// Depends on rsa.js and jsbn2.js // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d,n) { var b = d.toByteArray(); var i = 0; while(i < b.length && b[i] == 0) ++i; if(b.length-i != n-1 || b[i] != 2) return null; ++i; while(b[i] != 0) if(++i >= b.length) return null; var ret = ""; while(++i < b.length) { var c = b[i] & 255; if(c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i+1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i+1] & 63) << 6) | (b[i+2] & 63)); i += 2; } } return ret; } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N,E,D) { if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); this.d = parseBigInt(D,16); } else console.error("Invalid RSA private key"); } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N,E,D,P,Q,DP,DQ,C) { if(N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N,16); this.e = parseInt(E,16); this.d = parseBigInt(D,16); this.p = parseBigInt(P,16); this.q = parseBigInt(Q,16); this.dmp1 = parseBigInt(DP,16); this.dmq1 = parseBigInt(DQ,16); this.coeff = parseBigInt(C,16); } else console.error("Invalid RSA private key"); } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B,E) { var rng = new SecureRandom(); var qs = B>>1; this.e = parseInt(E,16); var ee = new BigInteger(E,16); for(;;) { for(;;) { this.p = new BigInteger(B-qs,1,rng); if(this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; } for(;;) { this.q = new BigInteger(qs,1,rng); if(this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; } if(this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); var q1 = this.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if(phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); this.d = ee.modInverse(phi); this.dmp1 = this.d.mod(p1); this.dmq1 = this.d.mod(q1); this.coeff = this.q.modInverse(this.p); break; } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if(this.p == null || this.q == null) return x.modPow(this.d, this.n); // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); var xq = x.mod(this.q).modPow(this.dmq1, this.q); while(xp.compareTo(xq) < 0) xp = xp.add(this.p); return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSADecrypt(ctext) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if(m == null) return null; return pkcs1unpad2(m, (this.n.bitLength()+7)>>3); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is a Base64-encoded string and the output is a plain string. //function RSAB64Decrypt(ctext) { // var h = b64tohex(ctext); // if(h) return this.decrypt(h); else return null; //} // protected RSAKey.prototype.doPrivate = RSADoPrivate; // public RSAKey.prototype.setPrivate = RSASetPrivate; RSAKey.prototype.setPrivateEx = RSASetPrivateEx; RSAKey.prototype.generate = RSAGenerate; RSAKey.prototype.decrypt = RSADecrypt; //RSAKey.prototype.b64_decrypt = RSAB64Decrypt;