mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-12 11:08:29 +08:00
1592 lines
53 KiB
C
1592 lines
53 KiB
C
//-----------------------------------------------------------------------------
|
|
// Jonathan Westhues, Mar 2006
|
|
// Edits by Gerhard de Koning Gans, Sep 2007 (##)
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// The main application code. This is the first thing called after start.c
|
|
// executes.
|
|
//-----------------------------------------------------------------------------
|
|
#include <stdarg.h>
|
|
#include <inttypes.h>
|
|
#include "usb_cdc.h"
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "fpga.h"
|
|
#include "util.h"
|
|
#include "printf.h"
|
|
#include "string.h"
|
|
#include "legicrf.h"
|
|
#include "legicrfsim.h"
|
|
#include "lfsampling.h"
|
|
#include "BigBuf.h"
|
|
#include "mifareutil.h"
|
|
#include "mifaresim.h"
|
|
#include "hitag.h"
|
|
|
|
#define DEBUG 1
|
|
|
|
#ifdef WITH_LCD
|
|
#include "LCD.h"
|
|
#endif
|
|
|
|
#ifdef WITH_SMARTCARD
|
|
#include "i2c.h"
|
|
#endif
|
|
|
|
#ifdef WITH_FPC
|
|
#include "usart.h"
|
|
#endif
|
|
|
|
#ifdef WITH_FLASH
|
|
#include "flashmem.h"
|
|
#endif
|
|
|
|
//=============================================================================
|
|
// A buffer where we can queue things up to be sent through the FPGA, for
|
|
// any purpose (fake tag, as reader, whatever). We go MSB first, since that
|
|
// is the order in which they go out on the wire.
|
|
//=============================================================================
|
|
|
|
#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
|
|
uint8_t ToSend[TOSEND_BUFFER_SIZE];
|
|
int ToSendMax = -1;
|
|
static int ToSendBit;
|
|
struct common_area common_area __attribute__((section(".commonarea")));
|
|
|
|
void ToSendReset(void) {
|
|
ToSendMax = -1;
|
|
ToSendBit = 8;
|
|
}
|
|
|
|
void ToSendStuffBit(int b) {
|
|
if (ToSendBit >= 8) {
|
|
ToSendMax++;
|
|
ToSend[ToSendMax] = 0;
|
|
ToSendBit = 0;
|
|
}
|
|
|
|
if (b)
|
|
ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
|
|
|
|
ToSendBit++;
|
|
|
|
if (ToSendMax >= sizeof(ToSend)) {
|
|
ToSendBit = 0;
|
|
DbpString("ToSendStuffBit overflowed!");
|
|
}
|
|
}
|
|
|
|
/* useful when debugging new protocol implementations like FeliCa
|
|
void PrintToSendBuffer(void) {
|
|
DbpString("Printing ToSendBuffer:");
|
|
Dbhexdump(ToSendMax, ToSend, 0);
|
|
}
|
|
*/
|
|
|
|
void print_result(char *name, uint8_t *buf, size_t len) {
|
|
|
|
uint8_t *p = buf;
|
|
uint16_t tmp = len & 0xFFF0;
|
|
|
|
for (; p - buf < tmp; p += 16) {
|
|
Dbprintf("[%s: %02d/%02d] %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
name,
|
|
p - buf,
|
|
len,
|
|
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]
|
|
);
|
|
}
|
|
if (len % 16 != 0) {
|
|
char s[46] = {0};
|
|
char *sp = s;
|
|
for (; p - buf < len; p++) {
|
|
sprintf(sp, "%02x ", p[0]);
|
|
sp += 3;
|
|
}
|
|
Dbprintf("[%s: %02d/%02d] %s", name, p - buf, len, s);
|
|
}
|
|
}
|
|
|
|
//=============================================================================
|
|
// Debug print functions, to go out over USB, to the usual PC-side client.
|
|
//=============================================================================
|
|
|
|
void DbpStringEx(char *str, uint32_t cmd) {
|
|
#if DEBUG
|
|
uint8_t len = strlen(str);
|
|
cmd_send(CMD_DEBUG_PRINT_STRING, len, cmd, 0, (uint8_t *)str, len);
|
|
#endif
|
|
}
|
|
|
|
void DbpString(char *str) {
|
|
#if DEBUG
|
|
DbpStringEx(str, 0);
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
void DbpIntegers(int x1, int x2, int x3) {
|
|
cmd_send(CMD_DEBUG_PRINT_INTEGERS, x1, x2, x3, 0, 0);
|
|
}
|
|
#endif
|
|
void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
|
|
#if DEBUG
|
|
// should probably limit size here; oh well, let's just use a big buffer
|
|
char output_string[128] = {0x00};
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
kvsprintf(fmt, output_string, 10, ap);
|
|
va_end(ap);
|
|
|
|
DbpStringEx(output_string, cmd);
|
|
#endif
|
|
}
|
|
|
|
void Dbprintf(const char *fmt, ...) {
|
|
#if DEBUG
|
|
// should probably limit size here; oh well, let's just use a big buffer
|
|
char output_string[128] = {0x00};
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
kvsprintf(fmt, output_string, 10, ap);
|
|
va_end(ap);
|
|
|
|
DbpString(output_string);
|
|
#endif
|
|
}
|
|
|
|
// prints HEX & ASCII
|
|
void Dbhexdump(int len, uint8_t *d, bool bAsci) {
|
|
#if DEBUG
|
|
char ascii[9];
|
|
|
|
while (len > 0) {
|
|
|
|
int l = (len > 8) ? 8 : len;
|
|
|
|
memcpy(ascii, d, l);
|
|
ascii[l] = 0;
|
|
|
|
// filter safe ascii
|
|
for (int i = 0; i < l; i++) {
|
|
if (ascii[i] < 32 || ascii[i] > 126) {
|
|
ascii[i] = '.';
|
|
}
|
|
}
|
|
|
|
if (bAsci)
|
|
Dbprintf("%-8s %*D", ascii, l, d, " ");
|
|
else
|
|
Dbprintf("%*D", l, d, " ");
|
|
|
|
len -= 8;
|
|
d += 8;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Read an ADC channel and block till it completes, then return the result
|
|
// in ADC units (0 to 1023). Also a routine to average 32 samples and
|
|
// return that.
|
|
//-----------------------------------------------------------------------------
|
|
static uint16_t ReadAdc(int ch) {
|
|
|
|
// Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
|
|
// AMPL_HI is are high impedance (10MOhm || 1MOhm) output, the input capacitance of the ADC is 12pF (typical). This results in a time constant
|
|
// of RC = (0.91MOhm) * 12pF = 10.9us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
|
|
//
|
|
// The maths are:
|
|
// If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
|
|
//
|
|
// v_cap = v_in * (1 - exp(-SHTIM/RC)) = v_in * (1 - exp(-40us/10.9us)) = v_in * 0,97 (i.e. an error of 3%)
|
|
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
|
|
AT91C_BASE_ADC->ADC_MR =
|
|
ADC_MODE_PRESCALE(63) // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
|
|
| ADC_MODE_STARTUP_TIME(1) // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
|
|
| ADC_MODE_SAMPLE_HOLD_TIME(15); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
|
|
|
|
AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
|
|
AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
|
|
|
|
while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) {};
|
|
|
|
return (AT91C_BASE_ADC->ADC_CDR[ch] & 0x3FF);
|
|
}
|
|
|
|
// was static - merlok
|
|
uint16_t AvgAdc(int ch) {
|
|
uint16_t a = 0;
|
|
for (uint8_t i = 0; i < 32; i++)
|
|
a += ReadAdc(ch);
|
|
|
|
//division by 32
|
|
return (a + 15) >> 5;
|
|
}
|
|
|
|
void MeasureAntennaTuning(void) {
|
|
|
|
uint8_t LF_Results[256];
|
|
uint32_t i, peak = 0, peakv = 0, peakf = 0;
|
|
uint32_t v_lf125 = 0, v_lf134 = 0, v_hf = 0; // in mV
|
|
|
|
memset(LF_Results, 0, sizeof(LF_Results));
|
|
LED_B_ON();
|
|
|
|
/*
|
|
* Sweeps the useful LF range of the proxmark from
|
|
* 46.8kHz (divisor=255) to 600kHz (divisor=19) and
|
|
* read the voltage in the antenna, the result left
|
|
* in the buffer is a graph which should clearly show
|
|
* the resonating frequency of your LF antenna
|
|
* ( hopefully around 95 if it is tuned to 125kHz!)
|
|
*/
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
|
|
SpinDelay(50);
|
|
|
|
for (i = 255; i >= 19; i--) {
|
|
WDT_HIT();
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
|
|
SpinDelay(20);
|
|
uint32_t adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
|
|
if (i == 95)
|
|
v_lf125 = adcval; // voltage at 125Khz
|
|
if (i == 89)
|
|
v_lf134 = adcval; // voltage at 134Khz
|
|
|
|
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
|
|
if (LF_Results[i] > peak) {
|
|
peakv = adcval;
|
|
peakf = i;
|
|
peak = LF_Results[i];
|
|
}
|
|
}
|
|
|
|
LED_A_ON();
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
|
SpinDelay(50);
|
|
v_hf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
|
|
// RDV40 will hit the roof, try other ADC channel used in that hardware revision.
|
|
if (v_hf > MAX_ADC_HF_VOLTAGE - 300) {
|
|
v_hf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
|
|
}
|
|
|
|
uint64_t arg0 = v_lf134;
|
|
arg0 <<= 32;
|
|
arg0 |= v_lf125;
|
|
|
|
uint64_t arg2 = peakv;
|
|
arg2 <<= 32;
|
|
arg2 |= peakf;
|
|
|
|
cmd_send(CMD_MEASURED_ANTENNA_TUNING, arg0, v_hf, arg2, LF_Results, 256);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|
|
|
|
void MeasureAntennaTuningHf(void) {
|
|
uint16_t volt = 0; // in mV
|
|
// Let the FPGA drive the high-frequency antenna around 13.56 MHz.
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
|
|
SpinDelay(50);
|
|
volt = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
bool use_high = (volt > MAX_ADC_HF_VOLTAGE - 300);
|
|
|
|
while (!BUTTON_PRESS()) {
|
|
SpinDelay(20);
|
|
if (!use_high) {
|
|
volt = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
|
|
} else {
|
|
volt = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
|
|
}
|
|
DbprintfEx(FLAG_NONEWLINE, "%u mV / %5u V", volt, (uint16_t)(volt / 1000));
|
|
}
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
DbprintfEx(FLAG_NOOPT, "\n[+] cancelled", 1);
|
|
}
|
|
|
|
void ReadMem(int addr) {
|
|
const uint8_t *data = ((uint8_t *)addr);
|
|
|
|
Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x", addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
|
|
}
|
|
|
|
/* osimage version information is linked in */
|
|
extern struct version_information version_information;
|
|
/* bootrom version information is pointed to from _bootphase1_version_pointer */
|
|
extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
|
|
void SendVersion(void) {
|
|
char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
|
|
char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
|
|
|
|
/* Try to find the bootrom version information. Expect to find a pointer at
|
|
* symbol _bootphase1_version_pointer, perform slight sanity checks on the
|
|
* pointer, then use it.
|
|
*/
|
|
char *bootrom_version = *(char **)&_bootphase1_version_pointer;
|
|
|
|
strncat(VersionString, " [ ARM ]\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
|
|
if (bootrom_version < &_flash_start || bootrom_version >= &_flash_end) {
|
|
strcat(VersionString, "bootrom version information appears invalid\n");
|
|
} else {
|
|
FormatVersionInformation(temp, sizeof(temp), " bootrom: ", bootrom_version);
|
|
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
|
}
|
|
|
|
FormatVersionInformation(temp, sizeof(temp), " os: ", &version_information);
|
|
strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
|
|
|
|
strncat(VersionString, "\n [ FPGA ]\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
|
|
for (int i = 0; i < fpga_bitstream_num; i++) {
|
|
strncat(VersionString, fpga_version_information[i], sizeof(VersionString) - strlen(VersionString) - 1);
|
|
if (i < fpga_bitstream_num - 1) {
|
|
strncat(VersionString, "\n", sizeof(VersionString) - strlen(VersionString) - 1);
|
|
}
|
|
}
|
|
// Send Chip ID and used flash memory
|
|
uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
|
|
uint32_t compressed_data_section_size = common_area.arg1;
|
|
cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
|
|
}
|
|
|
|
// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
|
|
// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
|
|
void printUSBSpeed(void) {
|
|
Dbprintf("USB Speed");
|
|
Dbprintf(" Sending USB packets to client...");
|
|
|
|
#define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
|
|
uint8_t *test_data = BigBuf_get_addr();
|
|
uint32_t end_time;
|
|
|
|
uint32_t start_time = end_time = GetTickCount();
|
|
uint32_t bytes_transferred = 0;
|
|
|
|
LED_B_ON();
|
|
while (end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
|
|
cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
|
|
end_time = GetTickCount();
|
|
bytes_transferred += USB_CMD_DATA_SIZE;
|
|
}
|
|
LED_B_OFF();
|
|
|
|
Dbprintf(" Time elapsed............%dms", end_time - start_time);
|
|
Dbprintf(" Bytes transferred.......%d", bytes_transferred);
|
|
Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", 1000 * bytes_transferred / (end_time - start_time));
|
|
}
|
|
|
|
/**
|
|
* Prints runtime information about the PM3.
|
|
**/
|
|
void SendStatus(void) {
|
|
BigBuf_print_status();
|
|
Fpga_print_status();
|
|
#ifdef WITH_FLASH
|
|
Flashmem_print_status();
|
|
#endif
|
|
#ifdef WITH_SMARTCARD
|
|
I2C_print_status();
|
|
#endif
|
|
#ifdef WITH_LF
|
|
printConfig(); // LF Sampling config
|
|
printT55xxConfig(); // LF T55XX Config
|
|
#endif
|
|
printUSBSpeed();
|
|
Dbprintf("Various");
|
|
Dbprintf(" MF_DBGLEVEL.............%d", MF_DBGLEVEL);
|
|
Dbprintf(" ToSendMax...............%d", ToSendMax);
|
|
Dbprintf(" ToSendBit...............%d", ToSendBit);
|
|
Dbprintf(" ToSend BUFFERSIZE.......%d", TOSEND_BUFFER_SIZE);
|
|
printStandAloneModes();
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
}
|
|
|
|
// Show some leds in a pattern to identify StandAlone mod is running
|
|
void StandAloneMode(void) {
|
|
|
|
DbpString("Stand-alone mode! No PC necessary.");
|
|
|
|
SpinDown(50);
|
|
SpinOff(50);
|
|
SpinUp(50);
|
|
SpinOff(50);
|
|
SpinDown(50);
|
|
SpinDelay(500);
|
|
}
|
|
// detection of which Standalone Modes is installed
|
|
// (iceman)
|
|
void printStandAloneModes(void) {
|
|
|
|
DbpString("Installed StandAlone Mode");
|
|
|
|
#if defined(WITH_LF_ICERUN)
|
|
DbpString(" LF sniff/clone/simulation - aka IceRun (iceman)");
|
|
#endif
|
|
#if defined(WITH_HF_YOUNG)
|
|
DbpString(" HF Mifare sniff/simulation - (Craig Young)");
|
|
#endif
|
|
#if defined(WITH_LF_SAMYRUN)
|
|
DbpString(" LF HID26 standalone - aka SamyRun (Samy Kamkar)");
|
|
#endif
|
|
#if defined(WITH_LF_PROXBRUTE)
|
|
DbpString(" LF HID ProxII bruteforce - aka Proxbrute (Brad Antoniewicz)");
|
|
#endif
|
|
#if defined(WITH_LF_HIDBRUTE)
|
|
DbpString(" LF HID corporate 1000 bruteforce - aka Corporatebrute (Federico dotta & Maurizio Agazzini)");
|
|
#endif
|
|
#if defined(WITH_HF_MATTYRUN)
|
|
DbpString(" HF Mifare sniff/clone - aka MattyRun (Matías A. Ré Medina)");
|
|
#endif
|
|
#if defined(WITH_HF_COLIN)
|
|
DbpString(" HF Mifare ultra fast sniff/sim/clone - aka VIGIKPWN (Colin Brigato)");
|
|
#endif
|
|
#if defined(WITH_HF_BOG)
|
|
DbpString(" HF 14a sniff standalone with ULC/ULEV1/NTAG auth storing in flashmem - aka BogitoRun (Bogito)");
|
|
#endif
|
|
|
|
//DbpString("Running ");
|
|
//Dbprintf(" Is Device attached to USB| %s", USB_ATTACHED() ? "Yes" : "No");
|
|
//Dbprintf(" Is Device attached to FPC| %s", 0 ? "Yes" : "No");
|
|
//Dbprintf(" Is USB_reconnect value | %d", GetUSBreconnect() );
|
|
//Dbprintf(" Is USB_configured value | %d", GetUSBconfigured() );
|
|
|
|
//.. add your own standalone detection based on with compiler directive you are used.
|
|
// don't "reuse" the already taken ones, this will make things easier when trying to detect the different modes
|
|
// 2017-08-06 must adapt the makefile and have individual compilation flags for all mods
|
|
//
|
|
}
|
|
|
|
/*
|
|
OBJECTIVE
|
|
Listen and detect an external reader. Determine the best location
|
|
for the antenna.
|
|
|
|
INSTRUCTIONS:
|
|
Inside the ListenReaderField() function, there is two mode.
|
|
By default, when you call the function, you will enter mode 1.
|
|
If you press the PM3 button one time, you will enter mode 2.
|
|
If you press the PM3 button a second time, you will exit the function.
|
|
|
|
DESCRIPTION OF MODE 1:
|
|
This mode just listens for an external reader field and lights up green
|
|
for HF and/or red for LF. This is the original mode of the detectreader
|
|
function.
|
|
|
|
DESCRIPTION OF MODE 2:
|
|
This mode will visually represent, using the LEDs, the actual strength of the
|
|
current compared to the maximum current detected. Basically, once you know
|
|
what kind of external reader is present, it will help you spot the best location to place
|
|
your antenna. You will probably not get some good results if there is a LF and a HF reader
|
|
at the same place! :-)
|
|
|
|
LIGHT SCHEME USED:
|
|
*/
|
|
static const char LIGHT_SCHEME[] = {
|
|
0x0, /* ---- | No field detected */
|
|
0x1, /* X--- | 14% of maximum current detected */
|
|
0x2, /* -X-- | 29% of maximum current detected */
|
|
0x4, /* --X- | 43% of maximum current detected */
|
|
0x8, /* ---X | 57% of maximum current detected */
|
|
0xC, /* --XX | 71% of maximum current detected */
|
|
0xE, /* -XXX | 86% of maximum current detected */
|
|
0xF, /* XXXX | 100% of maximum current detected */
|
|
};
|
|
static const int LIGHT_LEN = sizeof(LIGHT_SCHEME) / sizeof(LIGHT_SCHEME[0]);
|
|
|
|
void ListenReaderField(int limit) {
|
|
#define LF_ONLY 1
|
|
#define HF_ONLY 2
|
|
#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
|
|
|
|
uint16_t lf_av, lf_av_new, lf_baseline = 0, lf_max;
|
|
uint16_t hf_av, hf_av_new, hf_baseline = 0, hf_max;
|
|
uint16_t mode = 1, display_val, display_max, i;
|
|
|
|
// switch off FPGA - we don't want to measure our own signal
|
|
// 20180315 - iceman, why load this before and then turn off?
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
|
|
LEDsoff();
|
|
|
|
lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
|
|
|
|
if (limit != HF_ONLY) {
|
|
Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
|
|
lf_baseline = lf_av;
|
|
}
|
|
|
|
hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
|
|
|
|
// iceman, useless, since we are measuring readerfield, not our field. My tests shows a max of 20v from a reader.
|
|
// RDV40 will hit the roof, try other ADC channel used in that hardware revision.
|
|
bool use_high = (((MAX_ADC_HF_VOLTAGE * hf_max) >> 10) > MAX_ADC_HF_VOLTAGE - 300);
|
|
if (use_high) {
|
|
hf_av = hf_max = AvgAdc(ADC_CHAN_HF_RDV40);
|
|
}
|
|
|
|
if (limit != LF_ONLY) {
|
|
Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
|
|
hf_baseline = hf_av;
|
|
}
|
|
|
|
for (;;) {
|
|
// Switch modes with button
|
|
if (BUTTON_PRESS()) {
|
|
SpinDelay(500);
|
|
switch (mode) {
|
|
case 1:
|
|
mode = 2;
|
|
DbpString("Signal Strength Mode");
|
|
break;
|
|
case 2:
|
|
default:
|
|
DbpString("Stopped");
|
|
LEDsoff();
|
|
return;
|
|
break;
|
|
}
|
|
}
|
|
WDT_HIT();
|
|
|
|
if (limit != HF_ONLY) {
|
|
if (mode == 1) {
|
|
if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
|
|
LED_D_ON();
|
|
else
|
|
LED_D_OFF();
|
|
}
|
|
|
|
lf_av_new = AvgAdc(ADC_CHAN_LF);
|
|
// see if there's a significant change
|
|
if (ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
|
|
Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
|
|
lf_av = lf_av_new;
|
|
if (lf_av > lf_max)
|
|
lf_max = lf_av;
|
|
}
|
|
}
|
|
|
|
if (limit != LF_ONLY) {
|
|
if (mode == 1) {
|
|
if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
|
|
LED_B_ON();
|
|
else
|
|
LED_B_OFF();
|
|
}
|
|
|
|
hf_av_new = (use_high) ? AvgAdc(ADC_CHAN_HF_RDV40) : AvgAdc(ADC_CHAN_HF);
|
|
|
|
// see if there's a significant change
|
|
if (ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
|
|
Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
|
|
hf_av = hf_av_new;
|
|
if (hf_av > hf_max)
|
|
hf_max = hf_av;
|
|
}
|
|
}
|
|
|
|
if (mode == 2) {
|
|
if (limit == LF_ONLY) {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
} else if (limit == HF_ONLY) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else { /* Pick one at random */
|
|
if ((hf_max - hf_baseline) > (lf_max - lf_baseline)) {
|
|
display_val = hf_av;
|
|
display_max = hf_max;
|
|
} else {
|
|
display_val = lf_av;
|
|
display_max = lf_max;
|
|
}
|
|
}
|
|
for (i = 0; i < LIGHT_LEN; i++) {
|
|
if (display_val >= ((display_max / LIGHT_LEN)*i) && display_val <= ((display_max / LIGHT_LEN) * (i + 1))) {
|
|
if (LIGHT_SCHEME[i] & 0x1) LED_C_ON();
|
|
else LED_C_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x2) LED_A_ON();
|
|
else LED_A_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x4) LED_B_ON();
|
|
else LED_B_OFF();
|
|
if (LIGHT_SCHEME[i] & 0x8) LED_D_ON();
|
|
else LED_D_OFF();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void UsbPacketReceived(uint8_t *packet, int len) {
|
|
UsbCommand *c = (UsbCommand *)packet;
|
|
//Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d", len, c->cmd, c->arg[0], c->arg[1], c->arg[2]);
|
|
|
|
switch (c->cmd) {
|
|
#ifdef WITH_LF
|
|
case CMD_SET_LF_T55XX_CONFIG:
|
|
setT55xxConfig(c->arg[0], (t55xx_config *) c->d.asBytes);
|
|
break;
|
|
case CMD_SET_LF_SAMPLING_CONFIG:
|
|
setSamplingConfig((sample_config *) c->d.asBytes);
|
|
break;
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: {
|
|
uint32_t bits = SampleLF(c->arg[0], c->arg[1]);
|
|
cmd_send(CMD_ACK, bits, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
|
|
ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_LF_SNIFF_RAW_ADC_SAMPLES: {
|
|
uint32_t bits = SniffLF();
|
|
cmd_send(CMD_ACK, bits, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case CMD_HID_DEMOD_FSK: {
|
|
uint32_t high, low;
|
|
CmdHIDdemodFSK(c->arg[0], &high, &low, 1);
|
|
break;
|
|
}
|
|
case CMD_HID_SIM_TAG:
|
|
CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
|
|
break;
|
|
case CMD_FSK_SIM_TAG:
|
|
CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes, 1);
|
|
break;
|
|
case CMD_ASK_SIM_TAG:
|
|
CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes, 1);
|
|
break;
|
|
case CMD_PSK_SIM_TAG:
|
|
CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes, 1);
|
|
break;
|
|
case CMD_HID_CLONE_TAG:
|
|
CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
|
|
break;
|
|
case CMD_IO_DEMOD_FSK: {
|
|
uint32_t high, low;
|
|
CmdIOdemodFSK(c->arg[0], &high, &low, 1);
|
|
break;
|
|
}
|
|
case CMD_IO_CLONE_TAG:
|
|
CopyIOtoT55x7(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_EM410X_DEMOD: {
|
|
uint32_t high;
|
|
uint64_t low;
|
|
CmdEM410xdemod(c->arg[0], &high, &low, 1);
|
|
break;
|
|
}
|
|
case CMD_EM410X_WRITE_TAG:
|
|
WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_READ_TI_TYPE:
|
|
ReadTItag();
|
|
break;
|
|
case CMD_WRITE_TI_TYPE:
|
|
WriteTItag(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_SIMULATE_TAG_125K:
|
|
LED_A_ON();
|
|
SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
|
|
LED_A_OFF();
|
|
break;
|
|
case CMD_LF_SIMULATE_BIDIR:
|
|
SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_INDALA_CLONE_TAG:
|
|
CopyIndala64toT55x7(c->d.asDwords[0], c->d.asDwords[1]);
|
|
break;
|
|
case CMD_INDALA_CLONE_TAG_L:
|
|
CopyIndala224toT55x7(
|
|
c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3],
|
|
c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]
|
|
);
|
|
break;
|
|
case CMD_T55XX_READ_BLOCK: {
|
|
T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
}
|
|
case CMD_T55XX_WRITE_BLOCK:
|
|
T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
|
|
break;
|
|
case CMD_T55XX_WAKEUP:
|
|
T55xxWakeUp(c->arg[0]);
|
|
break;
|
|
case CMD_T55XX_RESET_READ:
|
|
T55xxResetRead();
|
|
break;
|
|
case CMD_T55XX_CHKPWDS:
|
|
T55xx_ChkPwds();
|
|
break;
|
|
case CMD_PCF7931_READ:
|
|
ReadPCF7931();
|
|
break;
|
|
case CMD_PCF7931_WRITE:
|
|
WritePCF7931(
|
|
c->d.asBytes[0], c->d.asBytes[1], c->d.asBytes[2], c->d.asBytes[3],
|
|
c->d.asBytes[4], c->d.asBytes[5], c->d.asBytes[6], c->d.asBytes[9],
|
|
c->d.asBytes[7] - 128, c->d.asBytes[8] - 128,
|
|
c->arg[0],
|
|
c->arg[1],
|
|
c->arg[2]
|
|
);
|
|
break;
|
|
case CMD_EM4X_READ_WORD:
|
|
EM4xReadWord(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_EM4X_WRITE_WORD:
|
|
EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_AWID_DEMOD_FSK: {
|
|
uint32_t high, low;
|
|
// Set realtime AWID demodulation
|
|
CmdAWIDdemodFSK(c->arg[0], &high, &low, 1);
|
|
break;
|
|
}
|
|
case CMD_VIKING_CLONE_TAG:
|
|
CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_COTAG:
|
|
Cotag(c->arg[0]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_HITAG
|
|
case CMD_SNIFF_HITAG: // Eavesdrop Hitag tag, args = type
|
|
SniffHitag(c->arg[0]);
|
|
break;
|
|
case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
|
|
SimulateHitagTag((bool)c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
|
|
ReaderHitag((hitag_function)c->arg[0], (hitag_data *)c->d.asBytes);
|
|
break;
|
|
case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
|
|
SimulateHitagSTag((bool)c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
|
|
check_challenges((bool)c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
|
|
ReadHitagS((hitag_function)c->arg[0], (hitag_data *)c->d.asBytes);
|
|
break;
|
|
case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
|
|
if ((hitag_function)c->arg[0] < 10) {
|
|
WritePageHitagS((hitag_function)c->arg[0], (hitag_data *)c->d.asBytes, c->arg[2]);
|
|
} else {
|
|
WriterHitag((hitag_function)c->arg[0], (hitag_data *)c->d.asBytes, c->arg[2]);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO15693
|
|
case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
|
|
AcquireRawAdcSamplesIso15693();
|
|
break;
|
|
case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
|
|
RecordRawAdcSamplesIso15693();
|
|
break;
|
|
case CMD_ISO_15693_COMMAND:
|
|
DirectTag15693Command(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_ISO_15693_FIND_AFI:
|
|
BruteforceIso15693Afi(c->arg[0]);
|
|
break;
|
|
case CMD_READER_ISO_15693:
|
|
ReaderIso15693(c->arg[0]);
|
|
break;
|
|
case CMD_SIMTAG_ISO_15693:
|
|
SimTagIso15693(c->arg[0], c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_LEGICRF
|
|
case CMD_SIMULATE_TAG_LEGIC_RF:
|
|
LegicRfSimulate(c->arg[0]);
|
|
break;
|
|
case CMD_WRITER_LEGIC_RF:
|
|
LegicRfWriter(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_READER_LEGIC_RF:
|
|
LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_LEGIC_INFO:
|
|
LegicRfInfo();
|
|
break;
|
|
case CMD_LEGIC_ESET:
|
|
//-----------------------------------------------------------------------------
|
|
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
|
|
// involved in dealing with emulator memory. But if it is called later, it might
|
|
// destroy the Emulator Memory.
|
|
//-----------------------------------------------------------------------------
|
|
// arg0 = offset
|
|
// arg1 = num of bytes
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
emlSet(c->d.asBytes, c->arg[0], c->arg[1]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443b
|
|
case CMD_READ_SRI_TAG:
|
|
ReadSTMemoryIso14443b(c->arg[0]);
|
|
break;
|
|
case CMD_SNIFF_ISO_14443B:
|
|
SniffIso14443b();
|
|
break;
|
|
case CMD_SIMULATE_TAG_ISO_14443B:
|
|
SimulateIso14443bTag(c->arg[0]);
|
|
break;
|
|
case CMD_ISO_14443B_COMMAND:
|
|
//SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
|
|
SendRawCommand14443B_Ex(c);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_FELICA
|
|
case CMD_FELICA_COMMAND:
|
|
felica_sendraw(c);
|
|
break;
|
|
case CMD_FELICA_LITE_SIM:
|
|
felica_sim_lite(c->arg[0]);
|
|
break;
|
|
case CMD_FELICA_SNIFF:
|
|
felica_sniff(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_FELICA_LITE_DUMP:
|
|
felica_dump_lite_s();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ISO14443a
|
|
case CMD_SNIFF_ISO_14443a:
|
|
SniffIso14443a(c->arg[0]);
|
|
break;
|
|
case CMD_READER_ISO_14443a:
|
|
ReaderIso14443a(c);
|
|
break;
|
|
case CMD_SIMULATE_TAG_ISO_14443a:
|
|
SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
|
|
break;
|
|
case CMD_ANTIFUZZ_ISO_14443a:
|
|
iso14443a_antifuzz(c->arg[0]);
|
|
break;
|
|
case CMD_EPA_PACE_COLLECT_NONCE:
|
|
EPA_PACE_Collect_Nonce(c);
|
|
break;
|
|
case CMD_EPA_PACE_REPLAY:
|
|
EPA_PACE_Replay(c);
|
|
break;
|
|
case CMD_READER_MIFARE:
|
|
ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
|
|
break;
|
|
case CMD_MIFARE_READBL:
|
|
MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREU_READBL:
|
|
MifareUReadBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREUC_AUTH:
|
|
MifareUC_Auth(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREU_READCARD:
|
|
MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFAREUC_SETPWD:
|
|
MifareUSetPwd(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_READSC:
|
|
MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_WRITEBL:
|
|
MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
//case CMD_MIFAREU_WRITEBL_COMPAT:
|
|
//MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
|
|
//break;
|
|
case CMD_MIFAREU_WRITEBL:
|
|
MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
|
|
MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_ACQUIRE_NONCES:
|
|
MifareAcquireNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_NESTED:
|
|
MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CHKKEYS: {
|
|
MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
}
|
|
case CMD_MIFARE_CHKKEYS_FAST: {
|
|
MifareChkKeys_fast(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
}
|
|
case CMD_SIMULATE_MIFARE_CARD:
|
|
Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
|
|
// emulator
|
|
case CMD_MIFARE_SET_DBGMODE:
|
|
MifareSetDbgLvl(c->arg[0]);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMCLR:
|
|
MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMSET:
|
|
MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_MEMGET:
|
|
MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_EML_CARDLOAD:
|
|
MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
|
|
// Work with "magic Chinese" card
|
|
case CMD_MIFARE_CSETBLOCK:
|
|
MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CGETBLOCK:
|
|
MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_CIDENT:
|
|
MifareCIdent();
|
|
break;
|
|
// mifare sniffer
|
|
// case CMD_MIFARE_SNIFFER:
|
|
// SniffMifare(c->arg[0]);
|
|
// break;
|
|
case CMD_MIFARE_SETMOD:
|
|
MifareSetMod(c->arg[0], c->d.asBytes);
|
|
break;
|
|
//mifare desfire
|
|
case CMD_MIFARE_DESFIRE_READBL:
|
|
break;
|
|
case CMD_MIFARE_DESFIRE_WRITEBL:
|
|
break;
|
|
case CMD_MIFARE_DESFIRE_AUTH1:
|
|
MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_DESFIRE_AUTH2:
|
|
//MifareDES_Auth2(c->arg[0],c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_DES_READER:
|
|
//readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_DESFIRE_INFO:
|
|
MifareDesfireGetInformation();
|
|
break;
|
|
case CMD_MIFARE_DESFIRE:
|
|
MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_MIFARE_COLLECT_NONCES:
|
|
break;
|
|
case CMD_MIFARE_NACK_DETECT:
|
|
DetectNACKbug();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_ICLASS
|
|
// Makes use of ISO14443a FPGA Firmware
|
|
case CMD_SNIFF_ICLASS:
|
|
SniffIClass();
|
|
break;
|
|
case CMD_SIMULATE_TAG_ICLASS:
|
|
SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
|
|
break;
|
|
case CMD_READER_ICLASS:
|
|
ReaderIClass(c->arg[0]);
|
|
break;
|
|
case CMD_READER_ICLASS_REPLAY:
|
|
ReaderIClass_Replay(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_EML_MEMSET:
|
|
//iceman, should call FPGADOWNLOAD before, since it corrupts BigBuf
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
emlSet(c->d.asBytes, c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_WRITEBLOCK:
|
|
iClass_WriteBlock(c->arg[0], c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_READCHECK: // auth step 1
|
|
iClass_ReadCheck(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_READBLOCK:
|
|
iClass_ReadBlk(c->arg[0]);
|
|
break;
|
|
case CMD_ICLASS_AUTHENTICATION: //check
|
|
iClass_Authentication(c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_CHECK_KEYS:
|
|
iClass_Authentication_fast(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
case CMD_ICLASS_DUMP:
|
|
iClass_Dump(c->arg[0], c->arg[1]);
|
|
break;
|
|
case CMD_ICLASS_CLONE:
|
|
iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_HFSNIFF
|
|
case CMD_HF_SNIFFER:
|
|
HfSniff(c->arg[0], c->arg[1]);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef WITH_SMARTCARD
|
|
case CMD_SMART_ATR: {
|
|
SmartCardAtr();
|
|
break;
|
|
}
|
|
case CMD_SMART_SETBAUD: {
|
|
SmartCardSetBaud(c->arg[0]);
|
|
break;
|
|
}
|
|
case CMD_SMART_SETCLOCK: {
|
|
SmartCardSetClock(c->arg[0]);
|
|
break;
|
|
}
|
|
case CMD_SMART_RAW: {
|
|
SmartCardRaw(c->arg[0], c->arg[1], c->d.asBytes);
|
|
break;
|
|
}
|
|
case CMD_SMART_UPLOAD: {
|
|
// upload file from client
|
|
uint8_t *mem = BigBuf_get_addr();
|
|
memcpy(mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case CMD_SMART_UPGRADE: {
|
|
SmartCardUpgrade(c->arg[0]);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
#ifdef WITH_FPC
|
|
case CMD_FPC_SEND: {
|
|
|
|
|
|
StartTicks();
|
|
DbpString("Mutual USB/FPC sending from device to client");
|
|
|
|
/*
|
|
char at[11] = {'\0'};
|
|
static const char* s_at = "AT+BAUD8\0D\0A";
|
|
strncat(at, s_at, sizeof(at) - strlen(at) - 1);
|
|
DbpString("Try AT baud rate setting");
|
|
usart_init();
|
|
int16_t res = usart_writebuffer((uint8_t*)&at, sizeof(at));
|
|
WaitMS(1);
|
|
Dbprintf("SEND %d | %c%c%c%c%c%c%c%c%c%c%c", res, at[0], at[1], at[2], at[3], at[4], at[5], at[6], at[7], at[8], at[9], at[10]);
|
|
|
|
uint8_t my_rx[20];
|
|
memset(my_rx, 0, sizeof(my_rx));
|
|
res = usart_readbuffer(my_rx, sizeof(my_rx));
|
|
WaitMS(1);
|
|
Dbprintf("GOT %d | %c%c%c%c%c%c%c%c", res, my_rx[0], my_rx[1], my_rx[2], my_rx[3], my_rx[4], my_rx[5], my_rx[6], my_rx[7]);
|
|
*/
|
|
|
|
|
|
char dest[USB_CMD_DATA_SIZE] = {'\0'};
|
|
if (usart_dataavailable()) {
|
|
Dbprintf("RX DATA!");
|
|
uint16_t len = usart_readbuffer((uint8_t *)dest);
|
|
dest[len] = '\0';
|
|
Dbprintf("RX: %d | %02X %02X %02X %02X %02X %02X %02X %02X ", len, dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
|
|
}
|
|
|
|
static const char *welcome = "Proxmark3 Serial interface via FPC ready\r\n";
|
|
usart_writebuffer((uint8_t *)welcome, strlen(welcome));
|
|
|
|
sprintf(dest, "| bytes 0x%02x 0x%02x 0x%02x 0x%02x\r\n"
|
|
, c->d.asBytes[0]
|
|
, c->d.asBytes[1]
|
|
, c->d.asBytes[2]
|
|
, c->d.asBytes[3]
|
|
);
|
|
usart_writebuffer((uint8_t *)dest, strlen(dest));
|
|
|
|
|
|
LED_A_ON();
|
|
|
|
|
|
//usb
|
|
cmd_send(CMD_DEBUG_PRINT_STRING, strlen(dest), 0, 0, dest, strlen(dest));
|
|
LED_A_OFF();
|
|
/*
|
|
uint8_t my_rx[sizeof(UsbCommand)];
|
|
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
LED_B_INV();
|
|
if (usart_readbuffer(my_rx, sizeof(UsbCommand)) ) {
|
|
//UsbPacketReceived(my_rx, sizeof(my_rx));
|
|
|
|
UsbCommand *my = (UsbCommand *)my_rx;
|
|
if (my->cmd > 0 ) {
|
|
Dbprintf("received command: 0x%04x and args: %d %d %d", my->cmd, my->arg[0], my->arg[1], my->arg[2]);
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
//cmd_send(CMD_DEBUG_PRINT_STRING, strlen(dest), 0, 0, dest, strlen(dest));
|
|
|
|
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
|
|
StopTicks();
|
|
break;
|
|
}
|
|
#endif
|
|
case CMD_BUFF_CLEAR:
|
|
BigBuf_Clear();
|
|
BigBuf_free();
|
|
break;
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING:
|
|
MeasureAntennaTuning();
|
|
break;
|
|
|
|
case CMD_MEASURE_ANTENNA_TUNING_HF:
|
|
MeasureAntennaTuningHf();
|
|
break;
|
|
|
|
case CMD_LISTEN_READER_FIELD:
|
|
ListenReaderField(c->arg[0]);
|
|
break;
|
|
|
|
case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
SpinDelay(200);
|
|
LED_D_OFF(); // LED D indicates field ON or OFF
|
|
break;
|
|
#ifdef WITH_LF
|
|
case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
|
|
LED_B_ON();
|
|
uint8_t *mem = BigBuf_get_addr();
|
|
uint32_t startidx = c->arg[0];
|
|
uint32_t numofbytes = c->arg[1];
|
|
// arg0 = startindex
|
|
// arg1 = length bytes to transfer
|
|
// arg2 = BigBuf tracelen
|
|
//Dbprintf("transfer to client parameters: %" PRIu32 " | %" PRIu32 " | %" PRIu32, startidx, numofbytes, c->arg[2]);
|
|
|
|
for (size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
|
size_t len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
|
bool isok = cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, i, len, BigBuf_get_traceLen(), mem + startidx + i, len);
|
|
if (isok != 0)
|
|
Dbprintf("transfer to client failed :: | bytes between %d - %d (%d)", i, i + len, len);
|
|
}
|
|
// Trigger a finish downloading signal with an ACK frame
|
|
// iceman, when did sending samplingconfig array got attached here?!?
|
|
// arg0 = status of download transfer
|
|
// arg1 = RFU
|
|
// arg2 = tracelen?
|
|
// asbytes = samplingconfig array
|
|
cmd_send(CMD_ACK, 1, 0, BigBuf_get_traceLen(), getSamplingConfig(), sizeof(sample_config));
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
#endif
|
|
case CMD_UPLOAD_SIM_SAMPLES_125K: {
|
|
// iceman; since changing fpga_bitstreams clears bigbuff, Its better to call it before.
|
|
// to be able to use this one for uploading data to device
|
|
// arg1 = 0 upload for LF usage
|
|
// 1 upload for HF usage
|
|
#define FPGA_LF 1
|
|
if (c->arg[1] == FPGA_LF)
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
else
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
uint8_t *mem = BigBuf_get_addr();
|
|
memcpy(mem + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
case CMD_DOWNLOAD_EML_BIGBUF: {
|
|
LED_B_ON();
|
|
uint8_t *mem = BigBuf_get_EM_addr();
|
|
bool isok = false;
|
|
size_t len = 0;
|
|
uint32_t startidx = c->arg[0];
|
|
uint32_t numofbytes = c->arg[1];
|
|
|
|
// arg0 = startindex
|
|
// arg1 = length bytes to transfer
|
|
// arg2 = RFU
|
|
|
|
for (size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
|
len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
|
isok = cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, 0, mem + startidx + i, len);
|
|
if (isok != 0)
|
|
Dbprintf("transfer to client failed :: | bytes between %d - %d (%d)", i, i + len, len);
|
|
}
|
|
// Trigger a finish downloading signal with an ACK frame
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
case CMD_READ_MEM:
|
|
ReadMem(c->arg[0]);
|
|
break;
|
|
#ifdef WITH_FLASH
|
|
case CMD_FLASHMEM_SET_SPIBAUDRATE:
|
|
FlashmemSetSpiBaudrate(c->arg[0]);
|
|
break;
|
|
case CMD_FLASHMEM_READ: {
|
|
LED_B_ON();
|
|
uint32_t startidx = c->arg[0];
|
|
uint16_t len = c->arg[1];
|
|
|
|
Dbprintf("FlashMem read | %d - %d | ", startidx, len);
|
|
|
|
size_t size = MIN(USB_CMD_DATA_SIZE, len);
|
|
|
|
if (!FlashInit()) {
|
|
break;
|
|
}
|
|
|
|
uint8_t *mem = BigBuf_malloc(size);
|
|
|
|
for (size_t i = 0; i < len; i += size) {
|
|
len = MIN((len - i), size);
|
|
|
|
Dbprintf("FlashMem reading | %d | %d | %d |", startidx + i, i, len);
|
|
uint16_t isok = Flash_ReadDataCont(startidx + i, mem, len);
|
|
if (isok == len) {
|
|
print_result("Chunk: ", mem, len);
|
|
} else {
|
|
Dbprintf("FlashMem reading failed | %d | %d", len, isok);
|
|
break;
|
|
}
|
|
}
|
|
BigBuf_free();
|
|
FlashStop();
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
case CMD_FLASHMEM_WRITE: {
|
|
LED_B_ON();
|
|
uint8_t isok = 0;
|
|
uint16_t res = 0;
|
|
uint32_t startidx = c->arg[0];
|
|
uint16_t len = c->arg[1];
|
|
uint8_t *data = c->d.asBytes;
|
|
|
|
uint32_t tmp = startidx + len;
|
|
|
|
if (!FlashInit()) {
|
|
break;
|
|
}
|
|
|
|
Flash_CheckBusy(BUSY_TIMEOUT);
|
|
Flash_WriteEnable();
|
|
|
|
if (startidx == DEFAULT_T55XX_KEYS_OFFSET)
|
|
Flash_Erase4k(3, 0xC);
|
|
else if (startidx == DEFAULT_MF_KEYS_OFFSET)
|
|
Flash_Erase4k(3, 0xB);
|
|
else if (startidx == DEFAULT_ICLASS_KEYS_OFFSET)
|
|
Flash_Erase4k(3, 0xA);
|
|
|
|
Flash_CheckBusy(BUSY_TIMEOUT);
|
|
Flash_WriteEnable();
|
|
|
|
// inside 256b page?
|
|
if ((tmp & 0xFF) != 0) {
|
|
|
|
// is offset+len larger than a page
|
|
tmp = (startidx & 0xFF) + len;
|
|
if (tmp > 0xFF) {
|
|
|
|
// data spread over two pages.
|
|
|
|
// offset xxxx10,
|
|
uint8_t first_len = (~startidx & 0xFF) + 1;
|
|
|
|
// first mem page
|
|
res = Flash_WriteDataCont(startidx, data, first_len);
|
|
|
|
isok = (res == first_len) ? 1 : 0;
|
|
|
|
// second mem page
|
|
res = Flash_WriteDataCont(startidx + first_len, data + first_len, len - first_len);
|
|
|
|
isok &= (res == (len - first_len)) ? 1 : 0;
|
|
|
|
} else {
|
|
res = Flash_WriteDataCont(startidx, data, len);
|
|
isok = (res == len) ? 1 : 0;
|
|
}
|
|
} else {
|
|
res = Flash_WriteDataCont(startidx, data, len);
|
|
isok = (res == len) ? 1 : 0;
|
|
}
|
|
FlashStop();
|
|
|
|
cmd_send(CMD_ACK, isok, 0, 0, 0, 0);
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
case CMD_FLASHMEM_WIPE: {
|
|
LED_B_ON();
|
|
uint8_t page = c->arg[0];
|
|
uint8_t initalwipe = c->arg[1];
|
|
bool isok = false;
|
|
if (initalwipe) {
|
|
isok = Flash_WipeMemory();
|
|
cmd_send(CMD_ACK, isok, 0, 0, 0, 0);
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
if (page < 3)
|
|
isok = Flash_WipeMemoryPage(page);
|
|
|
|
cmd_send(CMD_ACK, isok, 0, 0, 0, 0);
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
case CMD_FLASHMEM_DOWNLOAD: {
|
|
|
|
LED_B_ON();
|
|
uint8_t *mem = BigBuf_malloc(USB_CMD_DATA_SIZE);
|
|
uint32_t startidx = c->arg[0];
|
|
uint32_t numofbytes = c->arg[1];
|
|
// arg0 = startindex
|
|
// arg1 = length bytes to transfer
|
|
// arg2 = RFU
|
|
|
|
if (!FlashInit()) {
|
|
break;
|
|
}
|
|
|
|
for (size_t i = 0; i < numofbytes; i += USB_CMD_DATA_SIZE) {
|
|
size_t len = MIN((numofbytes - i), USB_CMD_DATA_SIZE);
|
|
|
|
bool isok = Flash_ReadDataCont(startidx + i, mem, len);
|
|
if (!isok)
|
|
Dbprintf("reading flash memory failed :: | bytes between %d - %d", i, len);
|
|
|
|
isok = cmd_send(CMD_FLASHMEM_DOWNLOADED, i, len, 0, mem, len);
|
|
if (isok != 0)
|
|
Dbprintf("transfer to client failed :: | bytes between %d - %d", i, len);
|
|
}
|
|
FlashStop();
|
|
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
BigBuf_free();
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
case CMD_FLASHMEM_INFO: {
|
|
|
|
LED_B_ON();
|
|
rdv40_validation_t *info = (rdv40_validation_t *)BigBuf_malloc(sizeof(rdv40_validation_t));
|
|
|
|
bool isok = Flash_ReadData(FLASH_MEM_SIGNATURE_OFFSET, info->signature, FLASH_MEM_SIGNATURE_LEN);
|
|
|
|
if (FlashInit()) {
|
|
Flash_UniqueID(info->flashid);
|
|
FlashStop();
|
|
}
|
|
cmd_send(CMD_ACK, isok, 0, 0, info, sizeof(rdv40_validation_t));
|
|
BigBuf_free();
|
|
|
|
LED_B_OFF();
|
|
break;
|
|
}
|
|
#endif
|
|
case CMD_SET_LF_DIVISOR:
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
|
|
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
|
|
break;
|
|
|
|
case CMD_SET_ADC_MUX:
|
|
switch (c->arg[0]) {
|
|
case 0:
|
|
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
|
|
break;
|
|
case 2:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
break;
|
|
#ifndef WITH_FPC
|
|
case 1:
|
|
SetAdcMuxFor(GPIO_MUXSEL_LORAW);
|
|
break;
|
|
case 3:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIRAW);
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case CMD_VERSION:
|
|
SendVersion();
|
|
break;
|
|
case CMD_STATUS:
|
|
SendStatus();
|
|
break;
|
|
case CMD_PING:
|
|
cmd_send(CMD_ACK, 0, 0, 0, 0, 0);
|
|
break;
|
|
#ifdef WITH_LCD
|
|
case CMD_LCD_RESET:
|
|
LCDReset();
|
|
break;
|
|
case CMD_LCD:
|
|
LCDSend(c->arg[0]);
|
|
break;
|
|
#endif
|
|
case CMD_SETUP_WRITE:
|
|
case CMD_FINISH_WRITE:
|
|
case CMD_HARDWARE_RESET:
|
|
usb_disable();
|
|
|
|
// (iceman) why this wait?
|
|
SpinDelay(1000);
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
// We're going to reset, and the bootrom will take control.
|
|
for (;;) {}
|
|
break;
|
|
|
|
case CMD_START_FLASH:
|
|
if (common_area.flags.bootrom_present) {
|
|
common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
|
|
}
|
|
usb_disable();
|
|
AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
|
|
// We're going to flash, and the bootrom will take control.
|
|
for (;;) {}
|
|
break;
|
|
|
|
case CMD_DEVICE_INFO: {
|
|
uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
|
|
if (common_area.flags.bootrom_present) {
|
|
dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
|
|
}
|
|
cmd_send(CMD_DEVICE_INFO, dev_info, 0, 0, 0, 0);
|
|
break;
|
|
}
|
|
default:
|
|
Dbprintf("%s: 0x%04x", "unknown command:", c->cmd);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __attribute__((noreturn)) AppMain(void) {
|
|
|
|
SpinDelay(100);
|
|
clear_trace();
|
|
|
|
if (common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
|
|
/* Initialize common area */
|
|
memset(&common_area, 0, sizeof(common_area));
|
|
common_area.magic = COMMON_AREA_MAGIC;
|
|
common_area.version = 1;
|
|
}
|
|
common_area.flags.osimage_present = 1;
|
|
|
|
LEDsoff();
|
|
|
|
// The FPGA gets its clock from us from PCK0 output, so set that up.
|
|
AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
|
|
AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
|
|
AT91C_BASE_PMC->PMC_SCER |= AT91C_PMC_PCK0;
|
|
// PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
|
|
AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
|
|
|
|
// Reset SPI
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
|
|
AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // errata says it needs twice to be correctly set.
|
|
|
|
// Reset SSC
|
|
AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
|
|
|
|
// Configure MUX
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Load the FPGA image, which we have stored in our flash.
|
|
// (the HF version by default)
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
StartTickCount();
|
|
|
|
#ifdef WITH_LCD
|
|
LCDInit();
|
|
#endif
|
|
|
|
#ifdef WITH_SMARTCARD
|
|
I2C_init();
|
|
#endif
|
|
|
|
#ifdef WITH_FPC
|
|
usart_init();
|
|
#endif
|
|
|
|
#ifdef WITH_FLASH
|
|
loadT55xxConfig();
|
|
#endif
|
|
|
|
// This is made as late as possible to ensure enumeration without timeout
|
|
// against device such as http://www.hobbytronics.co.uk/usb-host-board-v2
|
|
usb_disable();
|
|
usb_enable();
|
|
|
|
uint8_t rx[sizeof(UsbCommand)];
|
|
|
|
for (;;) {
|
|
WDT_HIT();
|
|
|
|
// Check if there is a usb packet available
|
|
if (usb_poll_validate_length()) {
|
|
if (usb_read(rx, sizeof(rx))) {
|
|
#ifdef WITH_FPC_HOST
|
|
reply_via_fpc = 0;
|
|
#endif
|
|
UsbPacketReceived(rx, sizeof(rx));
|
|
}
|
|
}
|
|
#ifdef WITH_FPC_HOST
|
|
// Check if there is a FPC packet available
|
|
if (usart_readcommand(rx) > 0) {
|
|
reply_via_fpc = 1;
|
|
UsbPacketReceived(rx, sizeof(rx));
|
|
}
|
|
#endif
|
|
|
|
// Press button for one second to enter a possible standalone mode
|
|
if (BUTTON_HELD(1000) > 0) {
|
|
|
|
/*
|
|
* So this is the trigger to execute a standalone mod. Generic entrypoint by following the standalone/standalone.h headerfile
|
|
* All standalone mod "main loop" should be the RunMod() function.
|
|
* Since the standalone is either LF or HF, the somewhat bisarr defines below exists.
|
|
*/
|
|
#if defined (WITH_LF) && ( defined (WITH_LF_SAMYRUN) || defined (WITH_LF_HIDBRUTE) || defined (WITH_LF_PROXBRUTE) )
|
|
RunMod();
|
|
#endif
|
|
|
|
#if defined (WITH_ISO14443a) && ( defined (WITH_HF_YOUNG) || defined(WITH_HF_COLIN) || defined(WITH_HF_MATTYRUN) || defined(WITH_HF_BOG) )
|
|
RunMod();
|
|
#endif
|
|
|
|
}
|
|
}
|
|
}
|