mirror of
https://github.com/morpheus65535/bazarr.git
synced 2025-01-10 00:37:49 +08:00
30ef713fa2
ffsubsync pinned auditok to 0.1.5. We missed this when upgrading ffsubsync and auditok. Since we dont run pip to install the libraries, there is no version checks
452 lines
17 KiB
Python
452 lines
17 KiB
Python
"""
|
|
This module gathers processing (i.e. tokenization) classes.
|
|
|
|
Class summary
|
|
=============
|
|
|
|
.. autosummary::
|
|
|
|
StreamTokenizer
|
|
"""
|
|
|
|
from auditok.util import DataValidator
|
|
|
|
__all__ = ["StreamTokenizer"]
|
|
|
|
|
|
class StreamTokenizer():
|
|
"""
|
|
Class for stream tokenizers. It implements a 4-state automaton scheme
|
|
to extract sub-sequences of interest on the fly.
|
|
|
|
:Parameters:
|
|
|
|
`validator` :
|
|
instance of `DataValidator` that implements `is_valid` method.
|
|
|
|
`min_length` : *(int)*
|
|
Minimum number of frames of a valid token. This includes all \
|
|
tolerated non valid frames within the token.
|
|
|
|
`max_length` : *(int)*
|
|
Maximum number of frames of a valid token. This includes all \
|
|
tolerated non valid frames within the token.
|
|
|
|
`max_continuous_silence` : *(int)*
|
|
Maximum number of consecutive non-valid frames within a token.
|
|
Note that, within a valid token, there may be many tolerated \
|
|
*silent* regions that contain each a number of non valid frames up to \
|
|
`max_continuous_silence`
|
|
|
|
`init_min` : *(int, default=0)*
|
|
Minimum number of consecutive valid frames that must be **initially** \
|
|
gathered before any sequence of non valid frames can be tolerated. This
|
|
option is not always needed, it can be used to drop non-valid tokens as
|
|
early as possible. **Default = 0** means that the option is by default
|
|
ineffective.
|
|
|
|
`init_max_silence` : *(int, default=0)*
|
|
Maximum number of tolerated consecutive non-valid frames if the \
|
|
number already gathered valid frames has not yet reached 'init_min'.
|
|
This argument is normally used if `init_min` is used. **Default = 0**,
|
|
by default this argument is not taken into consideration.
|
|
|
|
`mode` : *(int, default=0)*
|
|
`mode` can be:
|
|
|
|
1. `StreamTokenizer.STRICT_MIN_LENGTH`:
|
|
if token *i* is delivered because `max_length`
|
|
is reached, and token *i+1* is immediately adjacent to
|
|
token *i* (i.e. token *i* ends at frame *k* and token *i+1* starts
|
|
at frame *k+1*) then accept token *i+1* only of it has a size of at
|
|
least `min_length`. The default behavior is to accept token *i+1*
|
|
event if it is shorter than `min_length` (given that the above conditions
|
|
are fulfilled of course).
|
|
|
|
:Examples:
|
|
|
|
In the following code, without `STRICT_MIN_LENGTH`, the 'BB' token is
|
|
accepted although it is shorter than `min_length` (3), because it immediately
|
|
follows the latest delivered token:
|
|
|
|
.. code:: python
|
|
|
|
from auditok import StreamTokenizer, StringDataSource, DataValidator
|
|
|
|
class UpperCaseChecker(DataValidator):
|
|
def is_valid(self, frame):
|
|
return frame.isupper()
|
|
|
|
|
|
dsource = StringDataSource("aaaAAAABBbbb")
|
|
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
|
|
min_length=3,
|
|
max_length=4,
|
|
max_continuous_silence=0)
|
|
|
|
tokenizer.tokenize(dsource)
|
|
|
|
|
|
:output:
|
|
|
|
.. code:: python
|
|
|
|
[(['A', 'A', 'A', 'A'], 3, 6), (['B', 'B'], 7, 8)]
|
|
|
|
|
|
The following tokenizer will however reject the 'BB' token:
|
|
|
|
.. code:: python
|
|
|
|
dsource = StringDataSource("aaaAAAABBbbb")
|
|
tokenizer = StreamTokenizer(validator=UpperCaseChecker(),
|
|
min_length=3, max_length=4,
|
|
max_continuous_silence=0,
|
|
mode=StreamTokenizer.STRICT_MIN_LENGTH)
|
|
tokenizer.tokenize(dsource)
|
|
|
|
:output:
|
|
|
|
.. code:: python
|
|
|
|
[(['A', 'A', 'A', 'A'], 3, 6)]
|
|
|
|
|
|
2. `StreamTokenizer.DROP_TRAILING_SILENCE`: drop all tailing non-valid frames
|
|
from a token to be delivered if and only if it is not **truncated**.
|
|
This can be a bit tricky. A token is actually delivered if:
|
|
|
|
- a. `max_continuous_silence` is reached
|
|
|
|
:or:
|
|
|
|
- b. Its length reaches `max_length`. This is called a **truncated** token
|
|
|
|
In the current implementation, a `StreamTokenizer`'s decision is only based on already seen
|
|
data and on incoming data. Thus, if a token is truncated at a non-valid but tolerated
|
|
frame (`max_length` is reached but `max_continuous_silence` not yet) any tailing
|
|
silence will be kept because it can potentially be part of valid token (if `max_length`
|
|
was bigger). But if `max_continuous_silence` is reached before `max_length`, the delivered
|
|
token will not be considered as truncated but a result of *normal* end of detection
|
|
(i.e. no more valid data). In that case the tailing silence can be removed if you use
|
|
the `StreamTokenizer.DROP_TRAILING_SILENCE` mode.
|
|
|
|
:Example:
|
|
|
|
.. code:: python
|
|
|
|
tokenizer = StreamTokenizer(validator=UpperCaseChecker(), min_length=3,
|
|
max_length=6, max_continuous_silence=3,
|
|
mode=StreamTokenizer.DROP_TRAILING_SILENCE)
|
|
|
|
dsource = StringDataSource("aaaAAAaaaBBbbbb")
|
|
tokenizer.tokenize(dsource)
|
|
|
|
:output:
|
|
|
|
.. code:: python
|
|
|
|
[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B'], 9, 10)]
|
|
|
|
The first token is delivered with its tailing silence because it is truncated
|
|
while the second one has its tailing frames removed.
|
|
|
|
Without `StreamTokenizer.DROP_TRAILING_SILENCE` the output would be:
|
|
|
|
.. code:: python
|
|
|
|
[(['A', 'A', 'A', 'a', 'a', 'a'], 3, 8), (['B', 'B', 'b', 'b', 'b'], 9, 13)]
|
|
|
|
|
|
|
|
3. `StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE`:
|
|
use both options. That means: first remove tailing silence, then ckeck if the
|
|
token still has at least a length of `min_length`.
|
|
"""
|
|
|
|
|
|
SILENCE = 0
|
|
POSSIBLE_SILENCE = 1
|
|
POSSIBLE_NOISE = 2
|
|
NOISE = 3
|
|
|
|
STRICT_MIN_LENGTH = 2
|
|
DROP_TRAILING_SILENCE = 4
|
|
# alias
|
|
DROP_TAILING_SILENCE = 4
|
|
|
|
def __init__(self, validator,
|
|
min_length, max_length, max_continuous_silence,
|
|
init_min=0, init_max_silence=0,
|
|
mode=0):
|
|
|
|
if not isinstance(validator, DataValidator):
|
|
raise TypeError("'validator' must be an instance of 'DataValidator'")
|
|
|
|
if max_length <= 0:
|
|
raise ValueError("'max_length' must be > 0 (value={0})".format(max_length))
|
|
|
|
if min_length <= 0 or min_length > max_length:
|
|
raise ValueError("'min_length' must be > 0 and <= 'max_length' (value={0})".format(min_length))
|
|
|
|
if max_continuous_silence >= max_length:
|
|
raise ValueError("'max_continuous_silence' must be < 'max_length' (value={0})".format(max_continuous_silence))
|
|
|
|
if init_min >= max_length:
|
|
raise ValueError("'init_min' must be < 'max_length' (value={0})".format(max_continuous_silence))
|
|
|
|
self.validator = validator
|
|
self.min_length = min_length
|
|
self.max_length = max_length
|
|
self.max_continuous_silence = max_continuous_silence
|
|
self.init_min = init_min
|
|
self.init_max_silent = init_max_silence
|
|
|
|
self._mode = None
|
|
self.set_mode(mode)
|
|
self._strict_min_length = (mode & self.STRICT_MIN_LENGTH) != 0
|
|
self._drop_tailing_silence = (mode & self.DROP_TRAILING_SILENCE) != 0
|
|
|
|
self._deliver = None
|
|
self._tokens = None
|
|
self._state = None
|
|
self._data = None
|
|
self._contiguous_token = False
|
|
|
|
self._init_count = 0
|
|
self._silence_length = 0
|
|
self._start_frame = 0
|
|
self._current_frame = 0
|
|
|
|
def set_mode(self, mode):
|
|
"""
|
|
:Parameters:
|
|
|
|
`mode` : *(int)*
|
|
New mode, must be one of:
|
|
|
|
|
|
- `StreamTokenizer.STRICT_MIN_LENGTH`
|
|
|
|
- `StreamTokenizer.DROP_TRAILING_SILENCE`
|
|
|
|
- `StreamTokenizer.STRICT_MIN_LENGTH | StreamTokenizer.DROP_TRAILING_SILENCE`
|
|
|
|
- `0`
|
|
|
|
See `StreamTokenizer.__init__` for more information about the mode.
|
|
"""
|
|
|
|
if not mode in [self.STRICT_MIN_LENGTH, self.DROP_TRAILING_SILENCE,
|
|
self.STRICT_MIN_LENGTH | self.DROP_TRAILING_SILENCE, 0]:
|
|
|
|
raise ValueError("Wrong value for mode")
|
|
|
|
self._mode = mode
|
|
self._strict_min_length = (mode & self.STRICT_MIN_LENGTH) != 0
|
|
self._drop_tailing_silence = (mode & self.DROP_TRAILING_SILENCE) != 0
|
|
|
|
|
|
def get_mode(self):
|
|
"""
|
|
Return the current mode. To check whether a specific mode is activated use
|
|
the bitwise 'and' operator `&`. Example:
|
|
|
|
.. code:: python
|
|
|
|
if mode & self.STRICT_MIN_LENGTH != 0:
|
|
do_something()
|
|
"""
|
|
return self._mode
|
|
|
|
def _reinitialize(self):
|
|
self._contiguous_token = False
|
|
self._data = []
|
|
self._tokens = []
|
|
self._state = self.SILENCE
|
|
self._current_frame = -1
|
|
self._deliver = self._append_token
|
|
|
|
|
|
def tokenize(self, data_source, callback=None):
|
|
"""
|
|
Read data from `data_source`, one frame a time, and process the read frames in
|
|
order to detect sequences of frames that make up valid tokens.
|
|
|
|
:Parameters:
|
|
`data_source` : instance of the :class:`DataSource` class that implements a `read` method.
|
|
'read' should return a slice of signal, i.e. frame (of whatever \
|
|
type as long as it can be processed by validator) and None if \
|
|
there is no more signal.
|
|
|
|
`callback` : an optional 3-argument function.
|
|
If a `callback` function is given, it will be called each time a valid token
|
|
is found.
|
|
|
|
|
|
:Returns:
|
|
A list of tokens if `callback` is None. Each token is tuple with the following elements:
|
|
|
|
.. code python
|
|
|
|
(data, start, end)
|
|
|
|
where `data` is a list of read frames, `start`: index of the first frame in the
|
|
original data and `end` : index of the last frame.
|
|
|
|
"""
|
|
|
|
self._reinitialize()
|
|
|
|
if callback is not None:
|
|
self._deliver = callback
|
|
|
|
while True:
|
|
frame = data_source.read()
|
|
if frame is None:
|
|
break
|
|
self._current_frame += 1
|
|
self._process(frame)
|
|
|
|
self._post_process()
|
|
|
|
if callback is None:
|
|
_ret = self._tokens
|
|
self._tokens = None
|
|
return _ret
|
|
|
|
|
|
def _process(self, frame):
|
|
|
|
frame_is_valid = self.validator.is_valid(frame)
|
|
|
|
if self._state == self.SILENCE:
|
|
|
|
if frame_is_valid:
|
|
# seems we got a valid frame after a silence
|
|
self._init_count = 1
|
|
self._silence_length = 0
|
|
self._start_frame = self._current_frame
|
|
self._data.append(frame)
|
|
|
|
if self._init_count >= self.init_min:
|
|
self._state = self.NOISE
|
|
if len(self._data) >= self.max_length:
|
|
self._process_end_of_detection(True)
|
|
else:
|
|
self._state = self.POSSIBLE_NOISE
|
|
|
|
elif self._state == self.POSSIBLE_NOISE:
|
|
|
|
if frame_is_valid:
|
|
self._silence_length = 0
|
|
self._init_count += 1
|
|
self._data.append(frame)
|
|
if self._init_count >= self.init_min:
|
|
self._state = self.NOISE
|
|
if len(self._data) >= self.max_length:
|
|
self._process_end_of_detection(True)
|
|
|
|
else:
|
|
self._silence_length += 1
|
|
if self._silence_length > self.init_max_silent or \
|
|
len(self._data) + 1 >= self.max_length:
|
|
# either init_max_silent or max_length is reached
|
|
# before _init_count, back to silence
|
|
self._data = []
|
|
self._state = self.SILENCE
|
|
else:
|
|
self._data.append(frame)
|
|
|
|
|
|
elif self._state == self.NOISE:
|
|
|
|
if frame_is_valid:
|
|
self._data.append(frame)
|
|
if len(self._data) >= self.max_length:
|
|
self._process_end_of_detection(True)
|
|
|
|
elif self.max_continuous_silence <= 0 :
|
|
# max token reached at this frame will _deliver if _contiguous_token
|
|
# and not _strict_min_length
|
|
self._process_end_of_detection()
|
|
self._state = self.SILENCE
|
|
|
|
else:
|
|
# this is the first silent frame following a valid one
|
|
# and it is tolerated
|
|
self._silence_length = 1
|
|
self._data.append(frame)
|
|
self._state = self.POSSIBLE_SILENCE
|
|
if len(self._data) == self.max_length:
|
|
self._process_end_of_detection(True)
|
|
# don't reset _silence_length because we still
|
|
# need to know the total number of silent frames
|
|
|
|
|
|
|
|
elif self._state == self.POSSIBLE_SILENCE:
|
|
|
|
if frame_is_valid:
|
|
self._data.append(frame)
|
|
self._silence_length = 0
|
|
self._state = self.NOISE
|
|
if len(self._data) >= self.max_length:
|
|
self._process_end_of_detection(True)
|
|
|
|
else:
|
|
if self._silence_length >= self.max_continuous_silence:
|
|
if self._silence_length < len(self._data):
|
|
# _deliver only gathered frames aren't all silent
|
|
self._process_end_of_detection()
|
|
else:
|
|
self._data = []
|
|
self._state = self.SILENCE
|
|
self._silence_length = 0
|
|
else:
|
|
self._data.append(frame)
|
|
self._silence_length += 1
|
|
if len(self._data) >= self.max_length:
|
|
self._process_end_of_detection(True)
|
|
# don't reset _silence_length because we still
|
|
# need to know the total number of silent frames
|
|
|
|
|
|
def _post_process(self):
|
|
if self._state == self.NOISE or self._state == self.POSSIBLE_SILENCE:
|
|
if len(self._data) > 0 and len(self._data) > self._silence_length:
|
|
self._process_end_of_detection()
|
|
|
|
|
|
def _process_end_of_detection(self, truncated=False):
|
|
|
|
if not truncated and self._drop_tailing_silence and self._silence_length > 0:
|
|
# happens if max_continuous_silence is reached
|
|
# or max_length is reached at a silent frame
|
|
self._data = self._data[0: - self._silence_length]
|
|
|
|
if (len(self._data) >= self.min_length) or \
|
|
(len(self._data) > 0 and \
|
|
not self._strict_min_length and self._contiguous_token):
|
|
|
|
|
|
|
|
_end_frame = self._start_frame + len(self._data) - 1
|
|
self._deliver(self._data, self._start_frame, _end_frame)
|
|
|
|
if truncated:
|
|
# next token (if any) will start at _current_frame + 1
|
|
self._start_frame = self._current_frame + 1
|
|
# remember that it is contiguous with the just delivered one
|
|
self._contiguous_token = True
|
|
else:
|
|
self._contiguous_token = False
|
|
else:
|
|
self._contiguous_token = False
|
|
|
|
self._data = []
|
|
|
|
|
|
|
|
def _append_token(self, data, start, end):
|
|
self._tokens.append((data, start, end))
|