proxmark3/client/cmdlf.c

1357 lines
52 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
// Modified by
// Marshellow
// Iceman
// Doegox
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
//-----------------------------------------------------------------------------
#include "cmdlf.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <ctype.h>
#include "cmdparser.h" // command_t
#include "comms.h"
#include "commonutil.h" // ARRAYLEN
#include "lfdemod.h" // device/client demods of LF signals
#include "ui.h" // for show graph controls
#include "graph.h" // for graph data
#include "cmddata.h" // for `lf search`
#include "cmdlfawid.h" // for awid menu
#include "cmdlfem4x.h" // for em4x menu
#include "cmdlfhid.h" // for hid menu
#include "cmdlfhitag.h" // for hitag menu
#include "cmdlfio.h" // for ioprox menu
#include "cmdlft55xx.h" // for t55xx menu
#include "cmdlfti.h" // for ti menu
#include "cmdlfpresco.h" // for presco menu
#include "cmdlfpcf7931.h" // for pcf7931 menu
#include "cmdlfpyramid.h" // for pyramid menu
#include "cmdlfviking.h" // for viking menu
#include "cmdlfnedap.h" // for NEDAP menu
#include "cmdlfjablotron.h" // for JABLOTRON menu
#include "cmdlfvisa2000.h" // for VISA2000 menu
#include "cmdlfnoralsy.h" // for NORALSY meny
#include "cmdlfcotag.h" // for COTAG meny
#include "cmdlfindala.h" // for indala menu
#include "cmdlfguard.h" // for gproxii menu
#include "cmdlffdx.h" // for fdx-b menu
#include "cmdlfparadox.h" // for paradox menu
#include "cmdlfnexwatch.h" // for nexwatch menu
#include "cmdlfsecurakey.h" // for securakey menu
#include "cmdlfpac.h" // for pac menu
#include "cmdlfkeri.h" // for keri menu
#include "cmdlfmotorola.h" // for Motorola menu
#include "cmdlfgallagher.h" // for GALLAGHER menu
bool g_lf_threshold_set = false;
static int CmdHelp(const char *Cmd);
static int usage_lf_cmdread(void) {
PrintAndLogEx(NORMAL, "Usage: lf cmdread d <delay period> z <zero period> o <one period> c <cmdbytes>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " d <delay> delay OFF period, (0 for bitbang mode) (decimal)");
PrintAndLogEx(NORMAL, " z <zero> ZERO time period (decimal)");
PrintAndLogEx(NORMAL, " o <one> ONE time period (decimal)");
PrintAndLogEx(NORMAL, " c <cmd> Command bytes (in ones and zeros)");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, " ************* " _YELLOW_("All periods in microseconds (us)"));
PrintAndLogEx(NORMAL, " ************* Use " _YELLOW_("'lf config'") "to configure options.");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf cmdread d 80 z 100 o 200 c 11000");
return PM3_SUCCESS;
}
static int usage_lf_read(void) {
PrintAndLogEx(NORMAL, "Usage: lf read [h] [s] [d numofsamples]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " s silent run, no printout");
PrintAndLogEx(NORMAL, " d #samples # samples to collect (optional)");
PrintAndLogEx(NORMAL, "Use 'lf config' to set parameters.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf read s d 12000 - collects 12000samples silent");
PrintAndLogEx(NORMAL, " lf read s");
return PM3_SUCCESS;
}
static int usage_lf_sim(void) {
PrintAndLogEx(NORMAL, "Simulate low frequence tag from graphbuffer.");
PrintAndLogEx(NORMAL, "Use " _YELLOW_("'lf config'")" to set parameters.");
PrintAndLogEx(NORMAL, "Usage: lf sim [h] <gap>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <gap> Start gap (in microseconds)");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf sim 240 - start simulating with 240ms gap");
PrintAndLogEx(NORMAL, " lf sim");
return PM3_SUCCESS;
}
static int usage_lf_sniff(void) {
PrintAndLogEx(NORMAL, "Sniff low frequence signal.");
PrintAndLogEx(NORMAL, "Use " _YELLOW_("'lf config'")" to set parameters.");
PrintAndLogEx(NORMAL, "Use " _YELLOW_("'data samples'")" command to download from device, and " _YELLOW_("'data plot'")" to look at it");
PrintAndLogEx(NORMAL, "Usage: lf sniff [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
return PM3_SUCCESS;
}
static int usage_lf_config(void) {
PrintAndLogEx(NORMAL, "Usage: lf config [h] [L | H | q <divisor> | f <freq>] [b <bps>] [d <decim>] [a 0|1]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " L Low frequency (125 kHz)");
PrintAndLogEx(NORMAL, " H High frequency (134 kHz)");
PrintAndLogEx(NORMAL, " q <divisor> Manually set freq divisor. %d -> 134 kHz, %d -> 125 kHz", LF_DIVISOR_134, LF_DIVISOR_125);
PrintAndLogEx(NORMAL, " f <freq> Manually set frequency in kHz");
PrintAndLogEx(NORMAL, " b <bps> Sets resolution of bits per sample. Default (max): 8");
PrintAndLogEx(NORMAL, " d <decim> Sets decimation. A value of N saves only 1 in N samples. Default: 1");
PrintAndLogEx(NORMAL, " a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1");
PrintAndLogEx(NORMAL, " t <threshold> Sets trigger threshold. 0 means no threshold (range: 0-128)");
PrintAndLogEx(NORMAL, " s <samplestoskip> Sets a number of samples to skip before capture. Default: 0");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf config");
PrintAndLogEx(NORMAL, " Shows current config");
PrintAndLogEx(NORMAL, " lf config b 8 L");
PrintAndLogEx(NORMAL, " Samples at 125 kHz, 8bps.");
PrintAndLogEx(NORMAL, " lf config H b 4 d 3");
PrintAndLogEx(NORMAL, " Samples at 134 kHz, averages three samples into one, stored with ");
PrintAndLogEx(NORMAL, " a resolution of 4 bits per sample.");
PrintAndLogEx(NORMAL, " lf read");
PrintAndLogEx(NORMAL, " Performs a read (active field)");
PrintAndLogEx(NORMAL, " lf sniff");
PrintAndLogEx(NORMAL, " Performs a sniff (no active field)");
return PM3_SUCCESS;
}
static int usage_lf_simfsk(void) {
PrintAndLogEx(NORMAL, "Usage: lf simfsk [h] [c <clock>] [H <fcHigh>] [L <fcLow>] [d <hexdata>]");
PrintAndLogEx(NORMAL, "there are about four FSK modulations to know of.");
PrintAndLogEx(NORMAL, "FSK1 - where fc/8 = high and fc/5 = low");
PrintAndLogEx(NORMAL, "FSK1a - is inverted FSK1, ie: fc/5 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "FSK2 - where fc/10 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "FSK2a - is inverted FSK2, ie: fc/10 = high and fc/8 = low");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " H <fcHigh> Manually set the larger Field Clock");
PrintAndLogEx(NORMAL, " L <fcLow> Manually set the smaller Field Clock");
//PrintAndLogEx(NORMAL, " s TBD- -STT to enable a gap between playback repetitions - default: no gap");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
PrintAndLogEx(NORMAL, "\n NOTE: if you set one clock manually set them all manually");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf simfsk c 40 H 8 L 5 d 010203 - FSK1 rf/40 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 40 H 5 L 8 d 010203 - FSK1a rf/40 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 64 H 10 L 8 d 010203 - FSK2 rf/64 data 010203");
PrintAndLogEx(NORMAL, " lf simfsk c 64 H 8 L 10 d 010203 - FSK2a rf/64 data 010203");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}
static int usage_lf_simask(void) {
PrintAndLogEx(NORMAL, "Usage: lf simask [c <clock>] [i] [b|m|r] [s] [d <raw hex to sim>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " i invert data");
PrintAndLogEx(NORMAL, " b sim ask/biphase");
PrintAndLogEx(NORMAL, " m sim ask/manchester - Default");
PrintAndLogEx(NORMAL, " r sim ask/raw");
PrintAndLogEx(NORMAL, " s add t55xx Sequence Terminator gap - default: no gaps (only manchester)");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return PM3_SUCCESS;
}
static int usage_lf_simpsk(void) {
PrintAndLogEx(NORMAL, "Usage: lf simpsk [1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " c <clock> Manually set clock - can autodetect if using DemodBuffer");
PrintAndLogEx(NORMAL, " i invert data");
PrintAndLogEx(NORMAL, " 1 set PSK1 (default)");
PrintAndLogEx(NORMAL, " 2 set PSK2");
PrintAndLogEx(NORMAL, " 3 set PSK3");
PrintAndLogEx(NORMAL, " r <carrier> 2|4|8 are valid carriers: default = 2");
PrintAndLogEx(NORMAL, " d <hexdata> Data to sim as hex - omit to sim from DemodBuffer");
return PM3_SUCCESS;
}
static int usage_lf_find(void) {
PrintAndLogEx(NORMAL, "Usage: lf search [h] <0|1> [u]");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h This help");
PrintAndLogEx(NORMAL, " <0|1> Use data from Graphbuffer, if not set, try reading data from tag.");
PrintAndLogEx(NORMAL, " u Search for Unknown tags, if not set, reads only known tags.");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf search = try reading data from tag & search for known tags");
PrintAndLogEx(NORMAL, " lf search 1 = use data from GraphBuffer & search for known tags");
PrintAndLogEx(NORMAL, " lf search u = try reading data from tag & search for known and unknown tags");
PrintAndLogEx(NORMAL, " lf search 1 u = use data from GraphBuffer & search for known and unknown tags");
return PM3_SUCCESS;
}
static int usage_lf_tune(void) {
PrintAndLogEx(NORMAL, "Continuously measure LF antenna tuning.");
PrintAndLogEx(NORMAL, "Press button or Enter to interrupt.");
PrintAndLogEx(NORMAL, "Usage: lf tune [h] [n <iter>] [q <divisor> | f <freq>]");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h - This help");
PrintAndLogEx(NORMAL, " n <iter> - number of iterations (default: 0=infinite)");
PrintAndLogEx(NORMAL, " q <divisor> - Frequency divisor. %d -> 134 kHz, %d -> 125 kHz", LF_DIVISOR_134, LF_DIVISOR_125);
PrintAndLogEx(NORMAL, " f <freq> - Frequency in kHz");
return PM3_SUCCESS;
}
static int CmdLFTune(const char *Cmd) {
int iter = 0;
uint8_t divisor = LF_DIVISOR_125;//Frequency divisor
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
return usage_lf_tune();
case 'q':
errors |= param_getdec(Cmd, cmdp + 1, &divisor);
cmdp += 2;
if (divisor < 19) {
PrintAndLogEx(ERR, "divisor must be between 19 and 255");
return PM3_EINVARG;
}
break;
case 'f': {
float freq = param_getfloat(Cmd, cmdp + 1, 125);
if ((freq < 47) || (freq > 600)) {
PrintAndLogEx(ERR, "freq must be between 47 and 600");
return PM3_EINVARG;
}
divisor = LF_FREQ2DIV(freq);
cmdp += 2;
break;
}
case 'n':
iter = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
}
//Validations
if (errors) return usage_lf_tune();
PrintAndLogEx(SUCCESS, "Measuring LF antenna at %.2f kHz, click button or press Enter to exit", LF_DIV2FREQ(divisor));
uint8_t params[] = {1, 0};
params[1] = divisor;
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF initialization, aborting");
return PM3_ETIMEOUT;
}
params[0] = 2;
// loop forever (till button pressed) if iter = 0 (default)
for (uint8_t i = 0; iter == 0 || i < iter; i++) {
if (kbd_enter_pressed()) { // abort by keyboard press
break;
}
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF measure, aborting");
return PM3_ETIMEOUT;
}
if ((resp.status == PM3_EOPABORTED) || (resp.length != sizeof(uint32_t)))
break;
uint32_t volt = resp.data.asDwords[0];
PrintAndLogEx(INPLACE, "%u mV / %5u V", volt, (uint32_t)(volt / 1000));
}
params[0] = 3;
SendCommandNG(CMD_MEASURE_ANTENNA_TUNING_LF, params, sizeof(params));
if (!WaitForResponseTimeout(CMD_MEASURE_ANTENNA_TUNING_LF, &resp, 1000)) {
PrintAndLogEx(WARNING, "Timeout while waiting for Proxmark LF shutdown, aborting");
return PM3_ETIMEOUT;
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, "Done.");
return PM3_SUCCESS;
}
/* send a LF command before reading */
int CmdLFCommandRead(const char *Cmd) {
if (!session.pm3_present) return PM3_ENOTTY;
bool errors = false;
uint16_t datalen = 0;
struct p {
uint32_t delay;
uint16_t ones;
uint16_t zeros;
uint8_t data[PM3_CMD_DATA_SIZE - 8];
} PACKED payload;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_cmdread();
case 'c': // cmd bytes 1010
datalen = param_getstr(Cmd, cmdp + 1, (char *)&payload.data, sizeof(payload.data));
cmdp += 2;
break;
case 'd': // delay
payload.delay = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
case 'z': // zero
payload.zeros = param_get32ex(Cmd, cmdp + 1, 0, 10) & 0xFFFF;
cmdp += 2;
break;
case 'o': // ones
payload.ones = param_get32ex(Cmd, cmdp + 1, 0, 10) & 0xFFFF;
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// bitbang mode
if (payload.delay == 0) {
if (payload.zeros < 7 || payload.ones < 7) {
PrintAndLogEx(WARNING, "Warning periods cannot be less than 7us in bit bang mode");
return PM3_EINVARG;
}
}
//Validations
if (errors || cmdp == 0) return usage_lf_cmdread();
PrintAndLogEx(SUCCESS, "Sending");
clearCommandBuffer();
SendCommandNG(CMD_LF_MOD_THEN_ACQ_RAW_ADC, (uint8_t *)&payload, 8 + datalen);
printf("\n");
PacketResponseNG resp;
uint8_t i = 10;
while (!WaitForResponseTimeout(CMD_LF_MOD_THEN_ACQ_RAW_ADC, &resp, 2000) && i != 0) {
printf(".");
fflush(stdout);
i--;
}
printf("\n");
if (resp.status == PM3_SUCCESS) {
if (i) {
PrintAndLogEx(SUCCESS, "Downloading response signal data");
getSamples(0, true);
return PM3_SUCCESS;
} else {
PrintAndLogEx(WARNING, "timeout while waiting for reply.");
return PM3_ETIMEOUT;
}
}
PrintAndLogEx(WARNING, "Command failed.");
return PM3_ESOFT;
}
int CmdFlexdemod(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
#ifndef LONG_WAIT
#define LONG_WAIT 100
#endif
int i, j, start, bit, sum;
int data[GraphTraceLen];
memcpy(data, GraphBuffer, GraphTraceLen);
size_t size = GraphTraceLen;
for (i = 0; i < GraphTraceLen; ++i)
data[i] = (data[i] < 0) ? -1 : 1;
for (start = 0; start < size - LONG_WAIT; start++) {
int first = data[start];
for (i = start; i < start + LONG_WAIT; i++) {
if (data[i] != first) {
break;
}
}
if (i == (start + LONG_WAIT))
break;
}
if (start == size - LONG_WAIT) {
PrintAndLogEx(WARNING, "nothing to wait for");
return PM3_ENODATA;
}
data[start] = 4;
data[start + 1] = 0;
uint8_t bits[64] = {0x00};
i = start;
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (j = 0; j < 16; j++) {
sum += data[i++];
}
bits[bit] = (sum > 0) ? 1 : 0;
PrintAndLogEx(NORMAL, "bit %d sum %d", bit, sum);
}
for (bit = 0; bit < 64; bit++) {
sum = 0;
for (j = 0; j < 16; j++)
sum += data[i++];
if (sum > 0 && bits[bit] != 1) PrintAndLogEx(WARNING, "oops1 at %d", bit);
if (sum < 0 && bits[bit] != 0) PrintAndLogEx(WARNING, "oops2 at %d", bit);
}
// iceman, use demod buffer? blue line?
// HACK writing back to graphbuffer.
GraphTraceLen = 32 * 64;
i = 0;
for (bit = 0; bit < 64; bit++) {
int phase = (bits[bit] == 0) ? 0 : 1;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return PM3_SUCCESS;
}
int lf_config(sample_config *config) {
if (!session.pm3_present) return PM3_ENOTTY;
clearCommandBuffer();
SendCommandNG(CMD_LF_SAMPLING_SET_CONFIG, (uint8_t *)config, sizeof(sample_config));
return PM3_SUCCESS;
}
int CmdLFConfig(const char *Cmd) {
if (!session.pm3_present) return PM3_ENOTTY;
uint8_t divisor = 0;//Frequency divisor
uint8_t bps = 0; // Bits per sample
uint8_t decimation = 0; //How many to keep
bool averaging = 1; // Defaults to true
bool errors = false;
int trigger_threshold = -1;//Means no change
uint8_t unsigned_trigg = 0;
uint32_t samples_to_skip = 0; // will return offset to 0 if not supplied. Could set to 0xffffffff if needed to not update
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
return usage_lf_config();
case 'H':
divisor = LF_DIVISOR_134;
cmdp++;
break;
case 'L':
divisor = LF_DIVISOR_125;
cmdp++;
break;
case 'q':
errors |= param_getdec(Cmd, cmdp + 1, &divisor);
if (divisor < 19) {
PrintAndLogEx(ERR, "divisor must be between 19 and 255");
return PM3_EINVARG;
}
cmdp += 2;
break;
case 'f': {
int freq = param_get32ex(Cmd, cmdp + 1, 125, 10);
divisor = LF_FREQ2DIV(freq);
if (divisor < 19) {
PrintAndLogEx(ERR, "freq must be between 47 and 600");
return PM3_EINVARG;
}
cmdp += 2;
break;
}
case 't':
errors |= param_getdec(Cmd, cmdp + 1, &unsigned_trigg);
cmdp += 2;
if (!errors) {
trigger_threshold = unsigned_trigg;
g_lf_threshold_set = (trigger_threshold > 0);
}
break;
case 'b':
errors |= param_getdec(Cmd, cmdp + 1, &bps);
cmdp += 2;
break;
case 'd':
errors |= param_getdec(Cmd, cmdp + 1, &decimation);
cmdp += 2;
break;
case 'a':
averaging = param_getchar(Cmd, cmdp + 1) == '1';
cmdp += 2;
break;
case 's':
samples_to_skip = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = 1;
break;
}
}
// validations
if (errors) return usage_lf_config();
// print current settings.
if (cmdp == 0)
return lf_config(NULL);
// bps is limited to 8
if (bps >> 4) bps = 8;
sample_config config = { decimation, bps, averaging, divisor, trigger_threshold, samples_to_skip, true };
return lf_config(&config);
}
int lf_read(bool silent, uint32_t samples) {
if (!session.pm3_present) return PM3_ENOTTY;
struct p {
uint8_t silent;
uint32_t samples;
} PACKED;
struct p payload;
payload.silent = silent;
payload.samples = samples;
clearCommandBuffer();
SendCommandNG(CMD_LF_ACQ_RAW_ADC, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
if (g_lf_threshold_set) {
WaitForResponse(CMD_LF_ACQ_RAW_ADC, &resp);
} else {
if (!WaitForResponseTimeout(CMD_LF_ACQ_RAW_ADC, &resp, 2500)) {
PrintAndLogEx(WARNING, "command execution time out");
return PM3_ETIMEOUT;
}
}
// resp.oldarg[0] is bits read not bytes read.
uint32_t bits = (resp.data.asDwords[0] / 8);
getSamples(bits, silent);
return PM3_SUCCESS;
}
int CmdLFRead(const char *Cmd) {
if (!session.pm3_present) return PM3_ENOTTY;
bool errors = false;
bool silent = false;
uint32_t samples = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_read();
case 's':
silent = true;
cmdp++;
break;
case 'd':
samples = param_get32ex(Cmd, cmdp + 1, 0, 10);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
//Validations
if (errors) return usage_lf_read();
return lf_read(silent, samples);
}
int CmdLFSniff(const char *Cmd) {
if (!session.pm3_present) return PM3_ENOTTY;
uint8_t cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_sniff();
clearCommandBuffer();
SendCommandNG(CMD_LF_SNIFF_RAW_ADC, NULL, 0);
WaitForResponse(CMD_ACK, NULL);
getSamples(0, false);
return PM3_SUCCESS;
}
static void ChkBitstream() {
// convert to bitstream if necessary
for (int i = 0; i < (int)(GraphTraceLen / 2); i++) {
if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) {
CmdGetBitStream("");
PrintAndLogEx(INFO, "Converted to bitstream");
break;
}
}
}
//Attempt to simulate any wave in buffer (one bit per output sample)
// converts GraphBuffer to bitstream (based on zero crossings) if needed.
int CmdLFSim(const char *Cmd) {
if (!session.pm3_present) return PM3_ENOTTY;
// sanity check
if (GraphTraceLen < 20) {
PrintAndLogEx(ERR, "No data in Graphbuffer");
return PM3_ENODATA;
}
uint8_t cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_lf_sim();
uint16_t gap = param_get32ex(Cmd, 0, 0, 10) & 0xFFFF;
// convert to bitstream if necessary
ChkBitstream();
PrintAndLogEx(DEBUG, "DEBUG: Uploading %zu bytes", GraphTraceLen);
struct pupload {
uint8_t flag;
uint16_t offset;
uint8_t data[PM3_CMD_DATA_SIZE - 3];
} PACKED payload_up;
// flag =
// b0 0
// 1 clear bigbuff
payload_up.flag = 0x1;
// fast push mode
conn.block_after_ACK = true;
//can send only 512 bits at a time (1 byte sent per bit...)
for (uint16_t i = 0; i < GraphTraceLen; i += PM3_CMD_DATA_SIZE - 3) {
size_t len = MIN((GraphTraceLen - i), PM3_CMD_DATA_SIZE - 3);
clearCommandBuffer();
payload_up.offset = i;
for (uint16_t j = 0; j < len; j++)
payload_up.data[j] = GraphBuffer[i + j];
SendCommandNG(CMD_LF_UPLOAD_SIM_SAMPLES, (uint8_t *)&payload_up, sizeof(struct pupload));
WaitForResponse(CMD_LF_UPLOAD_SIM_SAMPLES, NULL);
printf(".");
fflush(stdout);
payload_up.flag = 0;
}
// Disable fast mode before last command
conn.block_after_ACK = false;
printf("\n");
PrintAndLogEx(INFO, "Simulating");
struct p {
uint16_t len;
uint16_t gap;
} PACKED payload;
payload.len = GraphTraceLen;
payload.gap = gap;
clearCommandBuffer();
SendCommandNG(CMD_LF_SIMULATE, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
WaitForResponse(CMD_LF_SIMULATE, &resp);
PrintAndLogEx(INFO, "Done");
if (resp.status != PM3_EOPABORTED)
return resp.status;
return PM3_SUCCESS;
}
// sim fsk data given clock, fcHigh, fcLow, invert
// - allow pull data from DemodBuffer
int CmdLFfskSim(const char *Cmd) {
//might be able to autodetect FCs and clock from Graphbuffer if using demod buffer
// otherwise will need FChigh, FClow, Clock, and bitstream
uint8_t fcHigh = 0, fcLow = 0, clk = 0;
bool errors = false, separator = false;
char hexData[64] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (param_getchar(Cmd, cmdp)) {
case 'h':
return usage_lf_simfsk();
case 'c':
errors |= param_getdec(Cmd, cmdp + 1, &clk);
cmdp += 2;
break;
case 'H':
errors |= param_getdec(Cmd, cmdp + 1, &fcHigh);
cmdp += 2;
break;
case 'L':
errors |= param_getdec(Cmd, cmdp + 1, &fcLow);
cmdp += 2;
break;
case 's':
separator = true;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp + 1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(ERR, "Error getting hex data");
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simfsk();
//Validations
if (errors) return usage_lf_simfsk();
int firstClockEdge = 0;
if (dataLen == 0) { //using DemodBuffer
if (clk == 0 || fcHigh == 0 || fcLow == 0) { //manual settings must set them all
uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, &firstClockEdge);
if (ans == 0) {
if (!fcHigh) fcHigh = 10;
if (!fcLow) fcLow = 8;
if (!clk) clk = 50;
}
}
} else {
setDemodBuff(data, dataLen, 0);
}
//default if not found
if (clk == 0) clk = 50;
if (fcHigh == 0) fcHigh = 10;
if (fcLow == 0) fcLow = 8;
size_t size = DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t))) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t));
size = PM3_CMD_DATA_SIZE - sizeof(lf_fsksim_t);
}
lf_fsksim_t *payload = calloc(1, sizeof(lf_fsksim_t) + size);
payload->fchigh = fcHigh;
payload->fclow = fcLow;
payload->separator = separator;
payload->clock = clk;
memcpy(payload->data, DemodBuffer, size);
PrintAndLogEx(INFO, "Simulating");
clearCommandBuffer();
SendCommandNG(CMD_LF_FSK_SIMULATE, (uint8_t *)payload, sizeof(lf_fsksim_t) + size);
free(payload);
setClockGrid(clk, 0);
PacketResponseNG resp;
WaitForResponse(CMD_LF_FSK_SIMULATE, &resp);
PrintAndLogEx(INFO, "Done");
if (resp.status != PM3_EOPABORTED)
return resp.status;
return PM3_SUCCESS;
}
// sim ask data given clock, invert, manchester or raw, separator
// - allow pull data from DemodBuffer
int CmdLFaskSim(const char *Cmd) {
// autodetect clock from Graphbuffer if using demod buffer
// needs clock, invert, manchester/raw as m or r, separator as s, and bitstream
uint8_t encoding = 1, separator = 0, clk = 0, invert = 0;
bool errors = false;
char hexData[64] = {0x00};
uint8_t data[255] = {0x00}; // store entered hex data
int dataLen = 0;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_simask();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd, cmdp + 1, &clk);
cmdp += 2;
break;
case 'b':
encoding = 2; //biphase
cmdp++;
break;
case 'm':
encoding = 1; //manchester
cmdp++;
break;
case 'r':
encoding = 0; //raw
cmdp++;
break;
case 's':
separator = 1;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp + 1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(ERR, "Error getting hex data, datalen: %d", dataLen);
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0) return usage_lf_simask();
//Validations
if (errors) return usage_lf_simask();
if (dataLen == 0) { //using DemodBuffer
if (clk == 0)
clk = GetAskClock("0", false);
} else {
setDemodBuff(data, dataLen, 0);
}
if (clk == 0) clk = 64;
if (encoding == 0) clk /= 2; //askraw needs to double the clock speed
size_t size = DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t))) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t));
size = PM3_CMD_DATA_SIZE - sizeof(lf_asksim_t);
}
lf_asksim_t *payload = calloc(1, sizeof(lf_asksim_t) + size);
payload->encoding = encoding;
payload->invert = invert;
payload->separator = separator;
payload->clock = clk;
memcpy(payload->data, DemodBuffer, size);
PrintAndLogEx(INFO, "Simulating");
clearCommandBuffer();
SendCommandNG(CMD_LF_ASK_SIMULATE, (uint8_t *)payload, sizeof(lf_asksim_t) + size);
free(payload);
PacketResponseNG resp;
WaitForResponse(CMD_LF_ASK_SIMULATE, &resp);
PrintAndLogEx(INFO, "Done");
if (resp.status != PM3_EOPABORTED)
return resp.status;
return PM3_SUCCESS;
}
// sim psk data given carrier, clock, invert
// - allow pull data from DemodBuffer or parameters
int CmdLFpskSim(const char *Cmd) {
//might be able to autodetect FC and clock from Graphbuffer if using demod buffer
//will need carrier, Clock, and bitstream
uint8_t carrier = 0, clk = 0;
uint8_t invert = 0;
bool errors = false;
char hexData[64] = {0x00}; // store entered hex data
uint8_t data[255] = {0x00};
int dataLen = 0;
uint8_t cmdp = 0;
uint8_t pskType = 1;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
return usage_lf_simpsk();
case 'i':
invert = 1;
cmdp++;
break;
case 'c':
errors |= param_getdec(Cmd, cmdp + 1, &clk);
cmdp += 2;
break;
case 'r':
errors |= param_getdec(Cmd, cmdp + 1, &carrier);
cmdp += 2;
break;
case '1':
pskType = 1;
cmdp++;
break;
case '2':
pskType = 2;
cmdp++;
break;
case '3':
pskType = 3;
cmdp++;
break;
case 'd':
dataLen = param_getstr(Cmd, cmdp + 1, hexData, sizeof(hexData));
if (dataLen == 0)
errors = true;
else
dataLen = hextobinarray((char *)data, hexData);
if (dataLen == 0) errors = true;
if (errors) PrintAndLogEx(ERR, "Error getting hex data");
cmdp += 2;
break;
default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
}
// No args
if (cmdp == 0 && DemodBufferLen == 0)
errors = true;
//Validations
if (errors) return usage_lf_simpsk();
if (dataLen == 0) { //using DemodBuffer
PrintAndLogEx(NORMAL, "Getting Clocks");
if (clk == 0) clk = GetPskClock("", false);
PrintAndLogEx(NORMAL, "clk: %d", clk);
if (!carrier) carrier = GetPskCarrier("", false);
PrintAndLogEx(NORMAL, "carrier: %d", carrier);
} else {
setDemodBuff(data, dataLen, 0);
}
if (clk == 0) clk = 32;
if (carrier != 2 && carrier != 4 && carrier != 8)
carrier = 2;
if (pskType != 1) {
if (pskType == 2) {
//need to convert psk2 to psk1 data before sim
psk2TOpsk1(DemodBuffer, DemodBufferLen);
} else {
PrintAndLogEx(NORMAL, "Sorry, PSK3 not yet available");
}
}
size_t size = DemodBufferLen;
if (size > (PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t))) {
PrintAndLogEx(NORMAL, "DemodBuffer too long for current implementation - length: %zu - max: %zu", size, PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t));
size = PM3_CMD_DATA_SIZE - sizeof(lf_psksim_t);
}
lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + size);
payload->carrier = carrier;
payload->invert = invert;
payload->clock = clk;
memcpy(payload->data, DemodBuffer, size);
PrintAndLogEx(INFO, "Simulating");
clearCommandBuffer();
SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + size);
free(payload);
PacketResponseNG resp;
WaitForResponse(CMD_LF_PSK_SIMULATE, &resp);
PrintAndLogEx(INFO, "Done");
if (resp.status != PM3_EOPABORTED)
return resp.status;
return PM3_SUCCESS;
}
int CmdLFSimBidir(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
// Set ADC to twice the carrier for a slight supersampling
// HACK: not implemented in ARMSRC.
PrintAndLogEx(INFO, "Not implemented yet.");
// SendCommandMIX(CMD_LF_SIMULATE_BIDIR, 47, 384, 0, NULL, 0);
return PM3_SUCCESS;
}
// ICEMAN, todo, swap from Graphbuffer.
// according to Westhus this demod uses decimated samples / 2.
// need to do complete rewrite. Need access to reader / chip
// should be extracted to seperate files aswell
int CmdVchDemod(const char *Cmd) {
if (GraphTraceLen < 4096) {
PrintAndLogEx(DEBUG, "debug; VchDemod - too few samples");
return PM3_EINVARG;
}
// Is this the entire sync pattern, or does this also include some
// data bits that happen to be the same everywhere? That would be
// lovely to know.
static const int SyncPattern[] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
};
// So first, we correlate for the sync pattern, and mark that.
int bestCorrel = 0, bestPos = 0;
int i, j, sum = 0;
// It does us no good to find the sync pattern, with fewer than 2048 samples after it.
for (i = 0; i < (GraphTraceLen - 2048); i++) {
for (j = 0; j < ARRAYLEN(SyncPattern); j++) {
sum += GraphBuffer[i + j] * SyncPattern[j];
}
if (sum > bestCorrel) {
bestCorrel = sum;
bestPos = i;
}
}
PrintAndLogEx(NORMAL, "best sync at %d [metric %d]", bestPos, bestCorrel);
char bits[257];
bits[256] = '\0';
int worst = INT_MAX, worstPos = 0;
for (i = 0; i < 2048; i += 8) {
sum = 0;
for (j = 0; j < 8; j++)
sum += GraphBuffer[bestPos + i + j];
if (sum < 0)
bits[i / 8] = '.';
else
bits[i / 8] = '1';
if (abs(sum) < worst) {
worst = abs(sum);
worstPos = i;
}
}
PrintAndLogEx(NORMAL, "bits:");
PrintAndLogEx(NORMAL, "%s", bits);
PrintAndLogEx(NORMAL, "worst metric: %d at pos %d", worst, worstPos);
// clone
if (strcmp(Cmd, "clone") == 0) {
GraphTraceLen = 0;
char *s;
for (s = bits; *s; s++) {
for (j = 0; j < 16; j++) {
GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0;
}
}
RepaintGraphWindow();
}
return PM3_SUCCESS;
}
static bool CheckChipType(bool getDeviceData) {
bool retval = false;
if (!getDeviceData) return retval;
save_restoreGB(GRAPH_SAVE);
save_restoreDB(GRAPH_SAVE);
//check for em4x05/em4x69 chips first
uint32_t word = 0;
if (EM4x05IsBlock0(&word)) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("EM4x05/EM4x69"));
PrintAndLogEx(INFO, "Hint: try " _YELLOW_("`lf em 4x05`") "commands");
retval = true;
goto out;
}
//check for t55xx chip...
if (tryDetectP1(true)) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("T55xx"));
PrintAndLogEx(INFO, "Hint: try " _YELLOW_("`lf t55xx`") "commands");
retval = true;
}
out:
save_restoreGB(GRAPH_RESTORE);
save_restoreDB(GRAPH_RESTORE);
return retval;
}
int CmdLFfind(const char *Cmd) {
int ans = 0;
size_t minLength = 2000;
char cmdp = tolower(param_getchar(Cmd, 0));
char testRaw = param_getchar(Cmd, 1);
if (strlen(Cmd) > 3 || cmdp == 'h') return usage_lf_find();
if (cmdp == 'u') testRaw = 'u';
bool isOnline = (session.pm3_present && (cmdp != '1'));
if (isOnline)
lf_read(true, 30000);
if (GraphTraceLen < minLength) {
PrintAndLogEx(FAILED, "Data in Graphbuffer was too small.");
return PM3_ESOFT;
}
PrintAndLogEx(INFO, "NOTE: some demods output possible binary");
PrintAndLogEx(INFO, "if it finds something that looks like a tag");
PrintAndLogEx(INFO, "False Positives " _YELLOW_("ARE") "possible");
PrintAndLogEx(INFO, "");
PrintAndLogEx(INFO, "Checking for known tags...");
PrintAndLogEx(INFO, "");
// only run these tests if device is online
if (isOnline) {
// only run if graphbuffer is just noise as it should be for hitag
// The improved noise detection will find Cotag.
if (getSignalProperties()->isnoise) {
if (IfPm3Hitag()) {
if (readHitagUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Hitag") "found!");
return PM3_SUCCESS;
}
}
if (readMotorolaUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Motorola ID") "found!");
return PM3_SUCCESS;
}
if (readCOTAGUid()) {
PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("COTAG ID") "found!");
return PM3_SUCCESS;
}
PrintAndLogEx(FAILED, _RED_("No data found!"));
PrintAndLogEx(INFO, "Signal looks like noise. Maybe not an LF tag?");
return PM3_ESOFT;
}
}
if (EM4x50Read("", false) == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("EM4x50 ID") "found!"); return PM3_SUCCESS;}
if (demodHID() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("HID Prox ID") "found!"); goto out;}
if (demodAWID() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("AWID ID") "found!"); goto out;}
if (demodParadox() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Paradox ID") "found!"); goto out;}
if (demodEM410x() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("EM410x ID") "found!"); goto out;}
if (demodFDX() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("FDX-B ID") "found!"); goto out;}
if (demodGuard() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Guardall G-Prox II ID") "found!"); goto out; }
if (demodIdteck() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Idteck ID") "found!"); goto out;}
if (demodIndala() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Indala ID") "found!"); goto out;}
if (demodIOProx() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("IO Prox ID") "found!"); goto out;}
if (demodJablotron() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Jablotron ID") "found!"); goto out;}
if (demodNedap() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("NEDAP ID") "found!"); goto out;}
if (demodNexWatch() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("NexWatch ID") "found!"); goto out;}
if (demodNoralsy() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Noralsy ID") "found!"); goto out;}
if (demodKeri() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("KERI ID") "found!"); goto out;}
if (demodPac() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("PAC/Stanley ID") "found!"); goto out;}
if (demodPresco() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Presco ID") "found!"); goto out;}
if (demodPyramid() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Pyramid ID") "found!"); goto out;}
if (demodSecurakey() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Securakey ID") "found!"); goto out;}
if (demodViking() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Viking ID") "found!"); goto out;}
if (demodVisa2k() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Visa2000 ID") "found!"); goto out;}
if (demodGallagher() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("GALLAGHER ID") "found!"); goto out;}
// if (demodTI() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Texas Instrument ID") "found!"); goto out;}
//if (demodFermax() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Fermax ID") "found!"); goto out;}
//if (demodFlex() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Motorola FlexPass ID") "found!"); goto out;}
PrintAndLogEx(FAILED, _RED_("No known 125/134 kHz tags found!"));
if (testRaw == 'u') {
//test unknown tag formats (raw mode)
PrintAndLogEx(INFO, "\nChecking for unknown tags:\n");
ans = AutoCorrelate(GraphBuffer, GraphBuffer, GraphTraceLen, 8000, false, false);
if (ans > 0) {
PrintAndLogEx(INFO, "Possible auto correlation of %d repeating samples", ans);
if (ans % 8 == 0)
PrintAndLogEx(INFO, "Possible %d bytes", (ans / 8));
}
//fsk
if (GetFskClock("", false)) {
if (FSKrawDemod("", true) == PM3_SUCCESS) {
PrintAndLogEx(NORMAL, "\nUnknown FSK Modulated Tag found!");
goto out;
}
}
bool st = true;
if (ASKDemod_ext("0 0 0", true, false, 1, &st) == PM3_SUCCESS) {
PrintAndLogEx(NORMAL, "\nUnknown ASK Modulated and Manchester encoded Tag found!");
PrintAndLogEx(NORMAL, "if it does not look right it could instead be ASK/Biphase - try " _YELLOW_("'data rawdemod ab'"));
goto out;
}
if (CmdPSK1rawDemod("") == PM3_SUCCESS) {
PrintAndLogEx(NORMAL, "Possible unknown PSK1 Modulated Tag found above!");
PrintAndLogEx(NORMAL, " Could also be PSK2 - try " _YELLOW_("'data rawdemod p2'"));
PrintAndLogEx(NORMAL, " Could also be PSK3 - [currently not supported]");
PrintAndLogEx(NORMAL, " Could also be NRZ - try " _YELLOW_("'data rawdemod nr"));
goto out;
}
PrintAndLogEx(FAILED, _RED_("\nNo data found!"));
}
out:
// identify chipset
if (CheckChipType(isOnline) == false) {
PrintAndLogEx(DEBUG, "Automatic chip type detection " _RED_("failed"));
}
return PM3_SUCCESS;
}
static command_t CommandTable[] = {
{"help", CmdHelp, AlwaysAvailable, "This help"},
{"awid", CmdLFAWID, AlwaysAvailable, "{ AWID RFIDs... }"},
{"cotag", CmdLFCOTAG, AlwaysAvailable, "{ COTAG CHIPs... }"},
{"em", CmdLFEM4X, AlwaysAvailable, "{ EM4X CHIPs & RFIDs... }"},
{"fdx", CmdLFFdx, AlwaysAvailable, "{ FDX-B RFIDs... }"},
{"gallagher", CmdLFGallagher, AlwaysAvailable, "{ GALLAGHER RFIDs... }"},
{"gproxii", CmdLFGuard, AlwaysAvailable, "{ Guardall Prox II RFIDs... }"},
{"hid", CmdLFHID, AlwaysAvailable, "{ HID RFIDs... }"},
{"hitag", CmdLFHitag, AlwaysAvailable, "{ Hitag CHIPs... }"},
{"indala", CmdLFINDALA, AlwaysAvailable, "{ Indala RFIDs... }"},
{"io", CmdLFIO, AlwaysAvailable, "{ ioProx RFIDs... }"},
{"jablotron", CmdLFJablotron, AlwaysAvailable, "{ Jablotron RFIDs... }"},
{"keri", CmdLFKeri, AlwaysAvailable, "{ KERI RFIDs... }"},
{"nedap", CmdLFNedap, AlwaysAvailable, "{ Nedap RFIDs... }"},
{"nexwatch", CmdLFNEXWATCH, AlwaysAvailable, "{ NexWatch RFIDs... }"},
{"noralsy", CmdLFNoralsy, AlwaysAvailable, "{ Noralsy RFIDs... }"},
{"motorola", CmdLFMotorola, AlwaysAvailable, "{ Motorola RFIDs... }"},
{"pac", CmdLFPac, AlwaysAvailable, "{ PAC/Stanley RFIDs... }"},
{"paradox", CmdLFParadox, AlwaysAvailable, "{ Paradox RFIDs... }"},
{"pcf7931", CmdLFPCF7931, AlwaysAvailable, "{ PCF7931 CHIPs... }"},
{"presco", CmdLFPresco, AlwaysAvailable, "{ Presco RFIDs... }"},
{"pyramid", CmdLFPyramid, AlwaysAvailable, "{ Farpointe/Pyramid RFIDs... }"},
{"securakey", CmdLFSecurakey, AlwaysAvailable, "{ Securakey RFIDs... }"},
{"ti", CmdLFTI, AlwaysAvailable, "{ TI CHIPs... }"},
{"t55xx", CmdLFT55XX, AlwaysAvailable, "{ T55xx CHIPs... }"},
{"viking", CmdLFViking, AlwaysAvailable, "{ Viking RFIDs... }"},
{"visa2000", CmdLFVisa2k, AlwaysAvailable, "{ Visa2000 RFIDs... }"},
{"", CmdHelp, AlwaysAvailable, ""},
{"config", CmdLFConfig, IfPm3Lf, "Get/Set config for LF sampling, bit/sample, decimation, frequency"},
{"cmdread", CmdLFCommandRead, IfPm3Lf, "<off period> <'0' period> <'1' period> <command> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"},
{"read", CmdLFRead, IfPm3Lf, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
{"search", CmdLFfind, AlwaysAvailable, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"},
{"sim", CmdLFSim, IfPm3Lf, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
{"simask", CmdLFaskSim, IfPm3Lf, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d <hexdata>] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"},
{"simfsk", CmdLFfskSim, IfPm3Lf, "[c <clock>] [i] [H <fcHigh>] [L <fcLow>] [d <hexdata>] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"},
{"simpsk", CmdLFpskSim, IfPm3Lf, "[1|2|3] [c <clock>] [i] [r <carrier>] [d <raw hex to sim>] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"},
{"simbidir", CmdLFSimBidir, IfPm3Lf, "Simulate LF tag (with bidirectional data transmission between reader and tag)"},
{"sniff", CmdLFSniff, IfPm3Lf, "Sniff LF traffic between reader and tag"},
{"tune", CmdLFTune, IfPm3Lf, "Continuously measure LF antenna tuning"},
// {"vchdemod", CmdVchDemod, AlwaysAvailable, "['clone'] -- Demodulate samples for VeriChip"},
{"flexdemod", CmdFlexdemod, AlwaysAvailable, "Demodulate samples for Motorola FlexPass"},
{NULL, NULL, NULL, NULL}
};
int CmdLF(const char *Cmd) {
clearCommandBuffer();
return CmdsParse(CommandTable, Cmd);
}
int CmdHelp(const char *Cmd) {
(void)Cmd; // Cmd is not used so far
CmdsHelp(CommandTable);
return PM3_SUCCESS;
}