bazarr/libs/ffsubsync/golden_section_search.py

74 lines
1.8 KiB
Python

"""Python program for golden section search (straight-up copied from Wikipedia).
This implementation reuses function evaluations, saving 1/2 of the evaluations per
iteration, and returns a bounding interval."""
import logging
import math
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
invphi = (math.sqrt(5) - 1) / 2 # 1 / phi
invphi2 = (3 - math.sqrt(5)) / 2 # 1 / phi^2
def gss(f, a, b, tol=1e-4):
"""Golden-section search.
Given a function f with a single local minimum in
the interval [a,b], gss returns a subset interval
[c,d] that contains the minimum with d-c <= tol.
Example:
>>> f = lambda x: (x-2)**2
>>> a = 1
>>> b = 5
>>> tol = 1e-5
>>> (c,d) = gss(f, a, b, tol)
>>> print(c, d)
1.9999959837979107 2.0000050911830893
"""
(a, b) = (min(a, b), max(a, b))
h = b - a
if h <= tol:
return a, b
# Required steps to achieve tolerance
n = int(math.ceil(math.log(tol / h) / math.log(invphi)))
logger.info(
"About to perform %d iterations of golden section search to find the best framerate",
n,
)
def f_wrapped(x, is_last_iter):
try:
return f(x, is_last_iter)
except TypeError:
return f(x)
c = a + invphi2 * h
d = a + invphi * h
yc = f_wrapped(c, n == 1)
yd = f_wrapped(d, n == 1)
for k in range(n - 1):
if yc < yd:
b = d
d = c
yd = yc
h = invphi * h
c = a + invphi2 * h
yc = f_wrapped(c, k == n - 2)
else:
a = c
c = d
yc = yd
h = invphi * h
d = a + invphi * h
yd = f(d, k == n - 2)
if yc < yd:
return a, d
else:
return c, b