proxmark3/armsrc/iso15693.c
pwpiwi 8c6cca0ba1
Fix hf 15 sim (#696)
* added ISO15693 coding for tag messages (CodeIso15693AsTag())
* added ISO15693 decoding for reader commands (Handle15693SampleFromReader())
* send tag inventory response in either high or low speed
* some refactoring and formatting
2018-10-23 08:22:13 +02:00

1635 lines
46 KiB
C

//-----------------------------------------------------------------------------
// Jonathan Westhues, split Nov 2006
// Modified by Greg Jones, Jan 2009
// Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011
// Modified by piwi, Oct 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 15693. This includes both the reader software and
// the `fake tag' modes.
//-----------------------------------------------------------------------------
// The ISO 15693 describes two transmission modes from reader to tag, and four
// transmission modes from tag to reader. As of Oct 2018 this code supports
// both reader modes and the high speed variant with one subcarrier from card to reader.
// As long as the card fully support ISO 15693 this is no problem, since the
// reader chooses both data rates, but some non-standard tags do not.
// For card simulation, the code supports both high and low speed modes with one subcarrier.
//
// VCD (reader) -> VICC (tag)
// 1 out of 256:
// data rate: 1,66 kbit/s (fc/8192)
// used for long range
// 1 out of 4:
// data rate: 26,48 kbit/s (fc/512)
// used for short range, high speed
//
// VICC (tag) -> VCD (reader)
// Modulation:
// ASK / one subcarrier (423,75 khz)
// FSK / two subcarriers (423,75 khz && 484,28 khz)
// Data Rates / Modes:
// low ASK: 6,62 kbit/s
// low FSK: 6.67 kbit/s
// high ASK: 26,48 kbit/s
// high FSK: 26,69 kbit/s
//-----------------------------------------------------------------------------
// Random Remarks:
// *) UID is always used "transmission order" (LSB), which is reverse to display order
// TODO / BUGS / ISSUES:
// *) signal decoding is unable to detect collisions.
// *) add anti-collision support for inventory-commands
// *) read security status of a block
// *) sniffing and simulation do not support two subcarrier modes.
// *) remove or refactor code under "depricated"
// *) document all the functions
#include "proxmark3.h"
#include "util.h"
#include "apps.h"
#include "string.h"
#include "iso15693tools.h"
#include "protocols.h"
#include "cmd.h"
#define arraylen(x) (sizeof(x)/sizeof((x)[0]))
static int DEBUG = 0;
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 2 - Air Interface
// This section basicly contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
#define FrameSOF Iso15693FrameSOF
#define Logic0 Iso15693Logic0
#define Logic1 Iso15693Logic1
#define FrameEOF Iso15693FrameEOF
#define Crc(data,datalen) Iso15693Crc(data,datalen)
#define AddCrc(data,datalen) Iso15693AddCrc(data,datalen)
#define sprintUID(target,uid) Iso15693sprintUID(target,uid)
// approximate amplitude=sqrt(ci^2+cq^2) by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|)
#define AMPLITUDE(ci, cq) (MAX(ABS(ci), ABS(cq)) + MIN(ABS(ci), ABS(cq))/2)
// buffers
#define ISO15693_DMA_BUFFER_SIZE 128
#define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet
#define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet
// timing. Delays in SSP_CLK ticks.
#define DELAY_READER_TO_ARM 8
#define DELAY_ARM_TO_READER 1
#define DELAY_ISO15693_VCD_TO_VICC 132 // 132/423.75kHz = 311.5us from end of EOF to start of tag response
// ---------------------------
// Signal Processing
// ---------------------------
// prepare data using "1 out of 4" code for later transmission
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
static void CodeIso15693AsReader(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of4
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
for(i = 0; i < n; i++) {
for(j = 0; j < 8; j += 2) {
int these = (cmd[i] >> j) & 3;
switch(these) {
case 0:
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 1:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 2:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
break;
case 3:
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
break;
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// Fill remainder of last byte with 1
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
}
// encode data using "1 out of 256" scheme
// data rate is 1,66 kbit/s (fc/8192)
// is designed for more robust communication over longer distances
static void CodeIso15693AsReader256(uint8_t *cmd, int n)
{
int i, j;
ToSendReset();
// Give it a bit of slack at the beginning
for(i = 0; i < 24; i++) {
ToSendStuffBit(1);
}
// SOF for 1of256
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
for(i = 0; i < n; i++) {
for (j = 0; j<=255; j++) {
if (cmd[i]==j) {
ToSendStuffBit(1);
ToSendStuffBit(0);
} else {
ToSendStuffBit(1);
ToSendStuffBit(1);
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// Fill remainder of last byte with 1
for(i = 0; i < 4; i++) {
ToSendStuffBit(1);
}
ToSendMax++;
}
static void CodeIso15693AsTag(uint8_t *cmd, int n)
{
ToSendReset();
// SOF
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
// data
for(int i = 0; i < n; i++) {
for(int j = 0; j < 8; j++) {
if ((cmd[i] >> j) & 0x01) {
ToSendStuffBit(0);
ToSendStuffBit(1);
} else {
ToSendStuffBit(1);
ToSendStuffBit(0);
}
}
}
// EOF
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(1);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendMax++;
}
// Transmit the command (to the tag) that was placed in cmd[].
static void TransmitTo15693Tag(const uint8_t *cmd, int len)
{
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
LED_B_ON();
for(int c = 0; c < len; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ~cmd[c];
c++;
}
WDT_HIT();
}
LED_B_OFF();
}
//-----------------------------------------------------------------------------
// Transmit the tag response (to the reader) that was placed in cmd[].
//-----------------------------------------------------------------------------
static void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t start_time, bool slow)
{
// don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk()
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
uint8_t shift_delay = start_time & 0x00000007;
uint8_t bitmask = 0x00;
for (int i = 0; i < shift_delay; i++) {
bitmask |= (0x01 << i);
}
while (GetCountSspClk() < (start_time & 0xfffffff8)) ;
AT91C_BASE_SSC->SSC_THR = 0x00; // clear TXRDY
LED_C_ON();
uint8_t bits_to_shift = 0x00;
for(size_t c = 0; c <= len; c++) {
uint8_t bits_to_send = bits_to_shift << (8 - shift_delay) | (c==len?0x00:cmd[c]) >> shift_delay;
bits_to_shift = cmd[c] & bitmask;
for (int i = 7; i >= 0; i--) {
for (int j = 0; j < (slow?4:1); ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
if (bits_to_send >> i & 0x01) {
AT91C_BASE_SSC->SSC_THR = 0xff;
} else {
AT91C_BASE_SSC->SSC_THR = 0x00;
}
j++;
}
WDT_HIT();
}
}
}
LED_C_OFF();
}
//=============================================================================
// An ISO 15693 decoder for tag responses (one subcarrier only).
// Uses cross correlation to identify the SOF, each bit, and EOF.
// This function is called 8 times per bit (every 2 subcarrier cycles).
// Subcarrier frequency fs is 424kHz, 1/fs = 2,36us,
// i.e. function is called every 4,72us
// LED handling:
// LED C -> ON once we have received the SOF and are expecting the rest.
// LED C -> OFF once we have received EOF or are unsynced
//
// Returns: true if we received a EOF
// false if we are still waiting for some more
//=============================================================================
#define SUBCARRIER_DETECT_THRESHOLD 2
#define SOF_CORRELATOR_LEN (1<<5)
typedef struct DecodeTag {
enum {
STATE_TAG_UNSYNCD,
STATE_TAG_AWAIT_SOF_1,
STATE_TAG_AWAIT_SOF_2,
STATE_TAG_RECEIVING_DATA,
STATE_TAG_AWAIT_EOF
} state;
int bitCount;
int posCount;
enum {
LOGIC0,
LOGIC1,
SOF_PART1,
SOF_PART2
} lastBit;
uint16_t shiftReg;
uint8_t *output;
int len;
int sum1, sum2;
uint8_t SOF_low;
uint8_t SOF_high;
uint8_t SOF_last;
int32_t SOF_corr;
int32_t SOF_corr_prev;
uint8_t SOF_correlator[SOF_CORRELATOR_LEN];
} DecodeTag_t;
static int Handle15693SamplesFromTag(int8_t ci, int8_t cq, DecodeTag_t *DecodeTag)
{
switch(DecodeTag->state) {
case STATE_TAG_UNSYNCD:
// initialize SOF correlator. We are looking for 12 samples low and 12 samples high.
DecodeTag->SOF_low = 0;
DecodeTag->SOF_high = 12;
DecodeTag->SOF_last = 23;
memset(DecodeTag->SOF_correlator, 0x00, DecodeTag->SOF_last + 1);
DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
DecodeTag->SOF_corr = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
// initialize Decoder
DecodeTag->posCount = 0;
DecodeTag->bitCount = 0;
DecodeTag->len = 0;
DecodeTag->state = STATE_TAG_AWAIT_SOF_1;
break;
case STATE_TAG_AWAIT_SOF_1:
// calculate the correlation in real time. Look at differences only.
DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
DecodeTag->SOF_last++;
DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
// if correlation increases for 10 consecutive samples, we are close to maximum correlation
if (DecodeTag->SOF_corr > DecodeTag->SOF_corr_prev + SUBCARRIER_DETECT_THRESHOLD) {
DecodeTag->posCount++;
} else {
DecodeTag->posCount = 0;
}
if (DecodeTag->posCount == 10) { // correlation increased 10 times
DecodeTag->state = STATE_TAG_AWAIT_SOF_2;
}
DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
break;
case STATE_TAG_AWAIT_SOF_2:
// calculate the correlation in real time. Look at differences only.
DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_low++];
DecodeTag->SOF_corr -= 2*DecodeTag->SOF_correlator[DecodeTag->SOF_high++];
DecodeTag->SOF_last++;
DecodeTag->SOF_low &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_high &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_last &= (SOF_CORRELATOR_LEN-1);
DecodeTag->SOF_correlator[DecodeTag->SOF_last] = AMPLITUDE(ci,cq);
DecodeTag->SOF_corr += DecodeTag->SOF_correlator[DecodeTag->SOF_last];
if (DecodeTag->SOF_corr >= DecodeTag->SOF_corr_prev) { // we are looking for the maximum correlation
DecodeTag->SOF_corr_prev = DecodeTag->SOF_corr;
} else {
DecodeTag->lastBit = SOF_PART1; // detected 1st part of SOF
DecodeTag->sum1 = DecodeTag->SOF_correlator[DecodeTag->SOF_last];
DecodeTag->sum2 = 0;
DecodeTag->posCount = 2;
DecodeTag->state = STATE_TAG_RECEIVING_DATA;
LED_C_ON();
}
break;
case STATE_TAG_RECEIVING_DATA:
if (DecodeTag->posCount == 1) {
DecodeTag->sum1 = 0;
DecodeTag->sum2 = 0;
}
if (DecodeTag->posCount <= 4) {
DecodeTag->sum1 += AMPLITUDE(ci, cq);
} else {
DecodeTag->sum2 += AMPLITUDE(ci, cq);
}
if (DecodeTag->posCount == 8) {
int16_t corr_1 = (DecodeTag->sum2 - DecodeTag->sum1) / 4;
int16_t corr_0 = (DecodeTag->sum1 - DecodeTag->sum2) / 4;
int16_t corr_EOF = (DecodeTag->sum1 + DecodeTag->sum2) / 8;
if (corr_EOF > corr_0 && corr_EOF > corr_1) {
DecodeTag->state = STATE_TAG_AWAIT_EOF;
} else if (corr_1 > corr_0) {
// logic 1
if (DecodeTag->lastBit == SOF_PART1) { // still part of SOF
DecodeTag->lastBit = SOF_PART2;
} else {
DecodeTag->lastBit = LOGIC1;
DecodeTag->shiftReg >>= 1;
DecodeTag->shiftReg |= 0x80;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
} else {
// logic 0
if (DecodeTag->lastBit == SOF_PART1) { // incomplete SOF
DecodeTag->state = STATE_TAG_UNSYNCD;
LED_C_OFF();
} else {
DecodeTag->lastBit = LOGIC0;
DecodeTag->shiftReg >>= 1;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len] = DecodeTag->shiftReg;
DecodeTag->len++;
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
}
DecodeTag->posCount = 0;
}
DecodeTag->posCount++;
break;
case STATE_TAG_AWAIT_EOF:
if (DecodeTag->lastBit == LOGIC0) { // this was already part of EOF
LED_C_OFF();
return true;
} else {
DecodeTag->state = STATE_TAG_UNSYNCD;
LED_C_OFF();
}
break;
default:
DecodeTag->state = STATE_TAG_UNSYNCD;
LED_C_OFF();
break;
}
return false;
}
static void DecodeTagInit(DecodeTag_t *DecodeTag, uint8_t *data)
{
DecodeTag->output = data;
DecodeTag->state = STATE_TAG_UNSYNCD;
}
/*
* Receive and decode the tag response, also log to tracebuffer
*/
static int GetIso15693AnswerFromTag(uint8_t* response, int timeout)
{
int maxBehindBy = 0;
int lastRxCounter, samples = 0;
int8_t ci, cq;
bool gotFrame = false;
uint16_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the Decoder data structure
DecodeTag_t DecodeTag;
DecodeTagInit(&DecodeTag, response);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
// And put the FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
FpgaSetupSscDma((uint8_t*) dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint16_t *upTo = dmaBuf;
lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
for(;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
}
if (behindBy < 1) continue;
ci = (int8_t)(*upTo >> 8);
cq = (int8_t)(*upTo & 0xff);
upTo++;
lastRxCounter--;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
samples++;
if (Handle15693SamplesFromTag(ci, cq, &DecodeTag)) {
gotFrame = true;
break;
}
if(samples > timeout && DecodeTag.state < STATE_TAG_RECEIVING_DATA) {
DecodeTag.len = 0;
break;
}
}
FpgaDisableSscDma();
if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
maxBehindBy, samples, gotFrame, DecodeTag.state, DecodeTag.len, DecodeTag.bitCount, DecodeTag.posCount);
if (tracing && DecodeTag.len > 0) {
LogTrace(DecodeTag.output, DecodeTag.len, 0, 0, NULL, false);
}
return DecodeTag.len;
}
//=============================================================================
// An ISO15693 decoder for reader commands.
//
// This function is called 4 times per bit (every 2 subcarrier cycles).
// Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
// LED handling:
// LED B -> ON once we have received the SOF and are expecting the rest.
// LED B -> OFF once we have received EOF or are in error state or unsynced
//
// Returns: true if we received a EOF
// false if we are still waiting for some more
//=============================================================================
typedef struct DecodeReader {
enum {
STATE_READER_UNSYNCD,
STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF,
STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF,
STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4,
STATE_READER_RECEIVE_DATA_1_OUT_OF_4,
STATE_READER_RECEIVE_DATA_1_OUT_OF_256
} state;
enum {
CODING_1_OUT_OF_4,
CODING_1_OUT_OF_256
} Coding;
uint8_t shiftReg;
uint8_t bitCount;
int byteCount;
int byteCountMax;
int posCount;
int sum1, sum2;
uint8_t *output;
} DecodeReader_t;
static int Handle15693SampleFromReader(uint8_t bit, DecodeReader_t* DecodeReader)
{
switch(DecodeReader->state) {
case STATE_READER_UNSYNCD:
if(!bit) {
// we went low, so this could be the beginning of a SOF
DecodeReader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF;
DecodeReader->posCount = 1;
}
break;
case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF:
DecodeReader->posCount++;
if(bit) { // detected rising edge
if(DecodeReader->posCount < 4) { // rising edge too early (nominally expected at 5)
DecodeReader->state = STATE_READER_UNSYNCD;
} else { // SOF
DecodeReader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF;
}
} else {
if(DecodeReader->posCount > 5) { // stayed low for too long
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
// do nothing, keep waiting
}
}
break;
case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF:
DecodeReader->posCount++;
if(!bit) { // detected a falling edge
if (DecodeReader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
DecodeReader->state = STATE_READER_UNSYNCD;
} else if (DecodeReader->posCount < 23) { // SOF for 1 out of 4 coding
DecodeReader->Coding = CODING_1_OUT_OF_4;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
} else if (DecodeReader->posCount < 28) { // falling edge too early (nominally expected at 29 latest)
DecodeReader->state = STATE_READER_UNSYNCD;
} else { // SOF for 1 out of 4 coding
DecodeReader->Coding = CODING_1_OUT_OF_256;
DecodeReader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF;
}
} else {
if(DecodeReader->posCount > 29) { // stayed high for too long
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
// do nothing, keep waiting
}
}
break;
case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF:
DecodeReader->posCount++;
if (bit) { // detected rising edge
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount < 32) { // rising edge too early (nominally expected at 33)
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
DecodeReader->byteCount = 0;
DecodeReader->sum1 = 1;
DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256;
LED_B_ON();
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount < 24) { // rising edge too early (nominally expected at 25)
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
DecodeReader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4;
}
}
} else {
if (DecodeReader->Coding == CODING_1_OUT_OF_256) {
if (DecodeReader->posCount > 34) { // signal stayed low for too long
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
// do nothing, keep waiting
}
} else { // CODING_1_OUT_OF_4
if (DecodeReader->posCount > 26) { // signal stayed low for too long
DecodeReader->state = STATE_READER_UNSYNCD;
} else {
// do nothing, keep waiting
}
}
}
break;
case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4:
DecodeReader->posCount++;
if (bit) {
if (DecodeReader->posCount == 33) {
DecodeReader->posCount = 1;
DecodeReader->bitCount = 0;
DecodeReader->byteCount = 0;
DecodeReader->sum1 = 1;
DecodeReader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4;
LED_B_ON();
} else {
// do nothing, keep waiting
}
} else { // unexpected falling edge
DecodeReader->state = STATE_READER_UNSYNCD;
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_4:
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
} else if (DecodeReader->posCount <= 4) {
DecodeReader->sum1 += bit;
} else if (DecodeReader->posCount == 5) {
DecodeReader->sum2 = bit;
} else {
DecodeReader->sum2 += bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
if (corr01 > corr11 && corr01 > corr10) { // EOF
LED_B_OFF(); // Finished receiving
DecodeReader->state = STATE_READER_UNSYNCD;
if (DecodeReader->byteCount != 0) {
return true;
}
}
if (corr10 > corr11) { // detected a 2bit position
DecodeReader->shiftReg >>= 2;
DecodeReader->shiftReg |= (DecodeReader->bitCount << 6);
}
if (DecodeReader->bitCount == 15) { // we have a full byte
DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
// buffer overflow, give up
LED_B_OFF();
DecodeReader->state = STATE_READER_UNSYNCD;
}
DecodeReader->bitCount = 0;
} else {
DecodeReader->bitCount++;
}
}
break;
case STATE_READER_RECEIVE_DATA_1_OUT_OF_256:
DecodeReader->posCount++;
if (DecodeReader->posCount == 1) {
DecodeReader->sum1 = bit;
} else if (DecodeReader->posCount <= 4) {
DecodeReader->sum1 += bit;
} else if (DecodeReader->posCount == 5) {
DecodeReader->sum2 = bit;
} else {
DecodeReader->sum2 += bit;
}
if (DecodeReader->posCount == 8) {
DecodeReader->posCount = 0;
int corr10 = DecodeReader->sum1 - DecodeReader->sum2;
int corr01 = DecodeReader->sum2 - DecodeReader->sum1;
int corr11 = (DecodeReader->sum1 + DecodeReader->sum2) / 2;
if (corr01 > corr11 && corr01 > corr10) { // EOF
LED_B_OFF(); // Finished receiving
DecodeReader->state = STATE_READER_UNSYNCD;
if (DecodeReader->byteCount != 0) {
return true;
}
}
if (corr10 > corr11) { // detected the bit position
DecodeReader->shiftReg = DecodeReader->bitCount;
}
if (DecodeReader->bitCount == 255) { // we have a full byte
DecodeReader->output[DecodeReader->byteCount++] = DecodeReader->shiftReg;
if (DecodeReader->byteCount > DecodeReader->byteCountMax) {
// buffer overflow, give up
LED_B_OFF();
DecodeReader->state = STATE_READER_UNSYNCD;
}
}
DecodeReader->bitCount++;
}
break;
default:
LED_B_OFF();
DecodeReader->state = STATE_READER_UNSYNCD;
break;
}
return false;
}
static void DecodeReaderInit(uint8_t *data, uint16_t max_len, DecodeReader_t* DecodeReader)
{
DecodeReader->output = data;
DecodeReader->byteCountMax = max_len;
DecodeReader->state = STATE_READER_UNSYNCD;
DecodeReader->byteCount = 0;
DecodeReader->bitCount = 0;
DecodeReader->shiftReg = 0;
}
//-----------------------------------------------------------------------------
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// spinning, waiting for a well-framed command, until either we get one
// (returns true) or someone presses the pushbutton on the board (false).
//
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
static int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time)
{
int maxBehindBy = 0;
int lastRxCounter, samples = 0;
bool gotFrame = false;
uint8_t b;
uint8_t dmaBuf[ISO15693_DMA_BUFFER_SIZE];
// the decoder data structure
DecodeReader_t DecodeReader;
DecodeReaderInit(received, max_len, &DecodeReader);
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
// clear receive register and wait for next transfer
uint32_t temp = AT91C_BASE_SSC->SSC_RHR;
(void) temp;
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ;
uint32_t bit_time = GetCountSspClk() & 0xfffffff8;
// Setup and start DMA.
FpgaSetupSscDma(dmaBuf, ISO15693_DMA_BUFFER_SIZE);
uint8_t *upTo = dmaBuf;
lastRxCounter = ISO15693_DMA_BUFFER_SIZE;
for(;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO15693_DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
}
if (behindBy < 1) continue;
b = *upTo++;
lastRxCounter--;
if(upTo >= dmaBuf + ISO15693_DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dmaBuf; // start reading the circular buffer from the beginning
lastRxCounter += ISO15693_DMA_BUFFER_SIZE;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = ISO15693_DMA_BUFFER_SIZE; // DMA Next Counter registers
}
for (int i = 7; i >= 0; i--) {
if (Handle15693SampleFromReader((b >> i) & 0x01, &DecodeReader)) {
*eof_time = bit_time + samples - DELAY_READER_TO_ARM; // end of EOF
gotFrame = true;
break;
}
samples++;
}
if (gotFrame) {
break;
}
if (BUTTON_PRESS()) {
DecodeReader.byteCount = 0;
break;
}
WDT_HIT();
}
FpgaDisableSscDma();
if (DEBUG) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
maxBehindBy, samples, gotFrame, DecodeReader.state, DecodeReader.byteCount, DecodeReader.bitCount, DecodeReader.posCount);
if (tracing && DecodeReader.byteCount > 0) {
LogTrace(DecodeReader.output, DecodeReader.byteCount, 0, 0, NULL, true);
}
return DecodeReader.byteCount;
}
static void BuildIdentifyRequest(void);
//-----------------------------------------------------------------------------
// Start to read an ISO 15693 tag. We send an identify request, then wait
// for the response. The response is not demodulated, just left in the buffer
// so that it can be downloaded to a PC and processed there.
//-----------------------------------------------------------------------------
void AcquireRawAdcSamplesIso15693(void)
{
LEDsoff();
LED_A_ON();
uint8_t *dest = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
BuildIdentifyRequest();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Give the tags time to energize
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(100);
// Now send the command
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_TX);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
LED_B_ON();
for(int c = 0; c < ToSendMax; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ~ToSend[c];
c++;
}
WDT_HIT();
}
LED_B_OFF();
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for(int c = 0; c < 4000; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates. We just want power,
// so abs(I) + abs(Q) is close to what we want.
int8_t i = (int8_t)(iq >> 8);
int8_t q = (int8_t)(iq & 0xff);
uint8_t r = AMPLITUDE(i, q);
dest[c++] = r;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// TODO: there is no trigger condition. The 14000 samples represent a time frame of 66ms.
// It is unlikely that we get something meaningful.
// TODO: Currently we only record tag answers. Add tracing of reader commands.
// TODO: would we get something at all? The carrier is switched on...
void RecordRawAdcSamplesIso15693(void)
{
LEDsoff();
LED_A_ON();
uint8_t *dest = BigBuf_get_addr();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
SpinDelay(100);
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
for(int c = 0; c < 14000;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint16_t iq = AT91C_BASE_SSC->SSC_RHR;
// The samples are correlations against I and Q versions of the
// tone that the tag AM-modulates. We just want power,
// so abs(I) + abs(Q) is close to what we want.
int8_t i = (int8_t)(iq >> 8);
int8_t q = (int8_t)(iq & 0xff);
uint8_t r = AMPLITUDE(i, q);
dest[c++] = r;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
Dbprintf("finished recording");
LED_A_OFF();
}
// Initialize the proxmark as iso15k reader
// (this might produces glitches that confuse some tags
static void Iso15693InitReader() {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Setup SSC
// FpgaSetupSsc();
// Start from off (no field generated)
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(10);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
// Give the tags time to energize
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(250);
}
///////////////////////////////////////////////////////////////////////
// ISO 15693 Part 3 - Air Interface
// This section basically contains transmission and receiving of bits
///////////////////////////////////////////////////////////////////////
// Encode (into the ToSend buffers) an identify request, which is the first
// thing that you must send to a tag to get a response.
static void BuildIdentifyRequest(void)
{
uint8_t cmd[5];
uint16_t crc;
// one sub-carrier, inventory, 1 slot, fast rate
// AFI is at bit 5 (1<<4) when doing an INVENTORY
cmd[0] = (1 << 2) | (1 << 5) | (1 << 1);
// inventory command code
cmd[1] = 0x01;
// no mask
cmd[2] = 0x00;
//Now the CRC
crc = Crc(cmd, 3);
cmd[3] = crc & 0xff;
cmd[4] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// uid is in transmission order (which is reverse of display order)
static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber )
{
uint8_t cmd[13];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit
// READ BLOCK command code
cmd[1] = 0x20;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = uid[0];
cmd[3] = uid[1];
cmd[4] = uid[2];
cmd[5] = uid[3];
cmd[6] = uid[4];
cmd[7] = uid[5];
cmd[8] = uid[6];
cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique)
// Block number to read
cmd[10] = blockNumber;//0x00;
//Now the CRC
crc = Crc(cmd, 11); // the crc needs to be calculated over 11 bytes
cmd[11] = crc & 0xff;
cmd[12] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// Now the VICC>VCD responses when we are simulating a tag
static void BuildInventoryResponse(uint8_t *uid)
{
uint8_t cmd[12];
uint16_t crc;
cmd[0] = 0; // No error, no protocol format extension
cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported
// 64-bit UID
cmd[2] = uid[7]; //0x32;
cmd[3] = uid[6]; //0x4b;
cmd[4] = uid[5]; //0x03;
cmd[5] = uid[4]; //0x01;
cmd[6] = uid[3]; //0x00;
cmd[7] = uid[2]; //0x10;
cmd[8] = uid[1]; //0x05;
cmd[9] = uid[0]; //0xe0;
//Now the CRC
crc = Crc(cmd, 10);
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsTag(cmd, sizeof(cmd));
}
// Universal Method for sending to and recv bytes from a tag
// init ... should we initialize the reader?
// speed ... 0 low speed, 1 hi speed
// **recv will return you a pointer to the received data
// If you do not need the answer use NULL for *recv[]
// return: lenght of received data
int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t **recv) {
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
if (init) Iso15693InitReader();
int answerLen=0;
uint8_t *answer = BigBuf_get_addr() + 4000;
if (recv != NULL) memset(answer, 0, 100);
if (!speed) {
// low speed (1 out of 256)
CodeIso15693AsReader256(send, sendlen);
} else {
// high speed (1 out of 4)
CodeIso15693AsReader(send, sendlen);
}
TransmitTo15693Tag(ToSend,ToSendMax);
// Now wait for a response
if (recv!=NULL) {
answerLen = GetIso15693AnswerFromTag(answer, 100);
*recv=answer;
}
LED_A_OFF();
return answerLen;
}
// --------------------------------------------------------------------
// Debug Functions
// --------------------------------------------------------------------
// Decodes a message from a tag and displays its metadata and content
#define DBD15STATLEN 48
void DbdecodeIso15693Answer(int len, uint8_t *d) {
char status[DBD15STATLEN+1]={0};
uint16_t crc;
if (len>3) {
if (d[0]&(1<<3))
strncat(status,"ProtExt ",DBD15STATLEN);
if (d[0]&1) {
// error
strncat(status,"Error ",DBD15STATLEN);
switch (d[1]) {
case 0x01:
strncat(status,"01:notSupp",DBD15STATLEN);
break;
case 0x02:
strncat(status,"02:notRecog",DBD15STATLEN);
break;
case 0x03:
strncat(status,"03:optNotSupp",DBD15STATLEN);
break;
case 0x0f:
strncat(status,"0f:noInfo",DBD15STATLEN);
break;
case 0x10:
strncat(status,"10:dontExist",DBD15STATLEN);
break;
case 0x11:
strncat(status,"11:lockAgain",DBD15STATLEN);
break;
case 0x12:
strncat(status,"12:locked",DBD15STATLEN);
break;
case 0x13:
strncat(status,"13:progErr",DBD15STATLEN);
break;
case 0x14:
strncat(status,"14:lockErr",DBD15STATLEN);
break;
default:
strncat(status,"unknownErr",DBD15STATLEN);
}
strncat(status," ",DBD15STATLEN);
} else {
strncat(status,"NoErr ",DBD15STATLEN);
}
crc=Crc(d,len-2);
if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) )
strncat(status,"CrcOK",DBD15STATLEN);
else
strncat(status,"CrcFail!",DBD15STATLEN);
Dbprintf("%s",status);
}
}
///////////////////////////////////////////////////////////////////////
// Functions called via USB/Client
///////////////////////////////////////////////////////////////////////
void SetDebugIso15693(uint32_t debug) {
DEBUG=debug;
Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off");
return;
}
//-----------------------------------------------------------------------------
// Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector
// all demodulation performed in arm rather than host. - greg
//-----------------------------------------------------------------------------
void ReaderIso15693(uint32_t parameter)
{
LEDsoff();
LED_A_ON();
int answerLen1 = 0;
uint8_t TagUID[8] = {0x00};
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
uint8_t *answer1 = BigBuf_get_addr() + 4000;
memset(answer1, 0x00, 200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Setup SSC
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
// Start from off (no field generated)
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
// Give the tags time to energize
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(200);
// FIRST WE RUN AN INVENTORY TO GET THE TAG UID
// THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME
// Now send the IDENTIFY command
BuildIdentifyRequest();
TransmitTo15693Tag(ToSend,ToSendMax);
// Now wait for a response
answerLen1 = GetIso15693AnswerFromTag(answer1, 100) ;
if (answerLen1 >=12) // we should do a better check than this
{
TagUID[0] = answer1[2];
TagUID[1] = answer1[3];
TagUID[2] = answer1[4];
TagUID[3] = answer1[5];
TagUID[4] = answer1[6];
TagUID[5] = answer1[7];
TagUID[6] = answer1[8]; // IC Manufacturer code
TagUID[7] = answer1[9]; // always E0
}
Dbprintf("%d octets read from IDENTIFY request:", answerLen1);
DbdecodeIso15693Answer(answerLen1, answer1);
Dbhexdump(answerLen1, answer1, false);
// UID is reverse
if (answerLen1 >= 12)
Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",
TagUID[7],TagUID[6],TagUID[5],TagUID[4],
TagUID[3],TagUID[2],TagUID[1],TagUID[0]);
// Dbprintf("%d octets read from SELECT request:", answerLen2);
// DbdecodeIso15693Answer(answerLen2,answer2);
// Dbhexdump(answerLen2,answer2,true);
// Dbprintf("%d octets read from XXX request:", answerLen3);
// DbdecodeIso15693Answer(answerLen3,answer3);
// Dbhexdump(answerLen3,answer3,true);
// read all pages
if (answerLen1 >= 12 && DEBUG) {
uint8_t *answer2 = BigBuf_get_addr() + 4100;
int i = 0;
while (i < 32) { // sanity check, assume max 32 pages
BuildReadBlockRequest(TagUID, i);
TransmitTo15693Tag(ToSend, ToSendMax);
int answerLen2 = GetIso15693AnswerFromTag(answer2, 100);
if (answerLen2 > 0) {
Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen2);
DbdecodeIso15693Answer(answerLen2, answer2);
Dbhexdump(answerLen2, answer2, false);
if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr
}
i++;
}
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
}
// Simulate an ISO15693 TAG.
// For Inventory command: print command and send Inventory Response with given UID
// TODO: interpret other reader commands and send appropriate response
void SimTagIso15693(uint32_t parameter, uint8_t *uid)
{
LEDsoff();
LED_A_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
StartCountSspClk();
uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH];
// Build a suitable response to the reader INVENTORY command
BuildInventoryResponse(uid);
// Listen to reader
while (!BUTTON_PRESS()) {
uint32_t eof_time = 0, start_time = 0;
int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &eof_time);
if ((cmd_len >= 5) && (cmd[0] & ISO15693_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { // TODO: check more flags
bool slow = !(cmd[0] & ISO15693_REQ_DATARATE_HIGH);
start_time = eof_time + DELAY_ISO15693_VCD_TO_VICC - DELAY_ARM_TO_READER;
TransmitTo15693Reader(ToSend, ToSendMax, start_time, slow);
}
Dbprintf("%d bytes read from reader:", cmd_len);
Dbhexdump(cmd_len, cmd, false);
}
LEDsoff();
}
// Since there is no standardized way of reading the AFI out of a tag, we will brute force it
// (some manufactures offer a way to read the AFI, though)
void BruteforceIso15693Afi(uint32_t speed)
{
LEDsoff();
LED_A_ON();
uint8_t data[20];
uint8_t *recv=data;
int datalen=0, recvlen=0;
Iso15693InitReader();
// first without AFI
// Tags should respond without AFI and with AFI=0 even when AFI is active
data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1;
data[1] = ISO15693_INVENTORY;
data[2] = 0; // mask length
datalen = AddCrc(data,3);
recvlen = SendDataTag(data, datalen, false, speed, &recv);
WDT_HIT();
if (recvlen>=12) {
Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2]));
}
// now with AFI
data[0] = ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_AFI | ISO15693_REQINV_SLOT1;
data[1] = ISO15693_INVENTORY;
data[2] = 0; // AFI
data[3] = 0; // mask length
for (int i=0;i<256;i++) {
data[2]=i & 0xFF;
datalen=AddCrc(data,4);
recvlen=SendDataTag(data, datalen, false, speed, &recv);
WDT_HIT();
if (recvlen>=12) {
Dbprintf("AFI=%i UID=%s", i, sprintUID(NULL,&recv[2]));
}
}
Dbprintf("AFI Bruteforcing done.");
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// Allows to directly send commands to the tag via the client
void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t data[]) {
int recvlen=0;
uint8_t *recvbuf = BigBuf_get_addr();
LED_A_ON();
if (DEBUG) {
Dbprintf("SEND");
Dbhexdump(datalen, data, false);
}
recvlen = SendDataTag(data, datalen, true, speed, (recv?&recvbuf:NULL));
if (recv) {
cmd_send(CMD_ACK, recvlen>48?48:recvlen, 0, 0, recvbuf, 48);
if (DEBUG) {
Dbprintf("RECV");
DbdecodeIso15693Answer(recvlen,recvbuf);
Dbhexdump(recvlen, recvbuf, false);
}
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_D_OFF();
LED_A_OFF();
}
// --------------------------------------------------------------------
// -- Misc & deprecated functions
// --------------------------------------------------------------------
/*
// do not use; has a fix UID
static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid)
{
uint8_t cmd[12];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// System Information command code
cmd[1] = 0x2B;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
//Now the CRC
crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes
cmd[10] = crc & 0xff;
cmd[11] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ Multi BLOCK command code
cmd[1] = 0x23;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// First Block number to read
cmd[10] = 0x00;
// Number of Blocks to read
cmd[11] = 0x2f; // read quite a few
//Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x00;
cmd[11] = 0x0a;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
// do not use; has a fix UID
static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode)
{
uint8_t cmd[14];
uint16_t crc;
// If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block
// followed by teh block data
// one sub-carrier, inventory, 1 slot, fast rate
cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit
// READ BLOCK command code
cmd[1] = CmdCode;
// UID may be optionally specified here
// 64-bit UID
cmd[2] = 0x32;
cmd[3]= 0x4b;
cmd[4] = 0x03;
cmd[5] = 0x01;
cmd[6] = 0x00;
cmd[7] = 0x10;
cmd[8] = 0x05;
cmd[9]= 0xe0; // always e0 (not exactly unique)
// Parameter
cmd[10] = 0x05; // for custom codes this must be manufcturer code
cmd[11] = 0x00;
// cmd[12] = 0x00;
// cmd[13] = 0x00; //Now the CRC
crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes
cmd[12] = crc & 0xff;
cmd[13] = crc >> 8;
CodeIso15693AsReader(cmd, sizeof(cmd));
}
*/