < len; i++) {
|
||
sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i));
|
||
T55xxWriteBit(sendbits & 1, downlink_mode);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Send T5577 reset command then read stream (see if we can identify the start of the stream)
|
||
void T55xxResetRead(uint8_t flags) {
|
||
|
||
uint8_t downlink_mode = ((flags >> 3) & 3);
|
||
uint8_t arg = 0x80 | downlink_mode;
|
||
|
||
LED_A_ON();
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
T55xx_SendCMD(0, 0, arg);
|
||
|
||
TurnReadLFOn(T55xx_Timing.m[downlink_mode].read_gap);
|
||
|
||
// Acquisition
|
||
DoPartialAcquisition(0, false, BigBuf_max_traceLen(), 0);
|
||
|
||
// Turn the field off
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_T55XX_RESET_READ, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
void T55xxDangerousRawTest(uint8_t *data) {
|
||
// supports only default downlink mode
|
||
t55xx_test_block_t *c = (t55xx_test_block_t *)data;
|
||
|
||
uint8_t start_wait = 4;
|
||
uint8_t bs[128 / 8];
|
||
memset(bs, 0x00, sizeof(bs));
|
||
uint8_t len = 0;
|
||
if (c->bitlen == 0 || c->bitlen > 128 || c->time == 0)
|
||
reply_ng(CMD_LF_T55XX_DANGERRAW, PM3_EINVARG, NULL, 0);
|
||
for (uint8_t i = 0; i < c->bitlen; i++)
|
||
len = T55xx_SetBits(bs, len, c->data[i], 1, sizeof(bs));
|
||
|
||
if (DBGLEVEL > 1) {
|
||
Dbprintf("LEN %i, TIMING %i", len, c->time);
|
||
for (uint8_t i = 0; i < len; i++) {
|
||
uint8_t sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i));
|
||
Dbprintf("%02i: %i", i, sendbits & 1);
|
||
}
|
||
}
|
||
|
||
LED_A_ON();
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
// make sure tag is fully powered up...
|
||
WaitMS(start_wait);
|
||
// Trigger T55x7 in mode.
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
WaitUS(T55xx_Timing.m[0].start_gap);
|
||
uint8_t sendbits;
|
||
for (uint8_t i = 0; i < len; i++) {
|
||
sendbits = (bs[BITSTREAM_BYTE(i)] >> BITSTREAM_BIT(i));
|
||
T55xxWriteBit(sendbits & 1, 0);
|
||
}
|
||
TurnReadLFOn(c->time);
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_T55XX_DANGERRAW, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
// Write one card block in page 0, no lock
|
||
//void T55xxWriteBlockExt(uint32_t data, uint8_t blockno, uint32_t pwd, uint8_t flags) {
|
||
void T55xxWriteBlock(uint8_t *data) {
|
||
|
||
/*
|
||
flag bits
|
||
xxxxxxx1 0x01 PwdMode
|
||
xxxxxx1x 0x02 Page
|
||
xxxxx1xx 0x04 testMode
|
||
xxx11xxx 0x18 downlink mode
|
||
xx1xxxxx 0x20 !reg_readmode
|
||
x1xxxxxx 0x40 called for a read, so no data packet
|
||
1xxxxxxx 0x80 reset
|
||
*/
|
||
|
||
t55xx_write_block_t *c = (t55xx_write_block_t *)data;
|
||
// c->data, c->blockno, c->pwd, c->flags
|
||
|
||
bool testMode = ((c->flags & 0x04) == 0x04);
|
||
|
||
c->flags &= (0xff ^ 0x40); // Called for a write, so ensure it is clear/0
|
||
|
||
LED_A_ON();
|
||
T55xx_SendCMD(c->data, c->pwd, c->flags | (c->blockno << 9));
|
||
|
||
// Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
|
||
// so wait a little more)
|
||
|
||
// "there is a clock delay before programming"
|
||
// - programming takes ~5.6ms for t5577 ~18ms for E5550 or t5567
|
||
// so we should wait 1 clock + 5.6ms then read response?
|
||
// but we need to know we are dealing with t5577 vs t5567 vs e5550 (or q5) marshmellow...
|
||
if (testMode) {
|
||
//TESTMODE TIMING TESTS:
|
||
// <566us does nothing
|
||
// 566-568 switches between wiping to 0s and doing nothing
|
||
// 5184 wipes and allows 1 block to be programmed.
|
||
// indefinite power on wipes and then programs all blocks with bitshifted data sent.
|
||
TurnReadLFOn(5184);
|
||
|
||
} else {
|
||
TurnReadLFOn(20 * 1000);
|
||
//could attempt to do a read to confirm write took
|
||
// as the tag should repeat back the new block
|
||
// until it is reset, but to confirm it we would
|
||
// need to know the current block 0 config mode for
|
||
// modulation clock an other details to demod the response...
|
||
// response should be (for t55x7) a 0 bit then (ST if on)
|
||
// block data written in on repeat until reset.
|
||
|
||
//DoPartialAcquisition(20, false, 12000);
|
||
}
|
||
// turn field off
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
|
||
reply_ng(CMD_LF_T55XX_WRITEBL, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
/*
|
||
// uses NG format
|
||
void T55xxWriteBlock(uint8_t *data) {
|
||
t55xx_write_block_t *c = (t55xx_write_block_t *)data;
|
||
T55xxWriteBlockExt(c->data, c->blockno, c->pwd, c->flags);
|
||
// reply_ng(CMD_LF_T55XX_WRITEBL, PM3_SUCCESS, NULL, 0);
|
||
}
|
||
*/
|
||
/*
|
||
// Read one card block in page [page]
|
||
void T55xxReadBlockExt(uint16_t flags, uint8_t block, uint32_t pwd) {
|
||
/ *
|
||
flag bits
|
||
xxxx xxxxxxx1 0x0001 PwdMode
|
||
xxxx xxxxxx1x 0x0002 Page
|
||
xxxx xxxxx1xx 0x0004 testMode
|
||
xxxx xxx11xxx 0x0018 downlink mode
|
||
xxxx xx1xxxxx 0x0020 !reg_readmode
|
||
xxxx x1xxxxxx 0x0040 called for a read, so no data packet
|
||
xxxx 1xxxxxxx 0x0080 reset
|
||
xxx1 xxxxxxxx 0x0100 brute / leave field on
|
||
* /
|
||
size_t samples = 12000;
|
||
bool brute_mem = (flags & 0x0100) >> 8;
|
||
|
||
LED_A_ON();
|
||
|
||
if (brute_mem) samples = 1024;
|
||
|
||
// Set Read Flag to ensure SendCMD does not add "data" to the packet
|
||
flags |= 0x40;
|
||
|
||
// RegRead Mode true block = 0xff, so read without an address
|
||
if (block == 0xff) flags |= 0x20;
|
||
|
||
//make sure block is at max 7
|
||
block &= 0x7;
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
T55xx_SendCMD(0, pwd, flags | (block << 9)); //, true);
|
||
|
||
// Turn field on to read the response
|
||
// 137*8 seems to get to the start of data pretty well...
|
||
// but we want to go past the start and let the repeating data settle in...
|
||
|
||
// TurnReadLFOn(210*8); // issues with block 1 reads so dropping down seemed to help
|
||
TurnReadLFOn(137 * 8);
|
||
|
||
// Acquisition
|
||
// Now do the acquisition
|
||
DoPartialAcquisition(0, false, samples, 0);
|
||
|
||
// Turn the field off
|
||
if (!brute_mem) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_T55XX_READBL, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
}
|
||
*/
|
||
// Read one card block in page [page]
|
||
void T55xxReadBlock(uint8_t page, bool pwd_mode, bool brute_mem, uint8_t block, uint32_t pwd, uint8_t downlink_mode) {
|
||
/*
|
||
flag bits
|
||
xxxx xxxxxxx1 0x0001 PwdMode
|
||
xxxx xxxxxx1x 0x0002 Page
|
||
xxxx xxxxx1xx 0x0004 testMode
|
||
xxxx xxx11xxx 0x0018 downlink mode
|
||
xxxx xx1xxxxx 0x0020 !reg_readmode
|
||
xxxx x1xxxxxx 0x0040 called for a read, so no data packet
|
||
xxxx 1xxxxxxx 0x0080 reset
|
||
xxx1 xxxxxxxx 0x0100 brute / leave field on
|
||
*/
|
||
uint16_t flags = 0x0040; // read packet
|
||
if (pwd_mode) flags |= 0x0001;
|
||
if (page) flags |= 0x0002;
|
||
flags |= (downlink_mode & 3) << 3;
|
||
if (brute_mem) flags |= 0x0100;
|
||
|
||
// T55xxReadBlockExt (flags,block,pwd);
|
||
size_t samples = 12000;
|
||
// bool brute_mem = (flags & 0x0100) >> 8;
|
||
|
||
LED_A_ON();
|
||
|
||
if (brute_mem) samples = 1024;
|
||
|
||
//-- Set Read Flag to ensure SendCMD does not add "data" to the packet
|
||
//-- flags |= 0x40;
|
||
|
||
// RegRead Mode true block = 0xff, so read without an address
|
||
if (block == 0xff) flags |= 0x20;
|
||
|
||
//make sure block is at max 7
|
||
block &= 0x7;
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_keep_EM();
|
||
|
||
T55xx_SendCMD(0, pwd, flags | (block << 9)); //, true);
|
||
|
||
// Turn field on to read the response
|
||
// 137*8 seems to get to the start of data pretty well...
|
||
// but we want to go past the start and let the repeating data settle in...
|
||
|
||
// TurnReadLFOn(210*8); // issues with block 1 reads so dropping down seemed to help
|
||
TurnReadLFOn(137 * 8);
|
||
|
||
// Acquisition
|
||
// Now do the acquisition
|
||
DoPartialAcquisition(0, false, samples, 0);
|
||
|
||
// Turn the field off
|
||
if (!brute_mem) {
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_T55XX_READBL, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
}
|
||
|
||
void T55xx_ChkPwds(uint8_t flags) {
|
||
|
||
DbpString("[+] T55XX Check pwds using flashmemory starting");
|
||
|
||
uint8_t ret = 0;
|
||
// First get baseline and setup LF mode.
|
||
// tends to mess up BigBuf
|
||
uint8_t *buf = BigBuf_get_addr();
|
||
uint32_t b1, baseline = 0;
|
||
uint8_t downlink_mode = (flags >> 3) & 0x03;
|
||
|
||
// collect baseline for failed attempt
|
||
uint8_t x = 32;
|
||
while (x--) {
|
||
b1 = 0;
|
||
T55xxReadBlock(0, 0, true, 1, 0, downlink_mode);
|
||
for (uint16_t j = 0; j < 1024; ++j)
|
||
b1 += buf[j];
|
||
|
||
b1 *= b1;
|
||
b1 >>= 8;
|
||
baseline += b1;
|
||
}
|
||
|
||
baseline >>= 5;
|
||
Dbprintf("[=] Baseline determined [%u]", baseline);
|
||
|
||
uint8_t *pwds = BigBuf_get_EM_addr();
|
||
uint16_t pwd_count = 0;
|
||
uint32_t candidate = 0;
|
||
#ifdef WITH_FLASH
|
||
|
||
BigBuf_Clear_EM();
|
||
uint16_t isok = 0;
|
||
uint8_t counter[2] = {0x00, 0x00};
|
||
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET, counter, sizeof(counter));
|
||
if (isok != sizeof(counter))
|
||
goto OUT;
|
||
|
||
pwd_count = (uint16_t)(counter[1] << 8 | counter[0]);
|
||
if (pwd_count == 0)
|
||
goto OUT;
|
||
|
||
// since flash can report way too many pwds, we need to limit it.
|
||
// bigbuff EM size is determined by CARD_MEMORY_SIZE
|
||
// a password is 4bytes.
|
||
uint16_t pwd_size_available = MIN(CARD_MEMORY_SIZE, pwd_count * 4);
|
||
|
||
// adjust available pwd_count
|
||
pwd_count = pwd_size_available / 4;
|
||
|
||
isok = Flash_ReadData(DEFAULT_T55XX_KEYS_OFFSET + 2, pwds, pwd_size_available);
|
||
if (isok != pwd_size_available)
|
||
goto OUT;
|
||
|
||
Dbprintf("[=] Password dictionary count %d ", pwd_count);
|
||
#endif
|
||
|
||
uint32_t pwd = 0, curr = 0, prev = 0;
|
||
for (uint16_t i = 0; i < pwd_count; ++i) {
|
||
|
||
if (BUTTON_PRESS() && !data_available()) {
|
||
goto OUT;
|
||
}
|
||
|
||
pwd = bytes_to_num(pwds + i * 4, 4);
|
||
|
||
T55xxReadBlock(0, true, true, 0, pwd, downlink_mode);
|
||
|
||
// calc mean of BigBuf 1024 samples.
|
||
uint32_t sum = 0;
|
||
for (uint16_t j = 0; j < 1024; ++j) {
|
||
sum += buf[j];
|
||
}
|
||
|
||
sum *= sum;
|
||
sum >>= 8;
|
||
|
||
int32_t tmp = (sum - baseline);
|
||
curr = ABS(tmp);
|
||
|
||
Dbprintf("[=] Pwd %08X | ABS %u", pwd, curr);
|
||
|
||
if (curr > prev) {
|
||
Dbprintf("[=] --> ABS %u Candidate %08X <--", curr, pwd);
|
||
candidate = pwd;
|
||
prev = curr;
|
||
}
|
||
}
|
||
|
||
if (candidate)
|
||
ret = 1;
|
||
|
||
OUT:
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_mix(CMD_ACK, ret, candidate, 0, 0, 0);
|
||
LEDsoff();
|
||
}
|
||
|
||
void T55xxWakeUp(uint32_t pwd, uint8_t flags) {
|
||
|
||
flags |= 0x01 | 0x40 | 0x20; //Password | Read Call (no data) | reg_read no block
|
||
LED_B_ON();
|
||
|
||
T55xx_SendCMD(0, pwd, flags);
|
||
|
||
//-- Turn and leave field on to let the begin repeating transmission
|
||
TurnReadLFOn(20 * 1000);
|
||
reply_ng(CMD_LF_T55XX_WAKEUP, PM3_SUCCESS, NULL, 0);
|
||
}
|
||
|
||
|
||
/*-------------- Cloning routines -----------*/
|
||
static void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
|
||
|
||
t55xx_write_block_t cmd;
|
||
cmd.pwd = 0;
|
||
cmd.flags = 0;
|
||
|
||
for (uint8_t i = numblocks + startblock; i > startblock; i--) {
|
||
cmd.data = blockdata[i - 1];
|
||
cmd.blockno = i - 1;
|
||
T55xxWriteBlock((uint8_t *)&cmd);
|
||
}
|
||
|
||
}
|
||
|
||
// Copy HID id to card and setup block 0 config
|
||
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
|
||
uint32_t data[] = {0, 0, 0, 0, 0, 0, 0};
|
||
uint8_t last_block = 0;
|
||
|
||
if (longFMT) {
|
||
// Ensure no more than 84 bits supplied
|
||
if (hi2 > 0xFFFFF) {
|
||
DbpString("Tags can only have 84 bits.");
|
||
return;
|
||
}
|
||
// Build the 6 data blocks for supplied 84bit ID
|
||
last_block = 6;
|
||
// load preamble (1D) & long format identifier (9E manchester encoded)
|
||
data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
|
||
// load raw id from hi2, hi, lo to data blocks (manchester encoded)
|
||
data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
|
||
data[3] = manchesterEncode2Bytes(hi >> 16);
|
||
data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
|
||
data[5] = manchesterEncode2Bytes(lo >> 16);
|
||
data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
|
||
} else {
|
||
// Ensure no more than 44 bits supplied
|
||
if (hi > 0xFFF) {
|
||
DbpString("Tags can only have 44 bits.");
|
||
return;
|
||
}
|
||
// Build the 3 data blocks for supplied 44bit ID
|
||
last_block = 3;
|
||
// load preamble
|
||
data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
|
||
data[2] = manchesterEncode2Bytes(lo >> 16);
|
||
data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
|
||
}
|
||
// load chip config block
|
||
data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
|
||
|
||
//TODO add selection of chip for Q5 or T55x7
|
||
// data[0] = T5555_SET_BITRATE(50) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
|
||
|
||
LED_D_ON();
|
||
WriteT55xx(data, 0, last_block + 1);
|
||
LED_D_OFF();
|
||
}
|
||
|
||
// clone viking tag to T55xx
|
||
void CopyVikingtoT55xx(uint8_t *blocks, uint8_t Q5) {
|
||
|
||
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), 0, 0};
|
||
if (Q5)
|
||
data[0] = T5555_SET_BITRATE(32) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
|
||
|
||
data[1] = bytes_to_num(blocks, 4);
|
||
data[2] = bytes_to_num(blocks + 4, 4);
|
||
|
||
// Program the data blocks for supplied ID and the block 0 config
|
||
WriteT55xx(data, 0, 3);
|
||
LED_D_OFF();
|
||
reply_ng(CMD_LF_VIKING_CLONE, PM3_SUCCESS, NULL, 0);
|
||
}
|
||
|
||
// Define 9bit header for EM410x tags
|
||
#define EM410X_HEADER 0x1FF
|
||
#define EM410X_ID_LENGTH 40
|
||
|
||
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
|
||
int i;
|
||
uint64_t id = EM410X_HEADER;
|
||
uint64_t rev_id = 0; // reversed ID
|
||
int c_parity[4]; // column parity
|
||
int r_parity = 0; // row parity
|
||
uint32_t clock = 0;
|
||
|
||
// Reverse ID bits given as parameter (for simpler operations)
|
||
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
||
if (i < 32) {
|
||
rev_id = (rev_id << 1) | (id_lo & 1);
|
||
id_lo >>= 1;
|
||
} else {
|
||
rev_id = (rev_id << 1) | (id_hi & 1);
|
||
id_hi >>= 1;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < EM410X_ID_LENGTH; ++i) {
|
||
int id_bit = rev_id & 1;
|
||
|
||
if (i % 4 == 0) {
|
||
// Don't write row parity bit at start of parsing
|
||
if (i)
|
||
id = (id << 1) | r_parity;
|
||
// Start counting parity for new row
|
||
r_parity = id_bit;
|
||
} else {
|
||
// Count row parity
|
||
r_parity ^= id_bit;
|
||
}
|
||
|
||
// First elements in column?
|
||
if (i < 4)
|
||
// Fill out first elements
|
||
c_parity[i] = id_bit;
|
||
else
|
||
// Count column parity
|
||
c_parity[i % 4] ^= id_bit;
|
||
|
||
// Insert ID bit
|
||
id = (id << 1) | id_bit;
|
||
rev_id >>= 1;
|
||
}
|
||
|
||
// Insert parity bit of last row
|
||
id = (id << 1) | r_parity;
|
||
|
||
// Fill out column parity at the end of tag
|
||
for (i = 0; i < 4; ++i)
|
||
id = (id << 1) | c_parity[i];
|
||
|
||
// Add stop bit
|
||
id <<= 1;
|
||
|
||
Dbprintf("Started writing %s tag ...", card ? "T55x7" : "T5555");
|
||
LED_D_ON();
|
||
|
||
// Write EM410x ID
|
||
uint32_t data[] = {0, (uint32_t)(id >> 32), (uint32_t)(id & 0xFFFFFFFF)};
|
||
|
||
clock = (card & 0xFF00) >> 8;
|
||
clock = (clock == 0) ? 64 : clock;
|
||
Dbprintf("Clock rate: %d", clock);
|
||
if (card & 0xFF) { //t55x7
|
||
clock = GetT55xxClockBit(clock);
|
||
if (clock == 0) {
|
||
Dbprintf("Invalid clock rate: %d", clock);
|
||
return;
|
||
}
|
||
data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
|
||
} else { //t5555 (Q5)
|
||
data[0] = T5555_SET_BITRATE(clock) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
|
||
}
|
||
|
||
WriteT55xx(data, 0, 3);
|
||
|
||
LED_D_OFF();
|
||
Dbprintf("Tag %s written with 0x%08x%08x\n",
|
||
card ? "T55x7" : "T5555",
|
||
(uint32_t)(id >> 32),
|
||
(uint32_t)id);
|
||
}
|
||
|
||
//-----------------------------------
|
||
// EM4469 / EM4305 routines
|
||
//-----------------------------------
|
||
// Below given command set.
|
||
// Commands are including the even parity, binary mirrored
|
||
#define FWD_CMD_LOGIN 0xC
|
||
#define FWD_CMD_WRITE 0xA
|
||
#define FWD_CMD_READ 0x9
|
||
#define FWD_CMD_DISABLE 0x5
|
||
|
||
static uint8_t forwardLink_data[64]; //array of forwarded bits
|
||
static uint8_t *forward_ptr; //ptr for forward message preparation
|
||
static uint8_t fwd_bit_sz; //forwardlink bit counter
|
||
static uint8_t *fwd_write_ptr; //forwardlink bit pointer
|
||
|
||
//====================================================================
|
||
// prepares command bits
|
||
// see EM4469 spec
|
||
//====================================================================
|
||
//--------------------------------------------------------------------
|
||
// VALUES TAKEN FROM EM4x function: SendForward
|
||
// START_GAP = 440; (55*8) cycles at 125kHz (8us = 1cycle)
|
||
// WRITE_GAP = 128; (16*8)
|
||
// WRITE_1 = 256 32*8; (32*8)
|
||
|
||
// These timings work for 4469/4269/4305 (with the 55*8 above)
|
||
// WRITE_0 = 23*8 , 9*8
|
||
|
||
static uint8_t Prepare_Cmd(uint8_t cmd) {
|
||
|
||
*forward_ptr++ = 0; //start bit
|
||
*forward_ptr++ = 0; //second pause for 4050 code
|
||
|
||
*forward_ptr++ = cmd;
|
||
cmd >>= 1;
|
||
*forward_ptr++ = cmd;
|
||
cmd >>= 1;
|
||
*forward_ptr++ = cmd;
|
||
cmd >>= 1;
|
||
*forward_ptr++ = cmd;
|
||
|
||
return 6; //return number of emited bits
|
||
}
|
||
|
||
//====================================================================
|
||
// prepares address bits
|
||
// see EM4469 spec
|
||
//====================================================================
|
||
static uint8_t Prepare_Addr(uint8_t addr) {
|
||
|
||
register uint8_t line_parity;
|
||
|
||
uint8_t i;
|
||
line_parity = 0;
|
||
for (i = 0; i < 6; i++) {
|
||
*forward_ptr++ = addr;
|
||
line_parity ^= addr;
|
||
addr >>= 1;
|
||
}
|
||
|
||
*forward_ptr++ = (line_parity & 1);
|
||
|
||
return 7; //return number of emited bits
|
||
}
|
||
|
||
//====================================================================
|
||
// prepares data bits intreleaved with parity bits
|
||
// see EM4469 spec
|
||
//====================================================================
|
||
static uint8_t Prepare_Data(uint16_t data_low, uint16_t data_hi) {
|
||
|
||
register uint8_t column_parity;
|
||
register uint8_t i, j;
|
||
register uint16_t data;
|
||
|
||
data = data_low;
|
||
column_parity = 0;
|
||
|
||
for (i = 0; i < 4; i++) {
|
||
register uint8_t line_parity = 0;
|
||
for (j = 0; j < 8; j++) {
|
||
line_parity ^= data;
|
||
column_parity ^= (data & 1) << j;
|
||
*forward_ptr++ = data;
|
||
data >>= 1;
|
||
}
|
||
*forward_ptr++ = line_parity;
|
||
if (i == 1)
|
||
data = data_hi;
|
||
}
|
||
|
||
for (j = 0; j < 8; j++) {
|
||
*forward_ptr++ = column_parity;
|
||
column_parity >>= 1;
|
||
}
|
||
*forward_ptr = 0;
|
||
|
||
return 45; //return number of emited bits
|
||
}
|
||
|
||
//====================================================================
|
||
// Forward Link send function
|
||
// Requires: forwarLink_data filled with valid bits (1 bit per byte)
|
||
// fwd_bit_count set with number of bits to be sent
|
||
//====================================================================
|
||
static void SendForward(uint8_t fwd_bit_count) {
|
||
|
||
// iceman, 21.3us increments for the USclock verification.
|
||
// 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead
|
||
// 32FC * 8us == 256us / 21.3 == 12.018 steps. ok
|
||
// 16FC * 8us == 128us / 21.3 == 6.009 steps. ok
|
||
#ifndef EM_START_GAP
|
||
#define EM_START_GAP 55*8
|
||
#endif
|
||
|
||
fwd_write_ptr = forwardLink_data;
|
||
fwd_bit_sz = fwd_bit_count;
|
||
|
||
// Set up FPGA, 125kHz or 95 divisor
|
||
LFSetupFPGAForADC(LF_DIVISOR_125, true);
|
||
|
||
// force 1st mod pulse (start gap must be longer for 4305)
|
||
fwd_bit_sz--; //prepare next bit modulation
|
||
fwd_write_ptr++;
|
||
|
||
TurnReadLF_off(EM_START_GAP);
|
||
TurnReadLFOn(18 * 8);
|
||
|
||
// now start writting with bitbanging the antenna. (each bit should be 32*8 total length)
|
||
while (fwd_bit_sz-- > 0) { //prepare next bit modulation
|
||
if (((*fwd_write_ptr++) & 1) == 1) {
|
||
WaitUS(32 * 8);
|
||
} else {
|
||
TurnReadLF_off(23 * 8);
|
||
TurnReadLFOn((32 - 23) * 8);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void EM4xLogin(uint32_t pwd) {
|
||
uint8_t len;
|
||
forward_ptr = forwardLink_data;
|
||
len = Prepare_Cmd(FWD_CMD_LOGIN);
|
||
len += Prepare_Data(pwd & 0xFFFF, pwd >> 16);
|
||
SendForward(len);
|
||
//WaitUS(20); // no wait for login command.
|
||
// should receive
|
||
// 0000 1010 ok.
|
||
// 0000 0001 fail
|
||
}
|
||
|
||
void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) {
|
||
|
||
LED_A_ON();
|
||
uint8_t len;
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_ext(false);
|
||
|
||
StartTicks();
|
||
/* should we read answer from Logincommand?
|
||
*
|
||
* should receive
|
||
* 0000 1010 ok.
|
||
* 0000 0001 fail
|
||
**/
|
||
if (usepwd) EM4xLogin(pwd);
|
||
|
||
forward_ptr = forwardLink_data;
|
||
len = Prepare_Cmd(FWD_CMD_READ);
|
||
len += Prepare_Addr(addr);
|
||
|
||
SendForward(len);
|
||
|
||
WaitUS(400);
|
||
|
||
DoPartialAcquisition(20, false, 6000, 1000);
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_EM4X_READWORD, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
void EM4xWriteWord(uint8_t addr, uint32_t data, uint32_t pwd, uint8_t usepwd) {
|
||
|
||
LED_A_ON();
|
||
uint8_t len;
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_ext(false);
|
||
StartTicks();
|
||
/* should we read answer from Logincommand?
|
||
*
|
||
* should receive
|
||
* 0000 1010 ok.
|
||
* 0000 0001 fail
|
||
**/
|
||
if (usepwd) EM4xLogin(pwd);
|
||
|
||
forward_ptr = forwardLink_data;
|
||
len = Prepare_Cmd(FWD_CMD_WRITE);
|
||
len += Prepare_Addr(addr);
|
||
len += Prepare_Data(data & 0xFFFF, data >> 16);
|
||
|
||
SendForward(len);
|
||
|
||
//Wait 20ms for write to complete?
|
||
WaitMS(7);
|
||
|
||
DoPartialAcquisition(20, false, 6000, 1000);
|
||
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
||
reply_ng(CMD_LF_EM4X_WRITEWORD, PM3_SUCCESS, NULL, 0);
|
||
LED_A_OFF();
|
||
}
|
||
|
||
/*
|
||
Reading COTAG.
|
||
|
||
COTAG needs the reader to send a startsequence and the card has an extreme slow datarate.
|
||
because of this, we can "sample" the data signal but we interpreate it to Manchester direct.
|
||
|
||
This behavior looks very similar to old ancient Motorola Flexpass
|
||
|
||
-----------------------------------------------------------------------
|
||
According to patent EP0040544B1:
|
||
Operating freq
|
||
reader 132 kHz
|
||
tag 66 kHz
|
||
|
||
Divide by 384 counter
|
||
|
||
PULSE repetition 5.82ms
|
||
LOW 2.91 ms
|
||
HIGH 2.91 ms
|
||
|
||
Also references to a half-bit format and leading zero.
|
||
-----------------------------------------------------------------------
|
||
|
||
READER START SEQUENCE:
|
||
|
||
burst 800 us gap 2.2 ms
|
||
burst 3.6 ms gap 2.2 ms
|
||
burst 800 us gap 2.2 ms
|
||
pulse 3.6 ms
|
||
|
||
This triggers COTAG tag to response
|
||
|
||
*/
|
||
void Cotag(uint32_t arg0) {
|
||
#ifndef OFF
|
||
# define OFF(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS((x)); }
|
||
#endif
|
||
#ifndef ON
|
||
# define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); }
|
||
#endif
|
||
uint8_t rawsignal = arg0 & 0xF;
|
||
|
||
LED_A_ON();
|
||
|
||
LFSetupFPGAForADC(LF_FREQ2DIV(132), true);
|
||
|
||
//clear buffer now so it does not interfere with timing later
|
||
BigBuf_Clear_ext(false);
|
||
|
||
//send COTAG start pulse
|
||
ON(740) OFF(2035)
|
||
ON(3330) OFF(2035)
|
||
ON(740) OFF(2035)
|
||
ON(1000)
|
||
|
||
switch (rawsignal) {
|
||
case 0:
|
||
doCotagAcquisition(40000);
|
||
break;
|
||
case 1:
|
||
doCotagAcquisitionManchester();
|
||
break;
|
||
case 2:
|
||
DoAcquisition_config(false, 0);
|
||
break;
|
||
}
|
||
|
||
// Turn the field off
|
||
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
|
||
reply_ng(CMD_LF_COTAG_READ, PM3_SUCCESS, NULL, 0);
|
||
LEDsoff();
|
||
}
|
||
|
||
/*
|
||
* EM4305 support
|
||
*/
|