proxmark3/armsrc/ticks.c
iceman1001 d7e24e7c5f CHG: 'hf list legic' doesn't print the parity now.
CHG: 'hf legic read' the device side timings is starting to look much better. HUGE Thanks to @will-rbnt for endless checks and logic analyser feedback. Without his effort this would not work. What does work? We can now use ANY IV in legic. The PM3 Master version is flawed, will only work with IV=0x55.

---still broke--- my crc implementation.. I know I'm about to look into it.
2016-09-28 21:37:08 +02:00

214 lines
9.2 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
// Iceman, Sept 2016
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Timers, Clocks functions used in LF or Legic where you would need detailed time.
//-----------------------------------------------------------------------------
#include "ticks.h"
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us) {
int ticks = (48 * us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms) {
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount(void) {
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(void){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS(void) {
AT91C_BASE_PMC->PMC_PCER |= (1 << 12) | (1 << 13) | (1 << 14);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
// tick=1.5mks
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
while (AT91C_BASE_TC1->TC_CV >= 1);
}
uint32_t RAMFUNC GetCountUS(void){
//return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
// By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
}
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk(void) {
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2
// synchronize the counter with the ssp_frame signal.
// Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows.
// Therefore need to wait quite some time before we can use the counter.
while (AT91C_BASE_TC2->TC_CV >= 1);
}
void ResetSspClk(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC2->TC_CV >= 1);
}
uint32_t RAMFUNC GetCountSspClk(void) {
uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2
return (AT91C_BASE_TC2->TC_CV << 16);
return tmp_count;
}
// -------------------------------------------------------------------------
// Timer for bitbanging, or LF stuff when you need a very precis timer
// 1us = 1.5ticks
// -------------------------------------------------------------------------
void StartTicks(void){
//initialization of the timer
AT91C_BASE_PMC->PMC_PCER |= (1 << 12) | (1 << 13) | (1 << 14);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
// wait until timer becomes zero.
while (AT91C_BASE_TC0->TC_CV > 1);
}
// Wait - Spindelay in ticks.
// if called with a high number, this will trigger the WDT...
void WaitTicks(uint32_t ticks){
if ( ticks == 0 ) return;
ticks += GET_TICKS;
while (GET_TICKS < ticks);
}
// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint16_t us){
if ( us == 0 ) return;
WaitTicks( (uint32_t)(us * 1.5) );
}
void WaitMS(uint16_t ms){
if (ms == 0) return;
WaitTicks( (uint32_t)(ms * 1500) );
}
// Starts Clock and waits until its reset
void ResetTicks(){
ResetTimer(AT91C_BASE_TC0);
}
void ResetTimer(AT91PS_TC timer){
timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(timer->TC_CV >= 1) ;
}