proxmark3/client/util.c
Philippe Teuwen 69f8d81f4e style
2019-04-28 22:54:00 +02:00

870 lines
24 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// utilities
//-----------------------------------------------------------------------------
// ensure gmtime_r is available even with -std=c99; must be included before
#if !defined(_WIN32)
#define _POSIX_C_SOURCE 200112L
#endif
#include "util.h"
#define UTIL_BUFFER_SIZE_SPRINT 4097
// global client debug variable
uint8_t g_debugMode = 0;
#ifdef _WIN32
#include <windows.h>
#endif
#define MAX_BIN_BREAK_LENGTH (3072+384+1)
#ifndef _WIN32
#include <termios.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <stdarg.h>
int ukbhit(void) {
int cnt = 0;
int error;
static struct termios Otty, Ntty;
if (tcgetattr(STDIN_FILENO, &Otty) == -1) return -1;
Ntty = Otty;
Ntty.c_iflag = 0x0000; // input mode
Ntty.c_oflag = 0x0000; // output mode
Ntty.c_lflag &= ~ICANON; // control mode = raw
Ntty.c_cc[VMIN] = 1; // return if at least 1 character is in the queue
Ntty.c_cc[VTIME] = 0; // no timeout. Wait forever
if (0 == (error = tcsetattr(STDIN_FILENO, TCSANOW, &Ntty))) { // set new attributes
error += ioctl(STDIN_FILENO, FIONREAD, &cnt); // get number of characters available
error += tcsetattr(STDIN_FILENO, TCSANOW, &Otty); // reset attributes
}
return (error == 0 ? cnt : -1);
}
#else
#include <conio.h>
int ukbhit(void) {
return kbhit();
}
#endif
// log files functions
// open, appped and close logfile
void AddLogLine(const char *fn, const char *data, const char *c) {
FILE *f = NULL;
char filename[FILE_PATH_SIZE] = {0x00};
int len = 0;
len = strlen(fn);
if (len > FILE_PATH_SIZE)
len = FILE_PATH_SIZE;
memcpy(filename, fn, len);
f = fopen(filename, "a");
if (!f) {
printf("Could not append log file %s", filename);
return;
}
fprintf(f, "%s", data);
fprintf(f, "%s\n", c);
fflush(f);
fclose(f);
}
void AddLogHex(const char *fn, const char *extData, const uint8_t *data, const size_t len) {
AddLogLine(fn, extData, sprint_hex(data, len));
}
void AddLogUint64(const char *fn, const char *data, const uint64_t value) {
char buf[20] = {0};
memset(buf, 0x00, sizeof(buf));
sprintf(buf, "%016" PRIx64 "", value);
AddLogLine(fn, data, buf);
}
void AddLogCurrentDT(const char *fn) {
char buf[20] = {0};
struct tm *ct, tm_buf;
time_t now = time(NULL);
#if defined(_WIN32)
ct = gmtime_s(&tm_buf, &now) == 0 ? &tm_buf : NULL;
#else
ct = gmtime_r(&now, &tm_buf);
#endif
strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", ct);
AddLogLine(fn, "\nanticollision: ", buf);
}
// create filename on hex uid.
// param *fn - pointer to filename char array
// param *uid - pointer to uid byte array
// param *ext - ".log"
// param uidlen - length of uid array.
void FillFileNameByUID(char *filenamePrefix, const uint8_t *uid, const char *ext, const int uidlen) {
if (filenamePrefix == NULL || uid == NULL || ext == NULL) {
printf("[!] error parameter is NULL\n");
return;
}
int len = 0;
len = strlen(filenamePrefix);
//memset(fn, 0x00, FILE_PATH_SIZE);
for (int j = 0; j < uidlen; j++)
sprintf(filenamePrefix + len + j * 2, "%02X", uid[j]);
strcat(filenamePrefix, ext);
}
// fill buffer from structure [{uint8_t data, size_t length},...]
int FillBuffer(uint8_t *data, size_t maxDataLength, size_t *dataLength, ...) {
*dataLength = 0;
va_list valist;
va_start(valist, dataLength);
uint8_t *vdata = NULL;
do {
vdata = va_arg(valist, uint8_t *);
if (!vdata)
break;
size_t vlength = va_arg(valist, size_t);
if (*dataLength + vlength > maxDataLength) {
va_end(valist);
return 1;
}
memcpy(&data[*dataLength], vdata, vlength);
*dataLength += vlength;
} while (vdata);
va_end(valist);
return 0;
}
bool CheckStringIsHEXValue(const char *value) {
for (size_t i = 0; i < strlen(value); i++)
if (!isxdigit(value[i]))
return false;
if (strlen(value) % 2)
return false;
return true;
}
void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len,
const size_t min_str_len, const size_t spaces_between, bool uppercase) {
char *tmp = (char *)buf;
size_t i;
memset(tmp, 0x00, hex_max_len);
size_t maxLen = (hex_len > hex_max_len) ? hex_max_len : hex_len;
for (i = 0; i < maxLen; ++i, tmp += 2 + spaces_between) {
sprintf(tmp, (uppercase) ? "%02X" : "%02x", (unsigned int) hex_data[i]);
for (size_t j = 0; j < spaces_between; j++)
sprintf(tmp + 2 + j, " ");
}
i *= (2 + spaces_between);
size_t minStrLen = min_str_len > i ? min_str_len : 0;
if (minStrLen > hex_max_len)
minStrLen = hex_max_len;
for (; i < minStrLen; i++, tmp += 1)
sprintf(tmp, " ");
return;
}
// printing and converting functions
void print_hex(const uint8_t *data, const size_t len) {
for (size_t i = 0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
}
void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) {
int rownum = 0;
printf("[%02d] | ", rownum);
for (size_t i = 0; i < len; ++i) {
printf("%02X ", data[i]);
// check if a line break is needed
if (breaks > 0 && !((i + 1) % breaks) && (i + 1 < len)) {
++rownum;
printf("\n[%02d] | ", rownum);
}
}
printf("\n");
}
char *sprint_hex(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT - 3] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true);
return buf;
}
char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true);
return buf;
}
char *sprint_hex_inrow(const uint8_t *data, const size_t len) {
return sprint_hex_inrow_ex(data, len, 0);
}
char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true);
return buf;
}
char *sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) {
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
size_t rowlen = (len > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len;
if (breaks > 0 && len % breaks != 0)
rowlen = (len + (len / breaks) > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len + (len / breaks);
//printf("(sprint_bin_break) rowlen %d\n", rowlen);
static char buf[MAX_BIN_BREAK_LENGTH]; // 3072 + end of line characters if broken at 8 bits
//clear memory
memset(buf, 0x00, sizeof(buf));
char *tmp = buf;
// loop through the out_index to make sure we don't go too far
for (out_index = 0; out_index < rowlen; out_index++) {
// set character
if (data[in_index] == 7) // Manchester wrong bit marker
sprintf(tmp++, ".");
else
sprintf(tmp++, "%u", data[in_index]);
// check if a line break is needed and we have room to print it in our array
if ((breaks > 0) && !((in_index + 1) % breaks) && (out_index + 1 != rowlen)) {
sprintf(tmp++, "%s", "\n");
}
in_index++;
}
return buf;
}
/*
void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) {
if ( src == NULL ) return;
if ( srclen < 1 ) return;
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
int rowlen;
if (breaks==0)
rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len;
else
rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks);
printf("(sprint_bin_break) rowlen %d\n", rowlen);
// 3072 + end of line characters if broken at 8 bits
dest = (char *)calloc(MAX_BIN_BREAK_LENGTH, sizeof(uint8_t));
if (dest == NULL) return;
//clear memory
memset(dest, 0x00, sizeof(dest));
// loop through the out_index to make sure we don't go too far
for (out_index=0; out_index < rowlen-1; out_index++) {
// set character
sprintf(dest++, "%u", src[in_index]);
// check if a line break is needed and we have room to print it in our array
if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) {
// increment and print line break
out_index++;
sprintf(dest++, "%s","\n");
}
in_index++;
}
// last char.
sprintf(dest++, "%u", src[in_index]);
}
*/
char *sprint_bin(const uint8_t *data, const size_t len) {
return sprint_bin_break(data, len, 0);
}
char *sprint_hex_ascii(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT];
char *tmp = buf;
memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT);
size_t max_len = (len > 1010) ? 1010 : len;
snprintf(tmp, UTIL_BUFFER_SIZE_SPRINT, "%s| ", sprint_hex(data, max_len));
size_t i = 0;
size_t pos = (max_len * 3) + 2;
while (i < max_len) {
char c = data[i];
if ((c < 32) || (c == 127))
c = '.';
sprintf(tmp + pos + i, "%c", c);
++i;
}
return buf;
}
char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT];
char *tmp = buf;
memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT);
size_t max_len = (len > 1010) ? 1010 : len;
size_t i = 0;
while (i < max_len) {
char c = data[i];
tmp[i] = ((c < 32) || (c == 127)) ? '.' : c;
++i;
}
size_t m = min_str_len > i ? min_str_len : 0;
for (; i < m; ++i)
tmp[i] = ' ';
return buf;
}
char *sprint_ascii(const uint8_t *data, const size_t len) {
return sprint_ascii_ex(data, len, 0);
}
void print_blocks(uint32_t *data, size_t len) {
PrintAndLogEx(NORMAL, "Blk | Data ");
PrintAndLogEx(NORMAL, "----+------------");
if (!data) {
PrintAndLogEx(ERR, "..empty data");
} else {
for (uint8_t i = 0; i < len; i++)
PrintAndLogEx(NORMAL, "%02d | 0x%08X", i, data[i]);
}
}
// takes a number (uint64_t) and creates a binarray in dest.
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = n & 1;
n >>= 1;
}
}
//least significant bit first
void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) {
for (size_t i = 0 ; i < len ; ++i) {
dest[i] = n & 1;
n >>= 1;
}
}
// aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp
// to
// hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii
// up to 64 bytes or 512 bits
uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize) {
static uint8_t buf[64];
memset(buf, 0x00, 64);
uint8_t *tmp = buf;
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
tmp[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
return buf;
}
// takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64),
// returns: the dest array contains the reordered src array.
void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest) {
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
dest[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
}
// -------------------------------------------------------------------------
// string parameters lib
// -------------------------------------------------------------------------
// -------------------------------------------------------------------------
// line - param line
// bg, en - symbol numbers in param line of beginning and ending parameter
// paramnum - param number (from 0)
// -------------------------------------------------------------------------
int param_getptr(const char *line, int *bg, int *en, int paramnum) {
int i;
int len = strlen(line);
*bg = 0;
*en = 0;
// skip spaces
while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++;
if (*bg >= len) {
return 1;
}
for (i = 0; i < paramnum; i++) {
while (line[*bg] != ' ' && line[*bg] != '\t' && line[*bg] != '\0')(*bg)++;
while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++;
if (line[*bg] == '\0') return 1;
}
*en = *bg;
while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0')(*en)++;
(*en)--;
return 0;
}
int param_getlength(const char *line, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0;
return en - bg + 1;
}
char param_getchar(const char *line, int paramnum) {
return param_getchar_indx(line, 0, paramnum);
}
char param_getchar_indx(const char *line, int indx, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0x00;
if (bg + indx > en)
return '\0';
return line[bg + indx];
}
uint8_t param_get8(const char *line, int paramnum) {
return param_get8ex(line, paramnum, 0, 10);
}
/**
* @brief Reads a decimal integer (actually, 0-254, not 255)
* @param line
* @param paramnum
* @return -1 if error
*/
uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) {
uint8_t val = param_get8ex(line, paramnum, 255, 10);
if ((int8_t) val == -1) return 1;
(*destination) = val;
return 0;
}
/**
* @brief Checks if param is decimal
* @param line
* @param paramnum
* @return
*/
uint8_t param_isdec(const char *line, int paramnum) {
int bg, en;
//TODO, check more thorougly
if (!param_getptr(line, &bg, &en, paramnum)) return 1;
// return strtoul(&line[bg], NULL, 10) & 0xff;
return 0;
}
uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base) & 0xff;
else
return deflt;
}
uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base);
else
return deflt;
}
uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoull(&line[bg], NULL, base);
else
return deflt;
}
int param_gethex(const char *line, int paramnum, uint8_t *data, int hexcnt) {
int bg, en, i;
uint32_t temp;
if (hexcnt & 1) return 1;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
if (en - bg + 1 != hexcnt) return 1;
for (i = 0; i < hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1;
sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_ex(const char *line, int paramnum, uint8_t *data, int *hexcnt) {
int bg, en, i;
uint32_t temp;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*hexcnt = en - bg + 1;
if (*hexcnt % 2) //error if not complete hex bytes
return 1;
for (i = 0; i < *hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1;
sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) {
int bg, en;
uint32_t temp;
char buf[5] = {0};
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*datalen = 0;
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(line[indx])) {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and hex
return 1;
}
if (*datalen >= maxdatalen) {
// if we dont have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) >= 2) {
sscanf(buf, "%x", &temp);
data[*datalen] = (uint8_t)(temp & 0xff);
*buf = 0;
(*datalen)++;
}
indx++;
}
if (strlen(buf) > 0)
//error when not completed hex bytes
return 3;
return 0;
}
int param_getstr(const char *line, int paramnum, char *str, size_t buffersize) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
// Prevent out of bounds errors
if (en - bg + 1 >= buffersize) {
printf("out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize);
return 0;
}
memcpy(str, line + bg, en - bg + 1);
str[en - bg + 1] = 0;
return en - bg + 1;
}
/*
The following methods comes from Rfidler sourcecode.
https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/
*/
// convert hex to sequence of 0/1 bit values
// returns number of bits converted
int hextobinarray(char *target, char *source) {
int length, i, count = 0;
char *start = source;
length = strlen(source);
// process 4 bits (1 hex digit) at a time
while (length--) {
char x = *(source++);
// capitalize
if (x >= 'a' && x <= 'f')
x -= 32;
// convert to numeric value
if (x >= '0' && x <= '9')
x -= '0';
else if (x >= 'A' && x <= 'F')
x -= 'A' - 10;
else {
printf("Discovered unknown character %c %d at idx %d of %s\n", x, x, (int16_t)(source - start), start);
return 0;
}
// output
for (i = 0 ; i < 4 ; ++i, ++count)
*(target++) = (x >> (3 - i)) & 1;
}
return count;
}
// convert hex to human readable binary string
int hextobinstring(char *target, char *source) {
int length;
if (!(length = hextobinarray(target, source)))
return 0;
binarraytobinstring(target, target, length);
return length;
}
// convert binary array of 0x00/0x01 values to hex
// return number of bits converted
int binarraytohex(char *target, const size_t targetlen, char *source, size_t srclen) {
uint8_t i = 0, x = 0;
uint32_t t = 0; // written target chars
uint32_t r = 0; // consumed bits
uint8_t w = 0; // wrong bits separator printed
for (size_t s = 0 ; s < srclen; s++) {
if ((source[s] == 0) || (source[s] == 1)) {
w = 0;
x += (source[s] << (3 - i));
i++;
if (i == 4) {
if (t >= targetlen - 2) return r;
sprintf(target + t, "%X", x);
t++;
r += 4;
x = 0;
i = 0;
}
} else {
if (i > 0) {
if (t >= targetlen - 5) return r;
w = 0;
sprintf(target + t, "%X[%i]", x, i);
t += 4;
r += i;
x = 0;
i = 0;
}
if (w == 0) {
if (t >= targetlen - 2) return r;
sprintf(target + t, " ");
t++;
}
r++;
}
}
return r;
}
// convert binary array to human readable binary
void binarraytobinstring(char *target, char *source, int length) {
int i;
for (i = 0 ; i < length ; ++i)
*(target++) = *(source++) + '0';
*target = '\0';
}
// return parity bit required to match type
uint8_t GetParity(uint8_t *bits, uint8_t type, int length) {
int x;
for (x = 0 ; length > 0 ; --length)
x += bits[length - 1];
x %= 2;
return x ^ type;
}
// add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half
void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, EVEN, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, ODD, length / 2);
}
// add HID parity to binary array: ODD prefix for 1st half of ID, EVEN suffix for 2nd half
void wiegand_add_parity_swapped(uint8_t *target, uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, ODD, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, EVEN, length / 2);
}
// xor two arrays together for len items. The dst array contains the new xored values.
void xor(unsigned char *dst, unsigned char *src, size_t len) {
for (; len > 0; len--, dst++, src++)
*dst ^= *src;
}
// Pack a bitarray into a uint32_t.
uint32_t PackBits(uint8_t start, uint8_t len, uint8_t *bits) {
if (len > 32) return 0;
int i = start;
int j = len - 1;
uint32_t tmp = 0;
for (; j >= 0; --j, ++i)
tmp |= bits[i] << j;
return tmp;
}
/*
uint8_t pw_rev_A(uint8_t b) {
b = (b & 0xF0) >> 4 | (b & 0x0F) << 4;
b = (b & 0xCC) >> 2 | (b & 0x33) << 2;
b = (b & 0xAA) >> 1 | (b & 0x55) << 1;
return b;
}
*/
uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) {
uint64_t remaind = 0, quotient = 0, result = 0;
remaind = num % divider;
quotient = num / divider;
if (!(quotient == 0 && remaind == 0))
result += HornerScheme(quotient, divider, factor) * factor + remaind;
return result;
}
// determine number of logical CPU cores (use for multithreaded functions)
int num_CPUs(void) {
#if defined(_WIN32)
#include <sysinfoapi.h>
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
#elif defined(__linux__) && defined(_SC_NPROCESSORS_ONLN)
#include <unistd.h>
int count = sysconf(_SC_NPROCESSORS_ONLN);
if (count <= 0)
count = 1;
return count;
#elif defined(__APPLE__)
/*
TODO ICEMAN 2019, its commented out until someone finds a better solution
#include "sys/sysctl.h"
uint32_t logicalcores = 0;
size_t size = sizeof( logicalcores );
sysctlbyname( "hw.logicalcpu", &logicalcores, &size, NULL, 0 );
return logicalcores;
*/
return 1;
#else
return 1;
#endif
}
void str_lower(char *s) {
for (size_t i = 0; i < strlen(s); i++)
s[i] = tolower(s[i]);
}
// check for prefix in string
bool str_startswith(const char *s, const char *pre) {
return strncmp(pre, s, strlen(pre)) == 0;
}
// check for suffix in string
bool str_endswith(const char *s, const char *suffix) {
size_t ls = strlen(s);
size_t lsuffix = strlen(suffix);
if (ls >= lsuffix) {
return strncmp(suffix, s + (ls - lsuffix), lsuffix) == 0;
}
return false;
}
// Replace unprintable characters with a dot in char buffer
void clean_ascii(unsigned char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
if (!isprint(buf[i]))
buf[i] = '.';
}
}
// replace \r \n to \0
void strcleanrn(char *buf, size_t len) {
strcreplace(buf, len, '\n', '\0');
strcreplace(buf, len, '\r', '\0');
}
// replace char in buffer
void strcreplace(char *buf, size_t len, char from, char to) {
for (size_t i = 0; i < len; i++) {
if (buf[i] == from)
buf[i] = to;
}
}
char *strmcopy(const char *buf) {
char *str = (char *) calloc(strlen(buf) + 1, sizeof(uint8_t));
if (str != NULL) {
memset(str, 0, strlen(buf) + 1);
strcpy(str, buf);
}
return str;
}