# -*- coding: utf-8 -*-
"""
This module borrows and adapts `Pipeline` from `sklearn.pipeline` and
`TransformerMixin` from `sklearn.base` in the scikit-learn framework
(commit hash d205638475ca542dc46862652e3bb0be663a8eac) to be precise).
Both are BSD licensed and allow for this sort of thing; attribution
is given as a comment above each class.
"""
from collections import defaultdict
from itertools import islice


# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause
class TransformerMixin(object):
    """Mixin class for all transformers."""

    def fit_transform(self, X, y=None, **fit_params):
        """
        Fit to data, then transform it.
        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.
        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training set.
        y : ndarray of shape (n_samples,), default=None
            Target values.
        **fit_params : dict
            Additional fit parameters.
        Returns
        -------
        X_new : ndarray array of shape (n_samples, n_features_new)
            Transformed array.
        """
        # non-optimized default implementation; override when a better
        # method is possible for a given clustering algorithm
        if y is None:
            # fit method of arity 1 (unsupervised transformation)
            return self.fit(X, **fit_params).transform(X)
        else:
            # fit method of arity 2 (supervised transformation)
            return self.fit(X, y, **fit_params).transform(X)


# Author: Edouard Duchesnay
#         Gael Varoquaux
#         Virgile Fritsch
#         Alexandre Gramfort
#         Lars Buitinck
# License: BSD
class Pipeline(object):
    def __init__(self, steps, verbose=False):
        self.steps = steps
        self.verbose = verbose
        self._validate_steps()

    def _validate_steps(self):
        names, estimators = zip(*self.steps)

        # validate estimators
        transformers = estimators[:-1]
        estimator = estimators[-1]

        for t in transformers:
            if t is None or t == 'passthrough':
                continue
            if (not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not
            hasattr(t, "transform")):
                raise TypeError("All intermediate steps should be "
                                "transformers and implement fit and transform "
                                "or be the string 'passthrough' "
                                "'%s' (type %s) doesn't" % (t, type(t)))

        # We allow last estimator to be None as an identity transformation
        if (estimator is not None and estimator != 'passthrough'
                and not hasattr(estimator, "fit")):
            raise TypeError(
                "Last step of Pipeline should implement fit "
                "or be the string 'passthrough'. "
                "'%s' (type %s) doesn't" % (estimator, type(estimator)))

    def _iter(self, with_final=True, filter_passthrough=True):
        """
        Generate (idx, (name, trans)) tuples from self.steps

        When filter_passthrough is True, 'passthrough' and None transformers
        are filtered out.
        """
        stop = len(self.steps)
        if not with_final:
            stop -= 1

        for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
            if not filter_passthrough:
                yield idx, name, trans
            elif trans is not None and trans != 'passthrough':
                yield idx, name, trans

    def __len__(self):
        """
        Returns the length of the Pipeline
        """
        return len(self.steps)

    def __getitem__(self, ind):
        """Returns a sub-pipeline or a single esimtator in the pipeline

        Indexing with an integer will return an estimator; using a slice
        returns another Pipeline instance which copies a slice of this
        Pipeline. This copy is shallow: modifying (or fitting) estimators in
        the sub-pipeline will affect the larger pipeline and vice-versa.
        However, replacing a value in `step` will not affect a copy.
        """
        if isinstance(ind, slice):
            if ind.step not in (1, None):
                raise ValueError('Pipeline slicing only supports a step of 1')
            return self.__class__(self.steps[ind])
        try:
            name, est = self.steps[ind]
        except TypeError:
            # Not an int, try get step by name
            return self.named_steps[ind]
        return est

    @property
    def _estimator_type(self):
        return self.steps[-1][1]._estimator_type

    @property
    def named_steps(self):
        return dict(self.steps)

    @property
    def _final_estimator(self):
        estimator = self.steps[-1][1]
        return 'passthrough' if estimator is None else estimator

    def _log_message(self, step_idx):
        if not self.verbose:
            return None
        name, step = self.steps[step_idx]

        return '(step %d of %d) Processing %s' % (step_idx + 1,
                                                  len(self.steps),
                                                  name)

    # Estimator interface

    def _fit(self, X, y=None, **fit_params):
        # shallow copy of steps - this should really be steps_
        self.steps = list(self.steps)
        self._validate_steps()

        fit_params_steps = {name: {} for name, step in self.steps
                            if step is not None}
        for pname, pval in fit_params.items():
            if '__' not in pname:
                raise ValueError(
                    "Pipeline.fit does not accept the {} parameter. "
                    "You can pass parameters to specific steps of your "
                    "pipeline using the stepname__parameter format, e.g. "
                    "`Pipeline.fit(X, y, logisticregression__sample_weight"
                    "=sample_weight)`.".format(pname))
            step, param = pname.split('__', 1)
            fit_params_steps[step][param] = pval
        for (step_idx,
             name,
             transformer) in self._iter(with_final=False,
                                        filter_passthrough=False):
            if transformer is None or transformer == 'passthrough':
                continue

            # Fit or load from cache the current transformer
            X, fitted_transformer = _fit_transform_one(
                transformer, X, y, None,
                **fit_params_steps[name])
            # Replace the transformer of the step with the fitted
            # transformer. This is necessary when loading the transformer
            # from the cache.
            self.steps[step_idx] = (name, fitted_transformer)
        if self._final_estimator == 'passthrough':
            return X, {}
        return X, fit_params_steps[self.steps[-1][0]]

    def fit(self, X, y=None, **fit_params):
        """Fit the model

        Fit all the transforms one after the other and transform the
        data, then fit the transformed data using the final estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        self : Pipeline
            This estimator
        """
        Xt, fit_params = self._fit(X, y, **fit_params)
        if self._final_estimator != 'passthrough':
            self._final_estimator.fit(Xt, y, **fit_params)
        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit the model and transform with the final estimator

        Fits all the transforms one after the other and transforms the
        data, then uses fit_transform on transformed data with the final
        estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        Xt : array-like of shape  (n_samples, n_transformed_features)
            Transformed samples
        """
        last_step = self._final_estimator
        Xt, fit_params = self._fit(X, y, **fit_params)
        if last_step == 'passthrough':
            return Xt
        if hasattr(last_step, 'fit_transform'):
            return last_step.fit_transform(Xt, y, **fit_params)
        else:
            return last_step.fit(Xt, y, **fit_params).transform(Xt)

    @property
    def transform(self):
        """Apply transforms, and transform with the final estimator

        This also works where final estimator is ``None``: all prior
        transformations are applied.

        Parameters
        ----------
        X : iterable
            Data to transform. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        Xt : array-like of shape  (n_samples, n_transformed_features)
        """
        # _final_estimator is None or has transform, otherwise attribute error
        # XXX: Handling the None case means we can't use if_delegate_has_method
        if self._final_estimator != 'passthrough':
            self._final_estimator.transform
        return self._transform

    def _transform(self, X):
        Xt = X
        for _, _, transform in self._iter():
            Xt = transform.transform(Xt)
        return Xt


    @property
    def classes_(self):
        return self.steps[-1][-1].classes_

    @property
    def _pairwise(self):
        # check if first estimator expects pairwise input
        return getattr(self.steps[0][1], '_pairwise', False)

    @property
    def n_features_in_(self):
        # delegate to first step (which will call _check_is_fitted)
        return self.steps[0][1].n_features_in_


def _name_estimators(estimators):
    """Generate names for estimators."""

    names = [
        estimator
        if isinstance(estimator, str) else type(estimator).__name__.lower()
        for estimator in estimators
    ]
    namecount = defaultdict(int)
    for est, name in zip(estimators, names):
        namecount[name] += 1

    for k, v in list(namecount.items()):
        if v == 1:
            del namecount[k]

    for i in reversed(range(len(estimators))):
        name = names[i]
        if name in namecount:
            names[i] += "-%d" % namecount[name]
            namecount[name] -= 1

    return list(zip(names, estimators))


def make_pipeline(*steps, **kwargs):
    """Construct a Pipeline from the given estimators.

    This is a shorthand for the Pipeline constructor; it does not require, and
    does not permit, naming the estimators. Instead, their names will be set
    to the lowercase of their types automatically.

    Parameters
    ----------
    *steps : list of estimators.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Returns
    -------
    p : Pipeline
    """
    verbose = kwargs.pop('verbose', False)
    if kwargs:
        raise TypeError('Unknown keyword arguments: "{}"'
                        .format(list(kwargs.keys())[0]))
    return Pipeline(_name_estimators(steps), verbose=verbose)


def _transform_one(transformer, X, y, weight, **fit_params):
    res = transformer.transform(X)
    # if we have a weight for this transformer, multiply output
    if weight is None:
        return res
    return res * weight


def _fit_transform_one(transformer,
                       X,
                       y,
                       weight,
                       **fit_params):
    """
    Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
    with the fitted transformer. If ``weight`` is not ``None``, the result will
    be multiplied by ``weight``.
    """
    if hasattr(transformer, 'fit_transform'):
        res = transformer.fit_transform(X, y, **fit_params)
    else:
        res = transformer.fit(X, y, **fit_params).transform(X)

    if weight is None:
        return res, transformer
    return res * weight, transformer