nebula/firewall.go
Wade Simmons 2a4beb41b9
Routine-local conntrack cache (#391)
Previously, every packet we see gets a lock on the conntrack table and updates it. When running with multiple routines, this can cause heavy lock contention and limit our ability for the threads to run independently. This change caches reads from the conntrack table for a very short period of time to reduce this lock contention. This cache will currently default to disabled unless you are running with multiple routines, in which case the default cache delay will be 1 second. This means that entries in the conntrack table may be up to 1 second out of date and remain in a routine local cache for up to 1 second longer than the global table.

Instead of calling time.Now() for every packet, this cache system relies on a tick thread that updates the current cache "version" each tick. Every packet we check if the cache version is out of date, and reset the cache if so.
2021-03-01 19:52:17 -05:00

986 lines
23 KiB
Go

package nebula
import (
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"net"
"reflect"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
)
const (
fwProtoAny = 0 // When we want to handle HOPOPT (0) we can change this, if ever
fwProtoTCP = 6
fwProtoUDP = 17
fwProtoICMP = 1
fwPortAny = 0 // Special value for matching `port: any`
fwPortFragment = -1 // Special value for matching `port: fragment`
)
const tcpACK = 0x10
const tcpFIN = 0x01
type FirewallInterface interface {
AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error
}
type conn struct {
Expires time.Time // Time when this conntrack entry will expire
Sent time.Time // If tcp rtt tracking is enabled this will be when Seq was last set
Seq uint32 // If tcp rtt tracking is enabled this will be the seq we are looking for an ack
// record why the original connection passed the firewall, so we can re-validate
// after ruleset changes. Note, rulesVersion is a uint16 so that these two
// fields pack for free after the uint32 above
incoming bool
rulesVersion uint16
}
// TODO: need conntrack max tracked connections handling
type Firewall struct {
Conntrack *FirewallConntrack
InRules *FirewallTable
OutRules *FirewallTable
//TODO: we should have many more options for TCP, an option for ICMP, and mimic the kernel a bit better
// https://www.kernel.org/doc/Documentation/networking/nf_conntrack-sysctl.txt
TCPTimeout time.Duration //linux: 5 days max
UDPTimeout time.Duration //linux: 180s max
DefaultTimeout time.Duration //linux: 600s
// Used to ensure we don't emit local packets for ips we don't own
localIps *CIDRTree
rules string
rulesVersion uint16
trackTCPRTT bool
metricTCPRTT metrics.Histogram
}
type FirewallConntrack struct {
sync.Mutex
Conns map[FirewallPacket]*conn
TimerWheel *TimerWheel
}
type FirewallTable struct {
TCP firewallPort
UDP firewallPort
ICMP firewallPort
AnyProto firewallPort
}
func newFirewallTable() *FirewallTable {
return &FirewallTable{
TCP: firewallPort{},
UDP: firewallPort{},
ICMP: firewallPort{},
AnyProto: firewallPort{},
}
}
type FirewallCA struct {
Any *FirewallRule
CANames map[string]*FirewallRule
CAShas map[string]*FirewallRule
}
type FirewallRule struct {
// Any makes Hosts, Groups, and CIDR irrelevant
Any bool
Hosts map[string]struct{}
Groups [][]string
CIDR *CIDRTree
}
// Even though ports are uint16, int32 maps are faster for lookup
// Plus we can use `-1` for fragment rules
type firewallPort map[int32]*FirewallCA
type FirewallPacket struct {
LocalIP uint32
RemoteIP uint32
LocalPort uint16
RemotePort uint16
Protocol uint8
Fragment bool
}
func (fp *FirewallPacket) Copy() *FirewallPacket {
return &FirewallPacket{
LocalIP: fp.LocalIP,
RemoteIP: fp.RemoteIP,
LocalPort: fp.LocalPort,
RemotePort: fp.RemotePort,
Protocol: fp.Protocol,
Fragment: fp.Fragment,
}
}
func (fp FirewallPacket) MarshalJSON() ([]byte, error) {
var proto string
switch fp.Protocol {
case fwProtoTCP:
proto = "tcp"
case fwProtoICMP:
proto = "icmp"
case fwProtoUDP:
proto = "udp"
default:
proto = fmt.Sprintf("unknown %v", fp.Protocol)
}
return json.Marshal(m{
"LocalIP": int2ip(fp.LocalIP).String(),
"RemoteIP": int2ip(fp.RemoteIP).String(),
"LocalPort": fp.LocalPort,
"RemotePort": fp.RemotePort,
"Protocol": proto,
"Fragment": fp.Fragment,
})
}
// NewFirewall creates a new Firewall object. A TimerWheel is created for you from the provided timeouts.
func NewFirewall(tcpTimeout, UDPTimeout, defaultTimeout time.Duration, c *cert.NebulaCertificate) *Firewall {
//TODO: error on 0 duration
var min, max time.Duration
if tcpTimeout < UDPTimeout {
min = tcpTimeout
max = UDPTimeout
} else {
min = UDPTimeout
max = tcpTimeout
}
if defaultTimeout < min {
min = defaultTimeout
} else if defaultTimeout > max {
max = defaultTimeout
}
localIps := NewCIDRTree()
for _, ip := range c.Details.Ips {
localIps.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
localIps.AddCIDR(n, struct{}{})
}
return &Firewall{
Conntrack: &FirewallConntrack{
Conns: make(map[FirewallPacket]*conn),
TimerWheel: NewTimerWheel(min, max),
},
InRules: newFirewallTable(),
OutRules: newFirewallTable(),
TCPTimeout: tcpTimeout,
UDPTimeout: UDPTimeout,
DefaultTimeout: defaultTimeout,
localIps: localIps,
metricTCPRTT: metrics.GetOrRegisterHistogram("network.tcp.rtt", nil, metrics.NewExpDecaySample(1028, 0.015)),
}
}
func NewFirewallFromConfig(nc *cert.NebulaCertificate, c *Config) (*Firewall, error) {
fw := NewFirewall(
c.GetDuration("firewall.conntrack.tcp_timeout", time.Minute*12),
c.GetDuration("firewall.conntrack.udp_timeout", time.Minute*3),
c.GetDuration("firewall.conntrack.default_timeout", time.Minute*10),
nc,
//TODO: max_connections
)
err := AddFirewallRulesFromConfig(false, c, fw)
if err != nil {
return nil, err
}
err = AddFirewallRulesFromConfig(true, c, fw)
if err != nil {
return nil, err
}
return fw, nil
}
// AddRule properly creates the in memory rule structure for a firewall table.
func (f *Firewall) AddRule(incoming bool, proto uint8, startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
// Under gomobile, stringing a nil pointer with fmt causes an abort in debug mode for iOS
// https://github.com/golang/go/issues/14131
sIp := ""
if ip != nil {
sIp = ip.String()
}
// We need this rule string because we generate a hash. Removing this will break firewall reload.
ruleString := fmt.Sprintf(
"incoming: %v, proto: %v, startPort: %v, endPort: %v, groups: %v, host: %v, ip: %v, caName: %v, caSha: %s",
incoming, proto, startPort, endPort, groups, host, sIp, caName, caSha,
)
f.rules += ruleString + "\n"
direction := "incoming"
if !incoming {
direction = "outgoing"
}
l.WithField("firewallRule", m{"direction": direction, "proto": proto, "startPort": startPort, "endPort": endPort, "groups": groups, "host": host, "ip": sIp, "caName": caName, "caSha": caSha}).
Info("Firewall rule added")
var (
ft *FirewallTable
fp firewallPort
)
if incoming {
ft = f.InRules
} else {
ft = f.OutRules
}
switch proto {
case fwProtoTCP:
fp = ft.TCP
case fwProtoUDP:
fp = ft.UDP
case fwProtoICMP:
fp = ft.ICMP
case fwProtoAny:
fp = ft.AnyProto
default:
return fmt.Errorf("unknown protocol %v", proto)
}
return fp.addRule(startPort, endPort, groups, host, ip, caName, caSha)
}
// GetRuleHash returns a hash representation of all inbound and outbound rules
func (f *Firewall) GetRuleHash() string {
sum := sha256.Sum256([]byte(f.rules))
return hex.EncodeToString(sum[:])
}
func AddFirewallRulesFromConfig(inbound bool, config *Config, fw FirewallInterface) error {
var table string
if inbound {
table = "firewall.inbound"
} else {
table = "firewall.outbound"
}
r := config.Get(table)
if r == nil {
return nil
}
rs, ok := r.([]interface{})
if !ok {
return fmt.Errorf("%s failed to parse, should be an array of rules", table)
}
for i, t := range rs {
var groups []string
r, err := convertRule(t, table, i)
if err != nil {
return fmt.Errorf("%s rule #%v; %s", table, i, err)
}
if r.Code != "" && r.Port != "" {
return fmt.Errorf("%s rule #%v; only one of port or code should be provided", table, i)
}
if r.Host == "" && len(r.Groups) == 0 && r.Group == "" && r.Cidr == "" && r.CAName == "" && r.CASha == "" {
return fmt.Errorf("%s rule #%v; at least one of host, group, cidr, ca_name, or ca_sha must be provided", table, i)
}
if len(r.Groups) > 0 {
groups = r.Groups
}
if r.Group != "" {
// Check if we have both groups and group provided in the rule config
if len(groups) > 0 {
return fmt.Errorf("%s rule #%v; only one of group or groups should be defined, both provided", table, i)
}
groups = []string{r.Group}
}
var sPort, errPort string
if r.Code != "" {
errPort = "code"
sPort = r.Code
} else {
errPort = "port"
sPort = r.Port
}
startPort, endPort, err := parsePort(sPort)
if err != nil {
return fmt.Errorf("%s rule #%v; %s %s", table, i, errPort, err)
}
var proto uint8
switch r.Proto {
case "any":
proto = fwProtoAny
case "tcp":
proto = fwProtoTCP
case "udp":
proto = fwProtoUDP
case "icmp":
proto = fwProtoICMP
default:
return fmt.Errorf("%s rule #%v; proto was not understood; `%s`", table, i, r.Proto)
}
var cidr *net.IPNet
if r.Cidr != "" {
_, cidr, err = net.ParseCIDR(r.Cidr)
if err != nil {
return fmt.Errorf("%s rule #%v; cidr did not parse; %s", table, i, err)
}
}
err = fw.AddRule(inbound, proto, startPort, endPort, groups, r.Host, cidr, r.CAName, r.CASha)
if err != nil {
return fmt.Errorf("%s rule #%v; `%s`", table, i, err)
}
}
return nil
}
var ErrInvalidRemoteIP = errors.New("remote IP is not in remote certificate subnets")
var ErrInvalidLocalIP = errors.New("local IP is not in list of handled local IPs")
var ErrNoMatchingRule = errors.New("no matching rule in firewall table")
// Drop returns an error if the packet should be dropped, explaining why. It
// returns nil if the packet should not be dropped.
func (f *Firewall) Drop(packet []byte, fp FirewallPacket, incoming bool, h *HostInfo, caPool *cert.NebulaCAPool, localCache ConntrackCache) error {
// Check if we spoke to this tuple, if we did then allow this packet
if f.inConns(packet, fp, incoming, h, caPool, localCache) {
return nil
}
// Make sure remote address matches nebula certificate
if remoteCidr := h.remoteCidr; remoteCidr != nil {
if remoteCidr.Contains(fp.RemoteIP) == nil {
return ErrInvalidRemoteIP
}
} else {
// Simple case: Certificate has one IP and no subnets
if fp.RemoteIP != h.hostId {
return ErrInvalidRemoteIP
}
}
// Make sure we are supposed to be handling this local ip address
if f.localIps.Contains(fp.LocalIP) == nil {
return ErrInvalidLocalIP
}
table := f.OutRules
if incoming {
table = f.InRules
}
// We now know which firewall table to check against
if !table.match(fp, incoming, h.ConnectionState.peerCert, caPool) {
return ErrNoMatchingRule
}
// We always want to conntrack since it is a faster operation
f.addConn(packet, fp, incoming)
return nil
}
// Destroy cleans up any known cyclical references so the object can be free'd my GC. This should be called if a new
// firewall object is created
func (f *Firewall) Destroy() {
//TODO: clean references if/when needed
}
func (f *Firewall) EmitStats() {
conntrack := f.Conntrack
conntrack.Lock()
conntrackCount := len(conntrack.Conns)
conntrack.Unlock()
metrics.GetOrRegisterGauge("firewall.conntrack.count", nil).Update(int64(conntrackCount))
metrics.GetOrRegisterGauge("firewall.rules.version", nil).Update(int64(f.rulesVersion))
}
func (f *Firewall) inConns(packet []byte, fp FirewallPacket, incoming bool, h *HostInfo, caPool *cert.NebulaCAPool, localCache ConntrackCache) bool {
if localCache != nil {
if _, ok := localCache[fp]; ok {
return true
}
}
conntrack := f.Conntrack
conntrack.Lock()
// Purge every time we test
ep, has := conntrack.TimerWheel.Purge()
if has {
f.evict(ep)
}
c, ok := conntrack.Conns[fp]
if !ok {
conntrack.Unlock()
return false
}
if c.rulesVersion != f.rulesVersion {
// This conntrack entry was for an older rule set, validate
// it still passes with the current rule set
table := f.OutRules
if c.incoming {
table = f.InRules
}
// We now know which firewall table to check against
if !table.match(fp, c.incoming, h.ConnectionState.peerCert, caPool) {
if l.Level >= logrus.DebugLevel {
h.logger().
WithField("fwPacket", fp).
WithField("incoming", c.incoming).
WithField("rulesVersion", f.rulesVersion).
WithField("oldRulesVersion", c.rulesVersion).
Debugln("dropping old conntrack entry, does not match new ruleset")
}
delete(conntrack.Conns, fp)
conntrack.Unlock()
return false
}
if l.Level >= logrus.DebugLevel {
h.logger().
WithField("fwPacket", fp).
WithField("incoming", c.incoming).
WithField("rulesVersion", f.rulesVersion).
WithField("oldRulesVersion", c.rulesVersion).
Debugln("keeping old conntrack entry, does match new ruleset")
}
c.rulesVersion = f.rulesVersion
}
switch fp.Protocol {
case fwProtoTCP:
c.Expires = time.Now().Add(f.TCPTimeout)
if incoming {
f.checkTCPRTT(c, packet)
} else {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
c.Expires = time.Now().Add(f.UDPTimeout)
default:
c.Expires = time.Now().Add(f.DefaultTimeout)
}
conntrack.Unlock()
if localCache != nil {
localCache[fp] = struct{}{}
}
return true
}
func (f *Firewall) addConn(packet []byte, fp FirewallPacket, incoming bool) {
var timeout time.Duration
c := &conn{}
switch fp.Protocol {
case fwProtoTCP:
timeout = f.TCPTimeout
if !incoming {
setTCPRTTTracking(c, packet)
}
case fwProtoUDP:
timeout = f.UDPTimeout
default:
timeout = f.DefaultTimeout
}
conntrack := f.Conntrack
conntrack.Lock()
if _, ok := conntrack.Conns[fp]; !ok {
conntrack.TimerWheel.Add(fp, timeout)
}
// Record which rulesVersion allowed this connection, so we can retest after
// firewall reload
c.incoming = incoming
c.rulesVersion = f.rulesVersion
c.Expires = time.Now().Add(timeout)
conntrack.Conns[fp] = c
conntrack.Unlock()
}
// Evict checks if a conntrack entry has expired, if so it is removed, if not it is re-added to the wheel
// Caller must own the connMutex lock!
func (f *Firewall) evict(p FirewallPacket) {
//TODO: report a stat if the tcp rtt tracking was never resolved?
// Are we still tracking this conn?
conntrack := f.Conntrack
t, ok := conntrack.Conns[p]
if !ok {
return
}
newT := t.Expires.Sub(time.Now())
// Timeout is in the future, re-add the timer
if newT > 0 {
conntrack.TimerWheel.Add(p, newT)
return
}
// This conn is done
delete(conntrack.Conns, p)
}
func (ft *FirewallTable) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if ft.AnyProto.match(p, incoming, c, caPool) {
return true
}
switch p.Protocol {
case fwProtoTCP:
if ft.TCP.match(p, incoming, c, caPool) {
return true
}
case fwProtoUDP:
if ft.UDP.match(p, incoming, c, caPool) {
return true
}
case fwProtoICMP:
if ft.ICMP.match(p, incoming, c, caPool) {
return true
}
}
return false
}
func (fp firewallPort) addRule(startPort int32, endPort int32, groups []string, host string, ip *net.IPNet, caName string, caSha string) error {
if startPort > endPort {
return fmt.Errorf("start port was lower than end port")
}
for i := startPort; i <= endPort; i++ {
if _, ok := fp[i]; !ok {
fp[i] = &FirewallCA{
CANames: make(map[string]*FirewallRule),
CAShas: make(map[string]*FirewallRule),
}
}
if err := fp[i].addRule(groups, host, ip, caName, caSha); err != nil {
return err
}
}
return nil
}
func (fp firewallPort) match(p FirewallPacket, incoming bool, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
// We don't have any allowed ports, bail
if fp == nil {
return false
}
var port int32
if p.Fragment {
port = fwPortFragment
} else if incoming {
port = int32(p.LocalPort)
} else {
port = int32(p.RemotePort)
}
if fp[port].match(p, c, caPool) {
return true
}
return fp[fwPortAny].match(p, c, caPool)
}
func (fc *FirewallCA) addRule(groups []string, host string, ip *net.IPNet, caName, caSha string) error {
fr := func() *FirewallRule {
return &FirewallRule{
Hosts: make(map[string]struct{}),
Groups: make([][]string, 0),
CIDR: NewCIDRTree(),
}
}
if caSha == "" && caName == "" {
if fc.Any == nil {
fc.Any = fr()
}
return fc.Any.addRule(groups, host, ip)
}
if caSha != "" {
if _, ok := fc.CAShas[caSha]; !ok {
fc.CAShas[caSha] = fr()
}
err := fc.CAShas[caSha].addRule(groups, host, ip)
if err != nil {
return err
}
}
if caName != "" {
if _, ok := fc.CANames[caName]; !ok {
fc.CANames[caName] = fr()
}
err := fc.CANames[caName].addRule(groups, host, ip)
if err != nil {
return err
}
}
return nil
}
func (fc *FirewallCA) match(p FirewallPacket, c *cert.NebulaCertificate, caPool *cert.NebulaCAPool) bool {
if fc == nil {
return false
}
if fc.Any.match(p, c) {
return true
}
if t, ok := fc.CAShas[c.Details.Issuer]; ok {
if t.match(p, c) {
return true
}
}
s, err := caPool.GetCAForCert(c)
if err != nil {
return false
}
return fc.CANames[s.Details.Name].match(p, c)
}
func (fr *FirewallRule) addRule(groups []string, host string, ip *net.IPNet) error {
if fr.Any {
return nil
}
if fr.isAny(groups, host, ip) {
fr.Any = true
// If it's any we need to wipe out any pre-existing rules to save on memory
fr.Groups = make([][]string, 0)
fr.Hosts = make(map[string]struct{})
fr.CIDR = NewCIDRTree()
} else {
if len(groups) > 0 {
fr.Groups = append(fr.Groups, groups)
}
if host != "" {
fr.Hosts[host] = struct{}{}
}
if ip != nil {
fr.CIDR.AddCIDR(ip, struct{}{})
}
}
return nil
}
func (fr *FirewallRule) isAny(groups []string, host string, ip *net.IPNet) bool {
if len(groups) == 0 && host == "" && ip == nil {
return true
}
for _, group := range groups {
if group == "any" {
return true
}
}
if host == "any" {
return true
}
if ip != nil && ip.Contains(net.IPv4(0, 0, 0, 0)) {
return true
}
return false
}
func (fr *FirewallRule) match(p FirewallPacket, c *cert.NebulaCertificate) bool {
if fr == nil {
return false
}
// Shortcut path for if groups, hosts, or cidr contained an `any`
if fr.Any {
return true
}
// Need any of group, host, or cidr to match
for _, sg := range fr.Groups {
found := false
for _, g := range sg {
if _, ok := c.Details.InvertedGroups[g]; !ok {
found = false
break
}
found = true
}
if found {
return true
}
}
if fr.Hosts != nil {
if _, ok := fr.Hosts[c.Details.Name]; ok {
return true
}
}
if fr.CIDR != nil && fr.CIDR.Contains(p.RemoteIP) != nil {
return true
}
// No host, group, or cidr matched, bye bye
return false
}
type rule struct {
Port string
Code string
Proto string
Host string
Group string
Groups []string
Cidr string
CAName string
CASha string
}
func convertRule(p interface{}, table string, i int) (rule, error) {
r := rule{}
m, ok := p.(map[interface{}]interface{})
if !ok {
return r, errors.New("could not parse rule")
}
toString := func(k string, m map[interface{}]interface{}) string {
v, ok := m[k]
if !ok {
return ""
}
return fmt.Sprintf("%v", v)
}
r.Port = toString("port", m)
r.Code = toString("code", m)
r.Proto = toString("proto", m)
r.Host = toString("host", m)
r.Cidr = toString("cidr", m)
r.CAName = toString("ca_name", m)
r.CASha = toString("ca_sha", m)
// Make sure group isn't an array
if v, ok := m["group"].([]interface{}); ok {
if len(v) > 1 {
return r, errors.New("group should contain a single value, an array with more than one entry was provided")
}
l.Warnf("%s rule #%v; group was an array with a single value, converting to simple value", table, i)
m["group"] = v[0]
}
r.Group = toString("group", m)
if rg, ok := m["groups"]; ok {
switch reflect.TypeOf(rg).Kind() {
case reflect.Slice:
v := reflect.ValueOf(rg)
r.Groups = make([]string, v.Len())
for i := 0; i < v.Len(); i++ {
r.Groups[i] = v.Index(i).Interface().(string)
}
case reflect.String:
r.Groups = []string{rg.(string)}
default:
r.Groups = []string{fmt.Sprintf("%v", rg)}
}
}
return r, nil
}
func parsePort(s string) (startPort, endPort int32, err error) {
if s == "any" {
startPort = fwPortAny
endPort = fwPortAny
} else if s == "fragment" {
startPort = fwPortFragment
endPort = fwPortFragment
} else if strings.Contains(s, `-`) {
sPorts := strings.SplitN(s, `-`, 2)
sPorts[0] = strings.Trim(sPorts[0], " ")
sPorts[1] = strings.Trim(sPorts[1], " ")
if len(sPorts) != 2 || sPorts[0] == "" || sPorts[1] == "" {
return 0, 0, fmt.Errorf("appears to be a range but could not be parsed; `%s`", s)
}
rStartPort, err := strconv.Atoi(sPorts[0])
if err != nil {
return 0, 0, fmt.Errorf("beginning range was not a number; `%s`", sPorts[0])
}
rEndPort, err := strconv.Atoi(sPorts[1])
if err != nil {
return 0, 0, fmt.Errorf("ending range was not a number; `%s`", sPorts[1])
}
startPort = int32(rStartPort)
endPort = int32(rEndPort)
if startPort == fwPortAny {
endPort = fwPortAny
}
} else {
rPort, err := strconv.Atoi(s)
if err != nil {
return 0, 0, fmt.Errorf("was not a number; `%s`", s)
}
startPort = int32(rPort)
endPort = startPort
}
return
}
//TODO: write tests for these
func setTCPRTTTracking(c *conn, p []byte) {
if c.Seq != 0 {
return
}
ihl := int(p[0]&0x0f) << 2
// Don't track FIN packets
if p[ihl+13]&tcpFIN != 0 {
return
}
c.Seq = binary.BigEndian.Uint32(p[ihl+4 : ihl+8])
c.Sent = time.Now()
}
func (f *Firewall) checkTCPRTT(c *conn, p []byte) bool {
if c.Seq == 0 {
return false
}
ihl := int(p[0]&0x0f) << 2
if p[ihl+13]&tcpACK == 0 {
return false
}
// Deal with wrap around, signed int cuts the ack window in half
// 0 is a bad ack, no data acknowledged
// positive number is a bad ack, ack is over half the window away
if int32(c.Seq-binary.BigEndian.Uint32(p[ihl+8:ihl+12])) >= 0 {
return false
}
f.metricTCPRTT.Update(time.Since(c.Sent).Nanoseconds())
c.Seq = 0
return true
}
// ConntrackCache is used as a local routine cache to know if a given flow
// has been seen in the conntrack table.
type ConntrackCache map[FirewallPacket]struct{}
type ConntrackCacheTicker struct {
cacheV uint64
cacheTick uint64
cache ConntrackCache
}
func NewConntrackCacheTicker(d time.Duration) *ConntrackCacheTicker {
if d == 0 {
return nil
}
c := &ConntrackCacheTicker{
cache: ConntrackCache{},
}
go c.tick(d)
return c
}
func (c *ConntrackCacheTicker) tick(d time.Duration) {
for {
time.Sleep(d)
atomic.AddUint64(&c.cacheTick, 1)
}
}
// Get checks if the cache ticker has moved to the next version before returning
// the map. If it has moved, we reset the map.
func (c *ConntrackCacheTicker) Get() ConntrackCache {
if c == nil {
return nil
}
if tick := atomic.LoadUint64(&c.cacheTick); tick != c.cacheV {
c.cacheV = tick
if ll := len(c.cache); ll > 0 {
if l.GetLevel() == logrus.DebugLevel {
l.WithField("len", ll).Debug("resetting conntrack cache")
}
c.cache = make(ConntrackCache, ll)
}
}
return c.cache
}