proxmark3/client/cmdhfmf.c
pwpiwi a749b1e58b
speedup 'hf mf chk' (#901)
* add separate timeout for tag response to nr_ar
* measure response time and use it for response timeout
* don't drop field between keyblocks
* some reformatting
* some whitespace fixes
* fishing for microseconds in TransmitFor14443a()
* allow arbitrary number of keys in MifareChkKeys()
* and move progress printing to MifareChkKeys()

Co-authored-by: uzlonewolf <github_com@hacker-nin.com>
2020-01-09 15:42:31 +01:00

3137 lines
97 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2011,2012 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency MIFARE commands
//-----------------------------------------------------------------------------
#include "cmdhfmf.h"
#include <inttypes.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include "comms.h"
#include "cmdmain.h"
#include "cmdhfmfhard.h"
#include "parity.h"
#include "util.h"
#include "util_posix.h"
#include "usb_cmd.h"
#include "ui.h"
#include "mifare/mifarehost.h"
#include "mifare.h"
#include "mifare/mfkey.h"
#include "hardnested/hardnested_bf_core.h"
#include "cliparser/cliparser.h"
#include "cmdhf14a.h"
#include "mifare/mifaredefault.h"
#include "mifare/mifare4.h"
#include "mifare/mad.h"
#include "mifare/ndef.h"
#include "emv/dump.h"
#include "protocols.h"
#define NESTED_SECTOR_RETRY 10 // how often we try mfested() until we give up
static int CmdHelp(const char *Cmd);
int CmdHF14AMifare(const char *Cmd)
{
int isOK = 0;
uint64_t key = 0;
isOK = mfDarkside(&key);
switch (isOK) {
case -1 : PrintAndLog("Button pressed. Aborted."); return 1;
case -2 : PrintAndLog("Card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return 1;
case -3 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return 1;
case -4 : PrintAndLog("Card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown");
PrintAndLog("generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return 1;
case -5 : PrintAndLog("Aborted via keyboard."); return 1;
default : PrintAndLog("Found valid key:%012" PRIx64 "\n", key);
}
PrintAndLog("");
return 0;
}
int CmdHF14AMfWrBl(const char *Cmd)
{
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf wrbl <block number> <key A/B> <key (12 hex symbols)> <block data (32 hex symbols)>");
PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F");
return 0;
}
blockNo = param_get8(Cmd, 0);
cmdp = param_getchar(Cmd, 1);
if (cmdp == 0x00) {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
if (param_gethex(Cmd, 3, bldata, 32)) {
PrintAndLog("Block data must include 32 HEX symbols");
return 1;
}
PrintAndLog("--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
PrintAndLog("--data: %s", sprint_hex(bldata, 16));
UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
memcpy(c.d.asBytes + 10, bldata, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHF14AMfRdBl(const char *Cmd)
{
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf rdbl <block number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF ");
return 0;
}
blockNo = param_get8(Cmd, 0);
cmdp = param_getchar(Cmd, 1);
if (cmdp == 0x00) {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
PrintAndLog("--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6));
UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (isOK) {
PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16));
} else {
PrintAndLog("isOk:%02x", isOK);
return 1;
}
if (mfIsSectorTrailer(blockNo) && (data[6] || data[7] || data[8])) {
PrintAndLogEx(NORMAL, "Trailer decoded:");
int bln = mfFirstBlockOfSector(mfSectorNum(blockNo));
int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1;
for (int i = 0; i < 4; i++) {
PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &data[6]));
bln += blinc;
}
PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1));
}
} else {
PrintAndLog("Command execute timeout");
return 2;
}
return 0;
}
int CmdHF14AMfRdSc(const char *Cmd)
{
int i;
uint8_t sectorNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t isOK = 0;
uint8_t *data = NULL;
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf rdsc <sector number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF ");
return 0;
}
sectorNo = param_get8(Cmd, 0);
if (sectorNo > 39) {
PrintAndLog("Sector number must be less than 40");
return 1;
}
cmdp = param_getchar(Cmd, 1);
if (cmdp != 'a' && cmdp != 'A' && cmdp != 'b' && cmdp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
PrintAndLog("--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6));
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
PrintAndLog(" ");
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
data = resp.d.asBytes;
PrintAndLog("isOk:%02x", isOK);
if (isOK) {
for (i = 0; i < (sectorNo<32?3:15); i++) {
PrintAndLog("data : %s", sprint_hex(data + i * 16, 16));
}
PrintAndLog("trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16));
PrintAndLogEx(NORMAL, "Trailer decoded:");
int bln = mfFirstBlockOfSector(sectorNo);
int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1;
for (i = 0; i < 4; i++) {
PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &(data + (sectorNo<32?3:15) * 16)[6]));
bln += blinc;
}
PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&(data + (sectorNo<32?3:15) * 16)[9], 1));
}
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
uint8_t FirstBlockOfSector(uint8_t sectorNo)
{
if (sectorNo < 32) {
return sectorNo * 4;
} else {
return 32 * 4 + (sectorNo - 32) * 16;
}
}
uint8_t NumBlocksPerSector(uint8_t sectorNo)
{
if (sectorNo < 32) {
return 4;
} else {
return 16;
}
}
static int ParamCardSizeSectors(const char c) {
int numSectors = 16;
switch (c) {
case '0' : numSectors = 5; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
return numSectors;
}
static int ParamCardSizeBlocks(const char c) {
int numBlocks = 16 * 4;
switch (c) {
case '0' : numBlocks = 5 * 4; break;
case '2' : numBlocks = 32 * 4; break;
case '4' : numBlocks = 32 * 4 + 8 * 16; break;
default: numBlocks = 16 * 4;
}
return numBlocks;
}
int CmdHF14AMfDump(const char *Cmd)
{
uint8_t sectorNo, blockNo;
uint8_t keys[2][40][6];
uint8_t rights[40][4];
uint8_t carddata[256][16];
uint8_t numSectors = 16;
FILE *fin;
FILE *fout;
UsbCommand resp;
char cmdp = param_getchar(Cmd, 0);
numSectors = ParamCardSizeSectors(cmdp);
if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf mf dump [card memory] [k|m]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog(" k: Always try using both Key A and Key B for each sector, even if access bits would prohibit it");
PrintAndLog(" m: When missing access bits or keys, replace that block with NULL");
PrintAndLog("");
PrintAndLog("Samples: hf mf dump");
PrintAndLog(" hf mf dump 4");
PrintAndLog(" hf mf dump 4 m");
return 0;
}
char opts = param_getchar(Cmd, 1);
bool useBothKeysAlways = false;
if (opts == 'k' || opts == 'K') useBothKeysAlways = true;
bool nullMissingKeys = false;
if (opts == 'm' || opts == 'M') nullMissingKeys = true;
if ((fin = fopen("dumpkeys.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpkeys.bin");
return 1;
}
// Read keys from file
for (int group=0; group<=1; group++) {
for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
size_t bytes_read = fread(keys[group][sectorNo], 1, 6, fin);
if (bytes_read != 6) {
PrintAndLog("File reading error.");
fclose(fin);
return 2;
}
}
}
fclose(fin);
PrintAndLog("|-----------------------------------------|");
PrintAndLog("|------ Reading sector access bits...-----|");
PrintAndLog("|-----------------------------------------|");
uint8_t tries = 0;
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
for (tries = 0; tries < 3; tries++) {
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 0, 0}};
// At least the Access Conditions can always be read with key A.
memcpy(c.d.asBytes, keys[0][sectorNo], 6);
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (isOK){
rights[sectorNo][0] = ((data[7] & 0x10)>>2) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>4); // C1C2C3 for data area 0
rights[sectorNo][1] = ((data[7] & 0x20)>>3) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>5); // C1C2C3 for data area 1
rights[sectorNo][2] = ((data[7] & 0x40)>>4) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>6); // C1C2C3 for data area 2
rights[sectorNo][3] = ((data[7] & 0x80)>>5) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>7); // C1C2C3 for sector trailer
break;
} else if (tries == 2) { // on last try set defaults
PrintAndLog("Could not get access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
} else {
PrintAndLog("Command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
}
}
PrintAndLog("|-----------------------------------------|");
PrintAndLog("|----- Dumping all blocks to file... -----|");
PrintAndLog("|-----------------------------------------|");
bool isOK = true;
for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) {
for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
bool received = false;
for (tries = 0; tries < 3; tries++) {
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A.
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
memcpy(c.d.asBytes, keys[0][sectorNo], 6);
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
} else if (useBothKeysAlways) {
// Always try both keys, even if access conditions wouldn't work.
for (int k=0; k<=1; k++) {
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}};
memcpy(c.d.asBytes, keys[k][sectorNo], 6);
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
// Don't try the other one on success.
if (resp.arg[0] & 0xff) break;
}
} else { // data block. Check if it can be read with key A or key B
uint8_t data_area = sectorNo<32?blockNo:blockNo/5;
if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}};
memcpy(c.d.asBytes, keys[1][sectorNo], 6);
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
} else if (rights[sectorNo][data_area] == 0x07) { // no key would work
PrintAndLog("Access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo);
if (nullMissingKeys) {
memset(resp.d.asBytes, 0, 16);
resp.arg[0] = 1;
PrintAndLog(" ... filling the block with NULL");
received = true;
} else {
isOK = false;
tries = 2;
}
} else { // key A would work
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
memcpy(c.d.asBytes, keys[0][sectorNo], 6);
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
}
}
if (received) {
isOK = resp.arg[0] & 0xff;
if (isOK) break;
}
}
if (received) {
isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys.
memcpy(data, keys[0][sectorNo], 6);
memcpy(data + 10, keys[1][sectorNo], 6);
}
if (isOK) {
memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16);
PrintAndLog("Successfully read block %2d of sector %2d.", blockNo, sectorNo);
} else {
PrintAndLog("Could not read block %2d of sector %2d", blockNo, sectorNo);
break;
}
}
else {
isOK = false;
PrintAndLog("Command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo);
break;
}
}
}
if (isOK) {
if ((fout = fopen("dumpdata.bin","wb")) == NULL) {
PrintAndLog("Could not create file name dumpdata.bin");
return 1;
}
uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1);
fwrite(carddata, 1, 16*numblocks, fout);
fclose(fout);
PrintAndLog("Dumped %d blocks (%d bytes) to file dumpdata.bin", numblocks, 16*numblocks);
}
return 0;
}
int CmdHF14AMfRestore(const char *Cmd)
{
uint8_t sectorNo,blockNo;
uint8_t keyType = 0;
uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t bldata[16] = {0x00};
uint8_t keyA[40][6];
uint8_t keyB[40][6];
uint8_t numSectors;
FILE *fdump;
FILE *fkeys;
char cmdp = param_getchar(Cmd, 0);
switch (cmdp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf mf restore [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog("Samples: hf mf restore");
PrintAndLog(" hf mf restore 4");
return 0;
}
if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpkeys.bin");
return 1;
}
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
size_t bytes_read = fread(keyA[sectorNo], 1, 6, fkeys);
if (bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
return 2;
}
}
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
size_t bytes_read = fread(keyB[sectorNo], 1, 6, fkeys);
if (bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
return 2;
}
}
fclose(fkeys);
if ((fdump = fopen("dumpdata.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpdata.bin");
return 1;
}
PrintAndLog("Restoring dumpdata.bin to card");
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
for(blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
size_t bytes_read = fread(bldata, 1, 16, fdump);
if (bytes_read != 16) {
PrintAndLog("File reading error (dumpdata.bin).");
fclose(fdump);
return 2;
}
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer
bldata[0] = (keyA[sectorNo][0]);
bldata[1] = (keyA[sectorNo][1]);
bldata[2] = (keyA[sectorNo][2]);
bldata[3] = (keyA[sectorNo][3]);
bldata[4] = (keyA[sectorNo][4]);
bldata[5] = (keyA[sectorNo][5]);
bldata[10] = (keyB[sectorNo][0]);
bldata[11] = (keyB[sectorNo][1]);
bldata[12] = (keyB[sectorNo][2]);
bldata[13] = (keyB[sectorNo][3]);
bldata[14] = (keyB[sectorNo][4]);
bldata[15] = (keyB[sectorNo][5]);
}
PrintAndLog("Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16));
memcpy(c.d.asBytes + 10, bldata, 16);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
}
}
fclose(fdump);
return 0;
}
//----------------------------------------------
// Nested
//----------------------------------------------
static void parseParamTDS(const char *Cmd, const uint8_t indx, bool *paramT, bool *paramD, uint16_t *timeout) {
char ctmp3[4] = {0};
int len = param_getlength(Cmd, indx);
if (len > 0 && len < 4){
param_getstr(Cmd, indx, ctmp3, sizeof(ctmp3));
*paramT |= (ctmp3[0] == 't' || ctmp3[0] == 'T');
*paramD |= (ctmp3[0] == 'd' || ctmp3[0] == 'D');
bool paramS1 = *paramT || *paramD;
// slow and very slow
if (ctmp3[0] == 's' || ctmp3[0] == 'S' || ctmp3[1] == 's' || ctmp3[1] == 'S') {
*timeout = MF_CHKKEYS_SLOWTIMEOUT; // slow
if (!paramS1 && (ctmp3[1] == 's' || ctmp3[1] == 'S')) {
*timeout = MF_CHKKEYS_VERYSLOWTIMEOUT; // very slow
}
if (paramS1 && (ctmp3[2] == 's' || ctmp3[2] == 'S')) {
*timeout = MF_CHKKEYS_VERYSLOWTIMEOUT; // very slow
}
}
}
}
int CmdHF14AMfNested(const char *Cmd) {
int i, j, res, iterations;
sector_t *e_sector = NULL;
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t trgBlockNo = 0;
uint8_t trgKeyType = 0;
uint8_t SectorsCnt = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t keyBlock[MifareDefaultKeysSize * 6];
uint64_t key64 = 0;
// timeout in units. (ms * 106) or us*0.106
uint16_t timeout14a = MF_CHKKEYS_DEFTIMEOUT; // fast by default
bool autosearchKey = false;
bool transferToEml = false;
bool createDumpFile = false;
FILE *fkeys;
uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
char cmdp, ctmp;
if (strlen(Cmd)<3) {
PrintAndLog("Usage:");
PrintAndLog(" all sectors: hf mf nested <card memory> <block number> <key A/B> <key (12 hex symbols)> [t|d|s|ss]");
PrintAndLog(" all sectors autosearch key: hf mf nested <card memory> * [t|d|s|ss]");
PrintAndLog(" one sector: hf mf nested o <block number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" <target block number> <target key A/B> [t]");
PrintAndLog(" ");
PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
PrintAndLog("t - transfer keys to emulator memory");
PrintAndLog("d - write keys to binary file dumpkeys.bin");
PrintAndLog("s - Slow (1ms) check keys (required by some non standard cards)");
PrintAndLog("ss - Very slow (5ms) check keys");
PrintAndLog(" ");
PrintAndLog(" sample1: hf mf nested 1 0 A FFFFFFFFFFFF ");
PrintAndLog(" sample2: hf mf nested 1 0 A FFFFFFFFFFFF t ");
PrintAndLog(" sample3: hf mf nested 1 0 A FFFFFFFFFFFF d ");
PrintAndLog(" sample4: hf mf nested o 0 A FFFFFFFFFFFF 4 A");
PrintAndLog(" sample5: hf mf nested 1 * t");
PrintAndLog(" sample6: hf mf nested 1 * ss");
return 0;
}
// <card memory>
cmdp = param_getchar(Cmd, 0);
if (cmdp == 'o' || cmdp == 'O') {
cmdp = 'o';
SectorsCnt = 1;
} else {
SectorsCnt = ParamCardSizeSectors(cmdp);
}
// <block number>. number or autosearch key (*)
if (param_getchar(Cmd, 1) == '*') {
autosearchKey = true;
parseParamTDS(Cmd, 2, &transferToEml, &createDumpFile, &timeout14a);
PrintAndLog("--nested. sectors:%2d, block no:*, eml:%c, dmp=%c checktimeout=%d us",
SectorsCnt, transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106);
} else {
blockNo = param_get8(Cmd, 1);
ctmp = param_getchar(Cmd, 2);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a')
keyType = 1;
if (param_gethex(Cmd, 3, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
// check if we can authenticate to sector
res = mfCheckKeys(blockNo, keyType, timeout14a, true, 1, key, &key64);
if (res) {
PrintAndLog("Can't authenticate to block:%3d key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
return 3;
}
// one sector nested
if (cmdp == 'o') {
trgBlockNo = param_get8(Cmd, 4);
ctmp = param_getchar(Cmd, 5);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Target key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a')
trgKeyType = 1;
parseParamTDS(Cmd, 6, &transferToEml, &createDumpFile, &timeout14a);
} else {
parseParamTDS(Cmd, 4, &transferToEml, &createDumpFile, &timeout14a);
}
PrintAndLog("--nested. sectors:%2d, block no:%3d, key type:%c, eml:%c, dmp=%c checktimeout=%d us",
SectorsCnt, blockNo, keyType?'B':'A', transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106);
}
// one-sector nested
if (cmdp == 'o') { // ------------------------------------ one sector working
PrintAndLog("--target block no:%3d, target key type:%c ", trgBlockNo, trgKeyType?'B':'A');
int16_t isOK = mfnested(blockNo, keyType, timeout14a, key, trgBlockNo, trgKeyType, keyBlock, true);
if (isOK < 0) {
switch (isOK) {
case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case -2 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break;
default : PrintAndLog("Unknown Error (%d)\n", isOK);
}
return 2;
}
key64 = bytes_to_num(keyBlock, 6);
if (!isOK) {
PrintAndLog("Found valid key:%012" PRIx64, key64);
// transfer key to the emulator
if (transferToEml) {
uint8_t sectortrailer;
if (trgBlockNo < 32*4) { // 4 block sector
sectortrailer = trgBlockNo | 0x03;
} else { // 16 block sector
sectortrailer = trgBlockNo | 0x0f;
}
mfEmlGetMem(keyBlock, sectortrailer, 1);
if (!trgKeyType)
num_to_bytes(key64, 6, keyBlock);
else
num_to_bytes(key64, 6, &keyBlock[10]);
mfEmlSetMem(keyBlock, sectortrailer, 1);
PrintAndLog("Key transferred to emulator memory.");
}
} else {
PrintAndLog("No valid key found");
}
}
else { // ------------------------------------ multiple sectors working
uint64_t msclock1;
msclock1 = msclock();
e_sector = calloc(SectorsCnt, sizeof(sector_t));
if (e_sector == NULL) return 1;
//test current key and additional standard keys first
for (int defaultKeyCounter = 0; defaultKeyCounter < MifareDefaultKeysSize; defaultKeyCounter++){
num_to_bytes(MifareDefaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6));
}
PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt);
mfCheckKeysSec(SectorsCnt, 2, timeout14a, true, true, true, MifareDefaultKeysSize, keyBlock, e_sector);
// get known key from array
bool keyFound = false;
if (autosearchKey) {
for (i = 0; i < SectorsCnt; i++) {
for (j = 0; j < 2; j++) {
if (e_sector[i].foundKey[j]) {
// get known key
blockNo = i * 4;
keyType = j;
num_to_bytes(e_sector[i].Key[j], 6, key);
keyFound = true;
break;
}
}
if (keyFound) break;
}
// Can't found a key....
if (!keyFound) {
PrintAndLog("Can't found any of the known keys.");
free(e_sector);
return 4;
}
PrintAndLog("--auto key. block no:%3d, key type:%c key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
}
// nested sectors
iterations = 0;
PrintAndLog("nested...");
bool calibrate = true;
for (i = 0; i < NESTED_SECTOR_RETRY; i++) {
for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) {
for (trgKeyType = 0; trgKeyType < 2; trgKeyType++) {
if (e_sector[sectorNo].foundKey[trgKeyType]) continue;
PrintAndLog("-----------------------------------------------");
int16_t isOK = mfnested(blockNo, keyType, timeout14a, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate);
if(isOK < 0) {
switch (isOK) {
case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case -2 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random numbers are not predictable).\n"); break;
default : PrintAndLog("Unknown Error (%d)\n", isOK);
}
free(e_sector);
return 2;
} else {
calibrate = false;
}
iterations++;
key64 = bytes_to_num(keyBlock, 6);
if (!isOK) {
PrintAndLog("Found valid key:%012" PRIx64, key64);
e_sector[sectorNo].foundKey[trgKeyType] = 1;
e_sector[sectorNo].Key[trgKeyType] = key64;
// try to check this key as a key to the other sectors
mfCheckKeysSec(SectorsCnt, 2, timeout14a, true, true, true, 1, keyBlock, e_sector);
}
}
}
}
// print nested statistic
PrintAndLog("\n\n-----------------------------------------------\nNested statistic:\nIterations count: %d", iterations);
PrintAndLog("Time in nested: %1.3f (%1.3f sec per key)", ((float)(msclock() - msclock1))/1000.0, ((float)(msclock() - msclock1))/iterations/1000.0);
// print result
PrintAndLog("|---|----------------|---|----------------|---|");
PrintAndLog("|sec|key A |res|key B |res|");
PrintAndLog("|---|----------------|---|----------------|---|");
for (i = 0; i < SectorsCnt; i++) {
PrintAndLog("|%03d| %012" PRIx64 " | %d | %012" PRIx64 " | %d |", i,
e_sector[i].Key[0], e_sector[i].foundKey[0], e_sector[i].Key[1], e_sector[i].foundKey[1]);
}
PrintAndLog("|---|----------------|---|----------------|---|");
// transfer keys to the emulator memory
if (transferToEml) {
for (i = 0; i < SectorsCnt; i++) {
mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
if (e_sector[i].foundKey[0])
num_to_bytes(e_sector[i].Key[0], 6, keyBlock);
if (e_sector[i].foundKey[1])
num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]);
mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
}
PrintAndLog("Keys transferred to emulator memory.");
}
// Create dump file
if (createDumpFile) {
if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) {
PrintAndLog("Could not create file dumpkeys.bin");
free(e_sector);
return 1;
}
PrintAndLog("Printing keys to binary file dumpkeys.bin...");
for(i=0; i<SectorsCnt; i++) {
if (e_sector[i].foundKey[0]){
num_to_bytes(e_sector[i].Key[0], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
else{
fwrite ( &standart, 1, 6, fkeys );
}
}
for(i=0; i<SectorsCnt; i++) {
if (e_sector[i].foundKey[1]){
num_to_bytes(e_sector[i].Key[1], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
else{
fwrite ( &standart, 1, 6, fkeys );
}
}
fclose(fkeys);
}
free(e_sector);
}
return 0;
}
int CmdHF14AMfNestedHard(const char *Cmd)
{
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t trgBlockNo = 0;
uint8_t trgKeyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t trgkey[6] = {0, 0, 0, 0, 0, 0};
char ctmp;
ctmp = param_getchar(Cmd, 0);
if (ctmp != 'R' && ctmp != 'r' && ctmp != 'T' && ctmp != 't' && strlen(Cmd) < 20) {
PrintAndLog("Usage:");
PrintAndLog(" hf mf hardnested <block number> <key A|B> <key (12 hex symbols)>");
PrintAndLog(" <target block number> <target key A|B> [known target key (12 hex symbols)] [w] [s]");
PrintAndLog(" or hf mf hardnested r [known target key]");
PrintAndLog(" ");
PrintAndLog("Options: ");
PrintAndLog(" w: Acquire nonces and write them to binary file nonces.bin");
PrintAndLog(" s: Slower acquisition (required by some non standard cards)");
PrintAndLog(" r: Read nonces.bin and start attack");
PrintAndLog(" iX: set type of SIMD instructions. Without this flag programs autodetect it.");
PrintAndLog(" i5: AVX512");
PrintAndLog(" i2: AVX2");
PrintAndLog(" ia: AVX");
PrintAndLog(" is: SSE2");
PrintAndLog(" im: MMX");
PrintAndLog(" in: none (use CPU regular instruction set)");
PrintAndLog(" ");
PrintAndLog(" sample1: hf mf hardnested 0 A FFFFFFFFFFFF 4 A");
PrintAndLog(" sample2: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w");
PrintAndLog(" sample3: hf mf hardnested 0 A FFFFFFFFFFFF 4 A w s");
PrintAndLog(" sample4: hf mf hardnested r");
PrintAndLog(" ");
PrintAndLog("Add the known target key to check if it is present in the remaining key space:");
PrintAndLog(" sample5: hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF");
return 0;
}
bool know_target_key = false;
bool nonce_file_read = false;
bool nonce_file_write = false;
bool slow = false;
int tests = 0;
uint16_t iindx = 0;
if (ctmp == 'R' || ctmp == 'r') {
nonce_file_read = true;
iindx = 1;
if (!param_gethex(Cmd, 1, trgkey, 12)) {
know_target_key = true;
iindx = 2;
}
} else if (ctmp == 'T' || ctmp == 't') {
tests = param_get32ex(Cmd, 1, 100, 10);
iindx = 2;
if (!param_gethex(Cmd, 2, trgkey, 12)) {
know_target_key = true;
iindx = 3;
}
} else {
blockNo = param_get8(Cmd, 0);
ctmp = param_getchar(Cmd, 1);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') {
keyType = 1;
}
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
trgBlockNo = param_get8(Cmd, 3);
ctmp = param_getchar(Cmd, 4);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Target key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') {
trgKeyType = 1;
}
uint16_t i = 5;
if (!param_gethex(Cmd, 5, trgkey, 12)) {
know_target_key = true;
i++;
}
iindx = i;
while ((ctmp = param_getchar(Cmd, i))) {
if (ctmp == 's' || ctmp == 'S') {
slow = true;
} else if (ctmp == 'w' || ctmp == 'W') {
nonce_file_write = true;
} else if (param_getlength(Cmd, i) == 2 && ctmp == 'i') {
iindx = i;
} else {
PrintAndLog("Possible options are w , s and/or iX");
return 1;
}
i++;
}
}
SetSIMDInstr(SIMD_AUTO);
if (iindx > 0) {
while ((ctmp = param_getchar(Cmd, iindx))) {
if (param_getlength(Cmd, iindx) == 2 && ctmp == 'i') {
switch(param_getchar_indx(Cmd, 1, iindx)) {
case '5':
SetSIMDInstr(SIMD_AVX512);
break;
case '2':
SetSIMDInstr(SIMD_AVX2);
break;
case 'a':
SetSIMDInstr(SIMD_AVX);
break;
case 's':
SetSIMDInstr(SIMD_SSE2);
break;
case 'm':
SetSIMDInstr(SIMD_MMX);
break;
case 'n':
SetSIMDInstr(SIMD_NONE);
break;
default:
PrintAndLog("Unknown SIMD type. %c", param_getchar_indx(Cmd, 1, iindx));
return 1;
}
}
iindx++;
}
}
PrintAndLog("--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ",
trgBlockNo,
trgKeyType?'B':'A',
trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5],
know_target_key?"":" (not set)",
nonce_file_write?"write":nonce_file_read?"read":"none",
slow?"Yes":"No",
tests);
int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key?trgkey:NULL, nonce_file_read, nonce_file_write, slow, tests);
if (isOK) {
switch (isOK) {
case 1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case 2 : PrintAndLog("Button pressed. Aborted.\n"); break;
default : break;
}
return 2;
}
return 0;
}
int CmdHF14AMfChk(const char *Cmd) {
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf chk <block number>|<*card memory> <key type (A/B/?)> [t|d|s|ss] [<key (12 hex symbols)>] [<dic (*.dic)>]");
PrintAndLog(" * - all sectors");
PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
PrintAndLog("d - write keys to binary file (not used when <block number> supplied)");
PrintAndLog("t - write keys to emulator memory");
PrintAndLog("s - slow execute. timeout 1ms");
PrintAndLog("ss - very slow execute. timeout 5ms");
PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic");
PrintAndLog(" hf mf chk *1 ? t");
PrintAndLog(" hf mf chk *1 ? d");
PrintAndLog(" hf mf chk *1 ? s");
PrintAndLog(" hf mf chk *1 ? dss");
return 0;
}
FILE * f;
char filename[FILE_PATH_SIZE]={0};
char buf[13];
uint8_t *keyBlock = NULL, *p;
uint16_t stKeyBlock = 20;
int i, res;
int keycnt = 0;
char ctmp = 0x00;
int clen = 0;
uint8_t blockNo = 0;
uint8_t SectorsCnt = 0;
uint8_t keyType = 0;
uint64_t key64 = 0;
// timeout in units. (ms * 106)/10 or us*0.0106
uint16_t timeout14a = MF_CHKKEYS_DEFTIMEOUT; // fast by default
bool param3InUse = false;
bool transferToEml = 0;
bool createDumpFile = 0;
bool singleBlock = false; // Flag to ID if a single or multi key check
uint8_t keyFoundCount = 0; // Counter to display the number of keys found/transfered to emulator
sector_t *e_sector = NULL;
keyBlock = calloc(stKeyBlock, 6);
if (keyBlock == NULL) return 1;
int defaultKeysSize = MifareDefaultKeysSize;
for (int defaultKeyCounter = 0; defaultKeyCounter < defaultKeysSize; defaultKeyCounter++){
num_to_bytes(MifareDefaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6));
}
if (param_getchar(Cmd, 0)=='*') {
SectorsCnt = ParamCardSizeSectors(param_getchar(Cmd + 1, 0));
} else {
blockNo = param_get8(Cmd, 0);
// Singe Key check, so Set Sector count to cover sectors (1 to sector that contains the block)
// 1 and 2 Cards : Sector = blockNo/4 + 1
// Sectors 0 - 31 : 4 blocks per sector : Blocks 0 - 127
// Sectors 32 - 39 : 16 blocks per sector : Blocks 128 - 255 (4K)
if (blockNo < 128) {
SectorsCnt = (blockNo / 4) + 1;
} else {
SectorsCnt = 32 + ((blockNo-128)/16) + 1;
}
singleBlock = true; // Set flag for single key check
}
ctmp = param_getchar(Cmd, 1);
clen = param_getlength(Cmd, 1);
if (clen == 1) {
switch (ctmp) {
case 'a': case 'A':
keyType = 0;
break;
case 'b': case 'B':
keyType = 1;
break;
case '?':
keyType = 2;
break;
default:
PrintAndLog("Key type must be A , B or ?");
free(keyBlock);
return 1;
};
}
parseParamTDS(Cmd, 2, &transferToEml, &createDumpFile, &timeout14a);
if (singleBlock & createDumpFile) {
PrintAndLog (" block key check (<block no>) and write to dump file (d) combination is not supported ");
PrintAndLog (" please remove option d and try again");
return 1;
}
param3InUse = transferToEml | createDumpFile | (timeout14a != MF_CHKKEYS_DEFTIMEOUT);
PrintAndLog("--chk keys. sectors:%2d, block no:%3d, key type:%c, eml:%c, dmp=%c checktimeout=%d us",
SectorsCnt, blockNo, keyType==0?'A':keyType==1?'B':'?', transferToEml?'y':'n', createDumpFile?'y':'n', ((uint32_t)timeout14a * 1000) / 106);
for (i = param3InUse; param_getchar(Cmd, 2 + i); i++) {
if (!param_gethex(Cmd, 2 + i, keyBlock + 6 * keycnt, 12)) {
if ( stKeyBlock - keycnt < 2) {
p = realloc(keyBlock, 6*(stKeyBlock+=10));
if (!p) {
PrintAndLog("Cannot allocate memory for Keys");
free(keyBlock);
return 2;
}
keyBlock = p;
}
PrintAndLog("chk key[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
(keyBlock + 6*keycnt)[0], (keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6);
keycnt++;
} else {
// May be a dic file
if ( param_getstr(Cmd, 2 + i, filename, sizeof(filename)) >= FILE_PATH_SIZE ) {
PrintAndLog("File name too long");
free(keyBlock);
return 2;
}
if ((f = fopen( filename , "r"))) {
while (fgets(buf, sizeof(buf), f)) {
if (strlen(buf) < 12 || buf[11] == '\n')
continue;
while (fgetc(f) != '\n' && !feof(f)) ; //goto next line
if( buf[0]=='#' ) continue; //The line start with # is comment, skip
bool content_error = false;
for (int i = 0; i < 12; i++) {
if (!isxdigit((unsigned char)buf[i])) {
content_error = true;
}
}
if (content_error) {
PrintAndLog("File content error. '%s' must include 12 HEX symbols", buf);
continue;
}
buf[12] = 0;
if (stKeyBlock - keycnt < 2) {
p = realloc(keyBlock, 6*(stKeyBlock+=10));
if (!p) {
PrintAndLog("Cannot allocate memory for defKeys");
free(keyBlock);
fclose(f);
return 2;
}
keyBlock = p;
}
memset(keyBlock + 6 * keycnt, 0, 6);
num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt);
PrintAndLog("chk custom key[%2d] %012" PRIx64 , keycnt, bytes_to_num(keyBlock + 6*keycnt, 6));
keycnt++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
} else {
PrintAndLog("File: %s: not found or locked.", filename);
free(keyBlock);
return 1;
}
}
}
// fill with default keys
if (keycnt == 0) {
PrintAndLog("No key specified, trying default keys");
for (;keycnt < defaultKeysSize; keycnt++)
PrintAndLog("chk default key[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
(keyBlock + 6*keycnt)[0], (keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6);
}
// initialize storage for found keys
e_sector = calloc(SectorsCnt, sizeof(sector_t));
if (e_sector == NULL) {
free(keyBlock);
return 1;
}
for (uint8_t keyAB = 0; keyAB < 2; keyAB++) {
for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) {
e_sector[sectorNo].Key[keyAB] = 0xffffffffffff;
e_sector[sectorNo].foundKey[keyAB] = 0;
}
}
printf("\n");
bool foundAKey = false;
bool clearTraceLog = true;
uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE / 6 ? USB_CMD_DATA_SIZE / 6 : keycnt;
// !SingleKey, so all key check (if SectorsCnt > 0)
if (!singleBlock) {
PrintAndLog("To cancel this operation press the button on the proxmark...");
printf("--");
for (uint32_t c = 0; c < keycnt; c += max_keys) {
uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c;
bool init = (c == 0);
bool drop_field = (c + size == keycnt);
res = mfCheckKeysSec(SectorsCnt, keyType, timeout14a, clearTraceLog, init, drop_field, size, &keyBlock[6 * c], e_sector); // timeout is (ms * 106)/10 or us*0.0106
clearTraceLog = false;
if (res != 1) {
if (!res) {
printf("o");
foundAKey = true;
} else {
printf(".");
}
} else {
printf("\n");
PrintAndLog("Command execute timeout");
}
}
} else {
int keyAB = keyType;
do {
res = mfCheckKeys(blockNo, keyAB & 0x01, timeout14a, true, keycnt, keyBlock, &key64);
clearTraceLog = false;
if (res != 1) {
if (!res) {
// Use the common format below
// PrintAndLog("Found valid key:[%d:%c]%012" PRIx64, blockNo, (keyAB & 0x01)?'B':'A', key64);
foundAKey = true;
// Store the Single Key for display list
// For a single block check, SectorsCnt = Sector that contains the block
e_sector[SectorsCnt-1].foundKey[(keyAB & 0x01)] = true; // flag key found
e_sector[SectorsCnt-1].Key[(keyAB & 0x01)] = key64; // Save key data
}
} else {
PrintAndLog("Command execute timeout");
}
} while(--keyAB > 0);
}
// print result
if (foundAKey) {
PrintAndLog("");
PrintAndLog("|---|----------------|----------------|");
PrintAndLog("|sec|key A |key B |");
PrintAndLog("|---|----------------|----------------|");
for (i = 0; i < SectorsCnt; i++) {
// If a block key check, only print a line if a key was found.
if (!singleBlock || e_sector[i].foundKey[0] || e_sector[i].foundKey[1]) {
char keyAString[13] = " ? ";
char keyBString[13] = " ? ";
if (e_sector[i].foundKey[0]) {
sprintf(keyAString, "%012" PRIx64, e_sector[i].Key[0]);
}
if (e_sector[i].foundKey[1]) {
sprintf(keyBString, "%012" PRIx64, e_sector[i].Key[1]);
}
PrintAndLog("|%03d| %s | %s |", i, keyAString, keyBString);
}
}
PrintAndLog("|---|----------------|----------------|");
} else {
PrintAndLog("");
PrintAndLog("No valid keys found.");
}
if (transferToEml) {
uint8_t block[16];
for (uint16_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) {
if (e_sector[sectorNo].foundKey[0] || e_sector[sectorNo].foundKey[1]) {
mfEmlGetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1);
for (uint16_t t = 0; t < 2; t++) {
if (e_sector[sectorNo].foundKey[t]) {
num_to_bytes(e_sector[sectorNo].Key[t], 6, block + t * 10);
keyFoundCount++; // Key found count for information
}
}
mfEmlSetMem(block, FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 1);
}
}
// Updated to show the actual number of keys found/transfered.
PrintAndLog("%d keys(s) found have been transferred to the emulator memory",keyFoundCount);
}
if (createDumpFile && !singleBlock) {
FILE *fkeys = fopen("dumpkeys.bin","wb");
if (fkeys == NULL) {
PrintAndLog("Could not create file dumpkeys.bin");
free(e_sector);
free(keyBlock);
return 1;
}
uint8_t mkey[6];
for (uint8_t t = 0; t < 2; t++) {
for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; sectorNo++) {
num_to_bytes(e_sector[sectorNo].Key[t], 6, mkey);
fwrite(mkey, 1, 6, fkeys);
}
}
fclose(fkeys);
PrintAndLog("Found keys have been dumped to file dumpkeys.bin. 0xffffffffffff has been inserted for unknown keys.");
}
free(e_sector);
free(keyBlock);
PrintAndLog("");
return 0;
}
void readerAttack(nonces_t ar_resp[], bool setEmulatorMem, bool doStandardAttack) {
#define ATTACK_KEY_COUNT 7 // keep same as define in iso14443a.c -> Mifare1ksim()
// cannot be more than 7 or it will overrun c.d.asBytes(512)
uint64_t key = 0;
typedef struct {
uint64_t keyA;
uint64_t keyB;
} st_t;
st_t sector_trailer[ATTACK_KEY_COUNT];
memset(sector_trailer, 0x00, sizeof(sector_trailer));
uint8_t stSector[ATTACK_KEY_COUNT];
memset(stSector, 0x00, sizeof(stSector));
uint8_t key_cnt[ATTACK_KEY_COUNT];
memset(key_cnt, 0x00, sizeof(key_cnt));
for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
if (ar_resp[i].ar2 > 0) {
//PrintAndLog("DEBUG: Trying sector %d, cuid %08x, nt %08x, ar %08x, nr %08x, ar2 %08x, nr2 %08x",ar_resp[i].sector, ar_resp[i].cuid,ar_resp[i].nonce,ar_resp[i].ar,ar_resp[i].nr,ar_resp[i].ar2,ar_resp[i].nr2);
if (doStandardAttack && mfkey32(ar_resp[i], &key)) {
PrintAndLog(" Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
for (uint8_t ii = 0; ii<ATTACK_KEY_COUNT; ii++) {
if (key_cnt[ii]==0 || stSector[ii]==ar_resp[i].sector) {
if (ar_resp[i].keytype==0) {
//keyA
sector_trailer[ii].keyA = key;
stSector[ii] = ar_resp[i].sector;
key_cnt[ii]++;
break;
} else {
//keyB
sector_trailer[ii].keyB = key;
stSector[ii] = ar_resp[i].sector;
key_cnt[ii]++;
break;
}
}
}
} else if (mfkey32_moebius(ar_resp[i+ATTACK_KEY_COUNT], &key)) {
uint8_t sectorNum = ar_resp[i+ATTACK_KEY_COUNT].sector;
uint8_t keyType = ar_resp[i+ATTACK_KEY_COUNT].keytype;
PrintAndLog("M-Found Key%s for sector %02d: [%012" PRIx64 "]"
, keyType ? "B" : "A"
, sectorNum
, key
);
for (uint8_t ii = 0; ii<ATTACK_KEY_COUNT; ii++) {
if (key_cnt[ii]==0 || stSector[ii]==sectorNum) {
if (keyType==0) {
//keyA
sector_trailer[ii].keyA = key;
stSector[ii] = sectorNum;
key_cnt[ii]++;
break;
} else {
//keyB
sector_trailer[ii].keyB = key;
stSector[ii] = sectorNum;
key_cnt[ii]++;
break;
}
}
}
continue;
}
}
}
//set emulator memory for keys
if (setEmulatorMem) {
for (uint8_t i = 0; i<ATTACK_KEY_COUNT; i++) {
if (key_cnt[i]>0) {
uint8_t memBlock[16];
memset(memBlock, 0x00, sizeof(memBlock));
char cmd1[36];
memset(cmd1,0x00,sizeof(cmd1));
snprintf(cmd1,sizeof(cmd1),"%04x%08xFF078069%04x%08x",(uint32_t) (sector_trailer[i].keyA>>32), (uint32_t) (sector_trailer[i].keyA &0xFFFFFFFF),(uint32_t) (sector_trailer[i].keyB>>32), (uint32_t) (sector_trailer[i].keyB &0xFFFFFFFF));
PrintAndLog("Setting Emulator Memory Block %02d: [%s]",stSector[i]*4+3, cmd1);
if (param_gethex(cmd1, 0, memBlock, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return;
}
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {(stSector[i]*4+3), 1, 0}};
memcpy(c.d.asBytes, memBlock, 16);
clearCommandBuffer();
SendCommand(&c);
}
}
}
/*
//un-comment to use as well moebius attack
for (uint8_t i = ATTACK_KEY_COUNT; i<ATTACK_KEY_COUNT*2; i++) {
if (ar_resp[i].ar2 > 0) {
if (tryMfk32_moebius(ar_resp[i], &key)) {
PrintAndLog("M-Found Key%s for sector %02d: [%04x%08x]", (ar_resp[i].keytype) ? "B" : "A", ar_resp[i].sector, (uint32_t) (key>>32), (uint32_t) (key &0xFFFFFFFF));
}
}
}*/
}
int usage_hf14_mfsim(void) {
PrintAndLog("Usage: hf mf sim [h] [*<card memory>] [u <uid (8, 14, or 20 hex symbols)>] [n <numreads>] [i] [x]");
PrintAndLog("options:");
PrintAndLog(" h (Optional) this help");
PrintAndLog(" card memory: 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other, default> - 1K");
PrintAndLog(" u (Optional) UID 4 or 7 bytes. If not specified, the UID 4B from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a legitimate reader, fishes out the key(s)");
PrintAndLog(" e (Optional) set keys found from 'reader attack' to emulator memory (implies x and i)");
PrintAndLog(" f (Optional) get UIDs to use for 'reader attack' from file 'f <filename.txt>' (implies x and i)");
PrintAndLog(" r (Optional) Generate random nonces instead of sequential nonces. Standard reader attack won't work with this option, only moebius attack works.");
PrintAndLog("samples:");
PrintAndLog(" hf mf sim u 0a0a0a0a");
PrintAndLog(" hf mf sim *4");
PrintAndLog(" hf mf sim u 11223344556677");
PrintAndLog(" hf mf sim f uids.txt");
PrintAndLog(" hf mf sim u 0a0a0a0a e");
return 0;
}
int CmdHF14AMfSim(const char *Cmd) {
UsbCommand resp;
uint8_t uid[7] = {0};
uint8_t exitAfterNReads = 0;
uint8_t flags = 0;
int uidlen = 0;
bool setEmulatorMem = false;
bool attackFromFile = false;
FILE *f;
char filename[FILE_PATH_SIZE];
memset(filename, 0x00, sizeof(filename));
int len = 0;
char buf[64];
uint8_t cmdp = 0;
bool errors = false;
uint8_t cardsize = '1';
while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) {
case '*':
cardsize = param_getchar(Cmd + 1, cmdp);
switch(cardsize) {
case '0':
case '1':
case '2':
case '4': break;
default: cardsize = '1';
}
cmdp++;
break;
case 'e':
case 'E':
setEmulatorMem = true;
//implies x and i
flags |= FLAG_INTERACTIVE;
flags |= FLAG_NR_AR_ATTACK;
cmdp++;
break;
case 'f':
case 'F':
len = param_getstr(Cmd, cmdp+1, filename, sizeof(filename));
if (len < 1) {
PrintAndLog("error no filename found");
return 0;
}
attackFromFile = true;
//implies x and i
flags |= FLAG_INTERACTIVE;
flags |= FLAG_NR_AR_ATTACK;
cmdp += 2;
break;
case 'h':
case 'H':
return usage_hf14_mfsim();
case 'i':
case 'I':
flags |= FLAG_INTERACTIVE;
cmdp++;
break;
case 'n':
case 'N':
exitAfterNReads = param_get8(Cmd, cmdp+1);
cmdp += 2;
break;
case 'r':
case 'R':
flags |= FLAG_RANDOM_NONCE;
cmdp++;
break;
case 'u':
case 'U':
uidlen = 14;
if (param_gethex_ex(Cmd, cmdp+1, uid, &uidlen)) {
return usage_hf14_mfsim();
}
switch (uidlen) {
case 14: flags = FLAG_7B_UID_IN_DATA; break;
case 8: flags = FLAG_4B_UID_IN_DATA; break;
default: return usage_hf14_mfsim();
}
cmdp += 2;
break;
case 'x':
case 'X':
flags |= FLAG_NR_AR_ATTACK;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
//Validations
if(errors) return usage_hf14_mfsim();
//get uid from file
if (attackFromFile) {
int count = 0;
// open file
f = fopen(filename, "r");
if (f == NULL) {
PrintAndLog("File %s not found or locked", filename);
return 1;
}
PrintAndLog("Loading file and simulating. Press keyboard to abort");
while(!feof(f) && !ukbhit()){
memset(buf, 0, sizeof(buf));
memset(uid, 0, sizeof(uid));
if (fgets(buf, sizeof(buf), f) == NULL) {
if (count > 0) break;
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
if(!strlen(buf) && feof(f)) break;
uidlen = strlen(buf)-1;
switch(uidlen) {
case 14: flags |= FLAG_7B_UID_IN_DATA; break;
case 8: flags |= FLAG_4B_UID_IN_DATA; break;
default:
PrintAndLog("uid in file wrong length at %d (length: %d) [%s]",count, uidlen, buf);
fclose(f);
return 2;
}
for (uint8_t i = 0; i < uidlen; i += 2) {
sscanf(&buf[i], "%02x", (unsigned int *)&uid[i / 2]);
}
PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) - press button to abort",
cardsize == '0' ? "Mini" :
cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
exitAfterNReads,
flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer();
SendCommand(&c);
while (! WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... "
}
//got a response
nonces_t ar_resp[ATTACK_KEY_COUNT*2];
memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp));
// We can skip the standard attack if we have RANDOM_NONCE set.
readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE));
if ((bool)resp.arg[1]) {
PrintAndLog("Device button pressed - quitting");
fclose(f);
return 4;
}
count++;
}
fclose(f);
} else { //not from file
PrintAndLog("mf sim cardsize: %s, uid: %s, numreads:%d, flags:%d (0x%02x) ",
cardsize == '0' ? "Mini" :
cardsize == '2' ? "2K" :
cardsize == '4' ? "4K" : "1K",
flags & FLAG_4B_UID_IN_DATA ? sprint_hex(uid,4):
flags & FLAG_7B_UID_IN_DATA ? sprint_hex(uid,7): "N/A",
exitAfterNReads,
flags,
flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, cardsize}};
memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer();
SendCommand(&c);
if(flags & FLAG_INTERACTIVE) {
PrintAndLog("Press pm3-button to abort simulation");
while(! WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
//We're waiting only 1.5 s at a time, otherwise we get the
// annoying message about "Waiting for a response... "
}
//got a response
if (flags & FLAG_NR_AR_ATTACK) {
nonces_t ar_resp[ATTACK_KEY_COUNT*2];
memcpy(ar_resp, resp.d.asBytes, sizeof(ar_resp));
// We can skip the standard attack if we have RANDOM_NONCE set.
readerAttack(ar_resp, setEmulatorMem, !(flags & FLAG_RANDOM_NONCE));
}
}
}
return 0;
}
int CmdHF14AMfDbg(const char *Cmd)
{
int dbgMode = param_get32ex(Cmd, 0, 0, 10);
if (dbgMode > 4) {
PrintAndLog("Max debug mode parameter is 4 \n");
}
if (strlen(Cmd) < 1 || !param_getchar(Cmd, 0) || dbgMode > 4) {
PrintAndLog("Usage: hf mf dbg <debug level>");
PrintAndLog(" 0 - no debug messages");
PrintAndLog(" 1 - error messages");
PrintAndLog(" 2 - plus information messages");
PrintAndLog(" 3 - plus debug messages");
PrintAndLog(" 4 - print even debug messages in timing critical functions");
PrintAndLog(" Note: this option therefore may cause malfunction itself");
return 0;
}
UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfEGet(const char *Cmd)
{
uint8_t blockNo = 0;
uint8_t data[16] = {0x00};
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eget <block number>");
PrintAndLog(" sample: hf mf eget 0 ");
return 0;
}
blockNo = param_get8(Cmd, 0);
PrintAndLog(" ");
if (!mfEmlGetMem(data, blockNo, 1)) {
PrintAndLog("data[%3d]:%s", blockNo, sprint_hex(data, 16));
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHF14AMfEClear(const char *Cmd)
{
if (param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eclr");
PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n");
return 0;
}
UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfESet(const char *Cmd)
{
uint8_t memBlock[16];
uint8_t blockNo = 0;
memset(memBlock, 0x00, sizeof(memBlock));
if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eset <block number> <block data (32 hex symbols)>");
PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f ");
return 0;
}
blockNo = param_get8(Cmd, 0);
if (param_gethex(Cmd, 1, memBlock, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return 1;
}
// 1 - blocks count
return mfEmlSetMem(memBlock, blockNo, 1);
}
int CmdHF14AMfELoad(const char *Cmd)
{
FILE * f;
char filename[FILE_PATH_SIZE];
char *fnameptr = filename;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, len, blockNum, numBlocks;
int nameParamNo = 1;
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 0x00) {
PrintAndLog("It loads emul dump from the file `filename.eml`");
PrintAndLog("Usage: hf mf eload [card memory] <file name w/o `.eml`>");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog(" sample: hf mf eload filename");
PrintAndLog(" hf mf eload 4 filename");
return 0;
}
switch (ctmp) {
case '0' : numBlocks = 5*4; break;
case '1' :
case '\0': numBlocks = 16*4; break;
case '2' : numBlocks = 32*4; break;
case '4' : numBlocks = 256; break;
default: {
numBlocks = 16*4;
nameParamNo = 0;
}
}
len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename));
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
fnameptr += len;
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "r");
if (f == NULL) {
PrintAndLog("File %s not found or locked", filename);
return 1;
}
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
if (blockNum >= numBlocks) break;
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
if (strlen(buf) < 32){
if(strlen(buf) && feof(f))
break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2) {
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
}
if (mfEmlSetMem(buf8, blockNum, 1)) {
PrintAndLog("Cant set emul block: %3d", blockNum);
fclose(f);
return 3;
}
printf(".");
blockNum++;
if (blockNum >= numBlocks) break;
}
fclose(f);
printf("\n");
if ((blockNum != numBlocks)) {
PrintAndLog("File content error. Got %d must be %d blocks.",blockNum, numBlocks);
return 4;
}
PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename);
return 0;
}
int CmdHF14AMfESave(const char *Cmd)
{
FILE * f;
char filename[FILE_PATH_SIZE];
char * fnameptr = filename;
uint8_t buf[64];
int i, j, len, numBlocks;
int nameParamNo = 1;
memset(filename, 0, sizeof(filename));
memset(buf, 0, sizeof(buf));
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H') {
PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`");
PrintAndLog(" Usage: hf mf esave [card memory] [file name w/o `.eml`]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog(" sample: hf mf esave ");
PrintAndLog(" hf mf esave 4");
PrintAndLog(" hf mf esave 4 filename");
return 0;
}
switch (ctmp) {
case '0' : numBlocks = 5*4; break;
case '1' :
case '\0': numBlocks = 16*4; break;
case '2' : numBlocks = 32*4; break;
case '4' : numBlocks = 256; break;
default: {
numBlocks = 16*4;
nameParamNo = 0;
}
}
len = param_getstr(Cmd,nameParamNo,filename,sizeof(filename));
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
// user supplied filename?
if (len < 1) {
// get filename (UID from memory)
if (mfEmlGetMem(buf, 0, 1)) {
PrintAndLog("Can\'t get UID from block: %d", 0);
len = sprintf(fnameptr, "dump");
fnameptr += len;
}
else {
for (j = 0; j < 7; j++, fnameptr += 2)
sprintf(fnameptr, "%02X", buf[j]);
}
} else {
fnameptr += len;
}
// add file extension
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "w+");
if ( !f ) {
PrintAndLog("Can't open file %s ", filename);
return 1;
}
// put hex
for (i = 0; i < numBlocks; i++) {
if (mfEmlGetMem(buf, i, 1)) {
PrintAndLog("Cant get block: %d", i);
break;
}
for (j = 0; j < 16; j++)
fprintf(f, "%02X", buf[j]);
fprintf(f,"\n");
}
fclose(f);
PrintAndLog("Saved %d blocks to file: %s", numBlocks, filename);
return 0;
}
int CmdHF14AMfECFill(const char *Cmd)
{
uint8_t keyType = 0;
uint8_t numSectors = 16;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf ecfill <key A/B> [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog("samples: hf mf ecfill A");
PrintAndLog(" hf mf ecfill A 4");
PrintAndLog("Read card and transfer its data to emulator memory.");
PrintAndLog("Keys must be laid in the emulator memory. \n");
return 0;
}
char ctmp = param_getchar(Cmd, 0);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') keyType = 1;
ctmp = param_getchar(Cmd, 1);
switch (ctmp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
printf("--params: numSectors: %d, keyType:%d\n", numSectors, keyType);
UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfEKeyPrn(const char *Cmd)
{
int i;
uint8_t numSectors = 16;
uint8_t data[16];
uint64_t keyA, keyB;
bool createDumpFile = false;
if (param_getchar(Cmd, 0) == 'h') {
PrintAndLog("It prints the keys loaded in the emulator memory");
PrintAndLog("Usage: hf mf ekeyprn [card memory] [d]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog(" [d] : write keys to binary file dumpkeys.bin");
PrintAndLog("");
PrintAndLog(" sample: hf mf ekeyprn 1");
return 0;
}
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00) {
switch (param_getchar(Cmd, cmdp)) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
case 'd' :
case 'D' : createDumpFile = true; break;
}
cmdp++;
}
PrintAndLog("|---|----------------|----------------|");
PrintAndLog("|sec|key A |key B |");
PrintAndLog("|---|----------------|----------------|");
for (i = 0; i < numSectors; i++) {
if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) {
PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
break;
}
keyA = bytes_to_num(data, 6);
keyB = bytes_to_num(data + 10, 6);
PrintAndLog("|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB);
}
PrintAndLog("|---|----------------|----------------|");
// Create dump file
if (createDumpFile) {
FILE *fkeys;
if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) {
PrintAndLog("Could not create file dumpkeys.bin");
return 1;
}
PrintAndLog("Printing keys to binary file dumpkeys.bin...");
for(i = 0; i < numSectors; i++) {
if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) {
PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
break;
}
fwrite(data, 1, 6, fkeys);
}
for(i = 0; i < numSectors; i++) {
if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) {
PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
break;
}
fwrite(data+10, 1, 6, fkeys);
}
fclose(fkeys);
}
return 0;
}
int CmdHF14AMfCSetUID(const char *Cmd)
{
uint8_t uid[8] = {0x00};
uint8_t oldUid[8] = {0x00};
uint8_t atqa[2] = {0x00};
uint8_t sak[1] = {0x00};
uint8_t atqaPresent = 0;
int res;
uint8_t needHelp = 0;
char cmdp = 1;
if (param_getchar(Cmd, 0) && param_gethex(Cmd, 0, uid, 8)) {
PrintAndLog("UID must include 8 HEX symbols");
return 1;
}
if (param_getlength(Cmd, 1) > 1 && param_getlength(Cmd, 2) > 1) {
atqaPresent = 1;
cmdp = 3;
if (param_gethex(Cmd, 1, atqa, 4)) {
PrintAndLog("ATQA must include 4 HEX symbols");
return 1;
}
if (param_gethex(Cmd, 2, sak, 2)) {
PrintAndLog("SAK must include 2 HEX symbols");
return 1;
}
}
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
needHelp = 1;
break;
default:
PrintAndLog("ERROR: Unknown parameter '%c'", param_getchar(Cmd, cmdp));
needHelp = 1;
break;
}
cmdp++;
}
if (strlen(Cmd) < 1 || needHelp) {
PrintAndLog("");
PrintAndLog("Usage: hf mf csetuid <UID 8 hex symbols> [ATQA 4 hex symbols SAK 2 hex symbols]");
PrintAndLog("sample: hf mf csetuid 01020304");
PrintAndLog("sample: hf mf csetuid 01020304 0004 08");
PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)");
return 0;
}
PrintAndLog("uid:%s", sprint_hex(uid, 4));
if (atqaPresent) {
PrintAndLog("--atqa:%s sak:%02x", sprint_hex(atqa, 2), sak[0]);
}
res = mfCSetUID(uid, (atqaPresent)?atqa:NULL, (atqaPresent)?sak:NULL, oldUid);
if (res) {
PrintAndLog("Can't set UID. Error=%d", res);
return 1;
}
PrintAndLog("old UID:%s", sprint_hex(oldUid, 4));
PrintAndLog("new UID:%s", sprint_hex(uid, 4));
return 0;
}
int CmdHF14AMfCWipe(const char *Cmd)
{
int res, gen = 0;
int numBlocks = 16 * 4;
bool wipeCard = false;
bool fillCard = false;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf cwipe [card size] [w] [f]");
PrintAndLog("sample: hf mf cwipe 1 w f");
PrintAndLog("[card size]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("w - Wipe magic Chinese card (only works with gen:1a cards)");
PrintAndLog("f - Fill the card with default data and keys (works with gen:1a and gen:1b cards only)");
return 0;
}
gen = mfCIdentify();
if ((gen != 1) && (gen != 2))
return 1;
numBlocks = ParamCardSizeBlocks(param_getchar(Cmd, 0));
char cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00){
switch(param_getchar(Cmd, cmdp)) {
case 'w':
case 'W':
wipeCard = 1;
break;
case 'f':
case 'F':
fillCard = 1;
break;
default:
break;
}
cmdp++;
}
if (!wipeCard && !fillCard)
wipeCard = true;
PrintAndLog("--blocks count:%2d wipe:%c fill:%c", numBlocks, (wipeCard)?'y':'n', (fillCard)?'y':'n');
if (gen == 2) {
/* generation 1b magic card */
if (wipeCard) {
PrintAndLog("WARNING: can't wipe magic card 1b generation");
}
res = mfCWipe(numBlocks, true, false, fillCard);
} else {
/* generation 1a magic card by default */
res = mfCWipe(numBlocks, false, wipeCard, fillCard);
}
if (res) {
PrintAndLog("Can't wipe. error=%d", res);
return 1;
}
PrintAndLog("OK");
return 0;
}
int CmdHF14AMfCSetBlk(const char *Cmd)
{
uint8_t memBlock[16] = {0x00};
uint8_t blockNo = 0;
bool wipeCard = false;
int res, gen = 0;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf csetblk <block number> <block data (32 hex symbols)> [w]");
PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516");
PrintAndLog("Set block data for magic Chinese card (only works with such cards)");
PrintAndLog("If you also want wipe the card then add 'w' at the end of the command line");
return 0;
}
gen = mfCIdentify();
if ((gen != 1) && (gen != 2))
return 1;
blockNo = param_get8(Cmd, 0);
if (param_gethex(Cmd, 1, memBlock, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return 1;
}
char ctmp = param_getchar(Cmd, 2);
wipeCard = (ctmp == 'w' || ctmp == 'W');
PrintAndLog("--block number:%2d data:%s", blockNo, sprint_hex(memBlock, 16));
if (gen == 2) {
/* generation 1b magic card */
res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
res = mfCSetBlock(blockNo, memBlock, NULL, wipeCard, CSETBLOCK_SINGLE_OPER);
}
if (res) {
PrintAndLog("Can't write block. error=%d", res);
return 1;
}
return 0;
}
int CmdHF14AMfCLoad(const char *Cmd)
{
FILE * f;
char filename[FILE_PATH_SIZE] = {0x00};
char * fnameptr = filename;
char buf[256] = {0x00};
uint8_t buf8[256] = {0x00};
uint8_t fillFromEmulator = 0;
int i, len, blockNum, flags = 0, gen = 0, numblock = 64;
if (param_getchar(Cmd, 0) == 'h' || param_getchar(Cmd, 0)== 0x00) {
PrintAndLog("It loads magic Chinese card from the file `filename.eml`");
PrintAndLog("or from emulator memory (option `e`). 4K card: (option `4`)");
PrintAndLog("Usage: hf mf cload [file name w/o `.eml`][e][4]");
PrintAndLog(" or: hf mf cload e [4]");
PrintAndLog("Sample: hf mf cload filename");
PrintAndLog(" hf mf cload filname 4");
PrintAndLog(" hf mf cload e");
PrintAndLog(" hf mf cload e 4");
return 0;
}
char ctmp = param_getchar(Cmd, 0);
if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1;
ctmp = param_getchar(Cmd, 1);
if (ctmp == '4') numblock = 256;
gen = mfCIdentify();
PrintAndLog("Loading magic mifare %dK", numblock == 256 ? 4:1);
if (fillFromEmulator) {
for (blockNum = 0; blockNum < numblock; blockNum += 1) {
if (mfEmlGetMem(buf8, blockNum, 1)) {
PrintAndLog("Cant get block: %d", blockNum);
return 2;
}
if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write
if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Magic Halt and switch off field.
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) {
PrintAndLog("Cant set magic card block: %d", blockNum);
return 3;
}
}
return 0;
} else {
param_getstr(Cmd, 0, filename, sizeof(filename));
len = strlen(filename);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
//memcpy(filename, Cmd, len);
fnameptr += len;
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "r");
if (f == NULL) {
PrintAndLog("File not found or locked.");
return 1;
}
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
fclose(f);
PrintAndLog("File reading error.");
return 2;
}
if (strlen(buf) < 32) {
if(strlen(buf) && feof(f))
break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2)
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
if (blockNum == 0) flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write
if (blockNum == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD; // Done. Switch off field.
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
if (mfCSetBlock(blockNum, buf8, NULL, 0, flags)) {
PrintAndLog("Can't set magic card block: %d", blockNum);
fclose(f);
return 3;
}
blockNum++;
if (blockNum >= numblock) break; // magic card type - mifare 1K 64 blocks, mifare 4k 256 blocks
}
fclose(f);
//if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){
if (blockNum != numblock){
PrintAndLog("File content error. There must be %d blocks", numblock);
return 4;
}
PrintAndLog("Loaded from file: %s", filename);
return 0;
}
return 0;
}
int CmdHF14AMfCGetBlk(const char *Cmd) {
uint8_t memBlock[16];
uint8_t blockNo = 0;
int res, gen = 0;
memset(memBlock, 0x00, sizeof(memBlock));
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf cgetblk <block number>");
PrintAndLog("sample: hf mf cgetblk 1");
PrintAndLog("Get block data from magic Chinese card (only works with such cards)\n");
return 0;
}
gen = mfCIdentify();
blockNo = param_get8(Cmd, 0);
PrintAndLog("--block number:%2d ", blockNo);
if (gen == 2) {
/* generation 1b magic card */
res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B);
} else {
/* generation 1a magic card by default */
res = mfCGetBlock(blockNo, memBlock, CSETBLOCK_SINGLE_OPER);
}
if (res) {
PrintAndLog("Can't read block. error=%d", res);
return 1;
}
PrintAndLog("block data:%s", sprint_hex(memBlock, 16));
if (mfIsSectorTrailer(blockNo)) {
PrintAndLogEx(NORMAL, "Trailer decoded:");
PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(memBlock, 6));
PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&memBlock[10], 6));
int bln = mfFirstBlockOfSector(mfSectorNum(blockNo));
int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1;
for (int i = 0; i < 4; i++) {
PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &memBlock[6]));
bln += blinc;
}
PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&memBlock[9], 1));
}
return 0;
}
int CmdHF14AMfCGetSc(const char *Cmd) {
uint8_t memBlock[16] = {0x00};
uint8_t sectorNo = 0;
int i, res, flags, gen = 0, baseblock = 0, sect_size = 4;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf cgetsc <sector number>");
PrintAndLog("sample: hf mf cgetsc 0");
PrintAndLog("Get sector data from magic Chinese card (only works with such cards)\n");
return 0;
}
sectorNo = param_get8(Cmd, 0);
if (sectorNo > 39) {
PrintAndLog("Sector number must be in [0..15] in MIFARE classic 1k and [0..39] in MIFARE classic 4k.");
return 1;
}
PrintAndLog("--sector number:%d ", sectorNo);
gen = mfCIdentify();
flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC;
if (sectorNo < 32 ) {
baseblock = sectorNo * 4;
} else {
baseblock = 128 + 16 * (sectorNo - 32);
}
if (sectorNo > 31) sect_size = 16;
for (i = 0; i < sect_size; i++) {
if (i == 1) flags = 0;
if (i == sect_size - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD;
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
res = mfCGetBlock(baseblock + i, memBlock, flags);
if (res) {
PrintAndLog("Can't read block. %d error=%d", baseblock + i, res);
return 1;
}
PrintAndLog("block %3d data:%s", baseblock + i, sprint_hex(memBlock, 16));
if (mfIsSectorTrailer(baseblock + i)) {
PrintAndLogEx(NORMAL, "Trailer decoded:");
PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(memBlock, 6));
PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&memBlock[10], 6));
int bln = baseblock;
int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1;
for (int i = 0; i < 4; i++) {
PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &memBlock[6]));
bln += blinc;
}
PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&memBlock[9], 1));
}
}
return 0;
}
int CmdHF14AMfCSave(const char *Cmd) {
FILE * f;
char filename[FILE_PATH_SIZE] = {0x00};
char * fnameptr = filename;
uint8_t fillFromEmulator = 0;
uint8_t buf[256] = {0x00};
int i, j, len, flags, gen = 0, numblock = 64;
// memset(filename, 0, sizeof(filename));
// memset(buf, 0, sizeof(buf));
if (param_getchar(Cmd, 0) == 'h') {
PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`");
PrintAndLog("or into emulator memory (option `e`). 4K card: (option `4`)");
PrintAndLog("Usage: hf mf csave [file name w/o `.eml`][e][4]");
PrintAndLog("Sample: hf mf csave ");
PrintAndLog(" hf mf csave filename");
PrintAndLog(" hf mf csave e");
PrintAndLog(" hf mf csave 4");
PrintAndLog(" hf mf csave filename 4");
PrintAndLog(" hf mf csave e 4");
return 0;
}
char ctmp = param_getchar(Cmd, 0);
if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1;
if (ctmp == '4') numblock = 256;
ctmp = param_getchar(Cmd, 1);
if (ctmp == '4') numblock = 256;
gen = mfCIdentify();
PrintAndLog("Saving magic mifare %dK", numblock == 256 ? 4:1);
if (fillFromEmulator) {
// put into emulator
flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC;
for (i = 0; i < numblock; i++) {
if (i == 1) flags = 0;
if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD;
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
if (mfCGetBlock(i, buf, flags)) {
PrintAndLog("Cant get block: %d", i);
break;
}
if (mfEmlSetMem(buf, i, 1)) {
PrintAndLog("Cant set emul block: %d", i);
return 3;
}
}
return 0;
} else {
param_getstr(Cmd, 0, filename, sizeof(filename));
len = strlen(filename);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
ctmp = param_getchar(Cmd, 0);
if (len < 1 || (ctmp == '4')) {
// get filename
flags = CSETBLOCK_SINGLE_OPER;
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
if (mfCGetBlock(0, buf, flags)) {
PrintAndLog("Cant get block: %d", 0);
len = sprintf(fnameptr, "dump");
fnameptr += len;
}
else {
for (j = 0; j < 7; j++, fnameptr += 2)
sprintf(fnameptr, "%02x", buf[j]);
}
} else {
//memcpy(filename, Cmd, len);
fnameptr += len;
}
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "w+");
if (f == NULL) {
PrintAndLog("File not found or locked.");
return 1;
}
// put hex
flags = CSETBLOCK_INIT_FIELD + CSETBLOCK_WUPC;
for (i = 0; i < numblock; i++) {
if (i == 1) flags = 0;
if (i == numblock - 1) flags = CSETBLOCK_HALT + CSETBLOCK_RESET_FIELD;
if (gen == 2)
/* generation 1b magic card */
flags |= CSETBLOCK_MAGIC_1B;
if (mfCGetBlock(i, buf, flags)) {
PrintAndLog("Cant get block: %d", i);
break;
}
for (j = 0; j < 16; j++)
fprintf(f, "%02x", buf[j]);
fprintf(f,"\n");
}
fclose(f);
PrintAndLog("Saved to file: %s", filename);
return 0;
}
}
int CmdHF14AMfSniff(const char *Cmd){
bool wantLogToFile = 0;
bool wantDecrypt = 0;
//bool wantSaveToEml = 0; TODO
bool wantSaveToEmlFile = 0;
//var
int res = 0;
int len = 0;
int parlen = 0;
int blockLen = 0;
int pckNum = 0;
int num = 0;
uint8_t uid[7];
uint8_t uid_len;
uint8_t atqa[2] = {0x00};
uint8_t sak;
bool isTag;
uint8_t *buf = NULL;
uint16_t bufsize = 0;
uint8_t *bufPtr = NULL;
uint8_t parity[16];
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H' ) {
PrintAndLog("It continuously gets data from the field and saves it to: log, emulator, emulator file.");
PrintAndLog("You can specify:");
PrintAndLog(" l - save encrypted sequence to logfile `uid.log`");
PrintAndLog(" d - decrypt sequence and put it to log file `uid.log`");
PrintAndLog(" n/a e - decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory");
PrintAndLog(" f - decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`");
PrintAndLog("Usage: hf mf sniff [l][d][e][f]");
PrintAndLog(" sample: hf mf sniff l d e");
return 0;
}
for (int i = 0; i < 4; i++) {
ctmp = param_getchar(Cmd, i);
if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true;
if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true;
//if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO
if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true;
}
printf("-------------------------------------------------------------------------\n");
printf("Executing command. \n");
printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n");
printf("Press the key on pc keyboard to abort the client.\n");
printf("-------------------------------------------------------------------------\n");
UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
getchar();
printf("\naborted via keyboard!\n");
break;
}
UsbCommand resp;
if (WaitForResponseTimeoutW(CMD_ACK, &resp, 2000, false)) {
res = resp.arg[0] & 0xff;
uint16_t traceLen = resp.arg[1];
len = resp.arg[2];
if (res == 0) { // we are done
break;
}
if (res == 1) { // there is (more) data to be transferred
if (pckNum == 0) { // first packet, (re)allocate necessary buffer
if (traceLen > bufsize || buf == NULL) {
uint8_t *p;
if (buf == NULL) { // not yet allocated
p = malloc(traceLen);
} else { // need more memory
p = realloc(buf, traceLen);
}
if (p == NULL) {
PrintAndLog("Cannot allocate memory for trace");
free(buf);
return 2;
}
buf = p;
}
bufPtr = buf;
bufsize = traceLen;
memset(buf, 0x00, traceLen);
}
memcpy(bufPtr, resp.d.asBytes, len);
bufPtr += len;
pckNum++;
}
if (res == 2) { // received all data, start displaying
blockLen = bufPtr - buf;
bufPtr = buf;
printf(">\n");
PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum);
while (bufPtr - buf < blockLen) {
bufPtr += 6; // skip (void) timing information
len = *((uint16_t *)bufPtr);
if(len & 0x8000) {
isTag = true;
len &= 0x7fff;
} else {
isTag = false;
}
parlen = (len - 1) / 8 + 1;
bufPtr += 2;
if ((len == 14) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[12] == 0xff) && (bufPtr[13] == 0xff)) {
memcpy(uid, bufPtr + 2, 7);
memcpy(atqa, bufPtr + 2 + 7, 2);
uid_len = (atqa[0] & 0xC0) == 0x40 ? 7 : 4;
sak = bufPtr[11];
PrintAndLog("tag select uid:%s atqa:0x%02x%02x sak:0x%02x",
sprint_hex(uid + (7 - uid_len), uid_len),
atqa[1],
atqa[0],
sak);
if (wantLogToFile || wantDecrypt) {
FillFileNameByUID(logHexFileName, uid + (7 - uid_len), ".log", uid_len);
AddLogCurrentDT(logHexFileName);
}
if (wantDecrypt)
mfTraceInit(uid, atqa, sak, wantSaveToEmlFile);
} else {
oddparitybuf(bufPtr, len, parity);
PrintAndLog("%s(%d):%s [%s] c[%s]%c",
isTag ? "TAG":"RDR",
num,
sprint_hex(bufPtr, len),
printBitsPar(bufPtr + len, len),
printBitsPar(parity, len),
memcmp(bufPtr + len, parity, len / 8 + 1) ? '!' : ' ');
if (wantLogToFile)
AddLogHex(logHexFileName, isTag ? "TAG: ":"RDR: ", bufPtr, len);
if (wantDecrypt)
mfTraceDecode(bufPtr, len, bufPtr[len], wantSaveToEmlFile);
num++;
}
bufPtr += len;
bufPtr += parlen; // ignore parity
}
pckNum = 0;
}
} // resp not NULL
} // while (true)
free(buf);
msleep(300); // wait for exiting arm side.
PrintAndLog("Done.");
return 0;
}
//needs nt, ar, at, Data to decrypt
int CmdDecryptTraceCmds(const char *Cmd){
uint8_t data[50];
int len = 100;
param_gethex_ex(Cmd, 3, data, &len);
return tryDecryptWord(param_get32ex(Cmd, 0, 0, 16), param_get32ex(Cmd, 1, 0, 16), param_get32ex(Cmd, 2, 0, 16), data, len/2);
}
int CmdHF14AMfAuth4(const char *cmd) {
uint8_t keyn[20] = {0};
int keynlen = 0;
uint8_t key[16] = {0};
int keylen = 0;
CLIParserInit("hf mf auth4",
"Executes AES authentication command in ISO14443-4",
"Usage:\n\thf mf auth4 4000 000102030405060708090a0b0c0d0e0f -> executes authentication\n"
"\thf mf auth4 9003 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> executes authentication\n");
void* argtable[] = {
arg_param_begin,
arg_str1(NULL, NULL, "<Key Num (HEX 2 bytes)>", NULL),
arg_str1(NULL, NULL, "<Key Value (HEX 16 bytes)>", NULL),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
CLIGetHexWithReturn(1, keyn, &keynlen);
CLIGetHexWithReturn(2, key, &keylen);
CLIParserFree();
if (keynlen != 2) {
PrintAndLog("ERROR: <Key Num> must be 2 bytes long instead of: %d", keynlen);
return 1;
}
if (keylen != 16) {
PrintAndLog("ERROR: <Key Value> must be 16 bytes long instead of: %d", keylen);
return 1;
}
return MifareAuth4(NULL, keyn, key, true, false, true);
}
// https://www.nxp.com/docs/en/application-note/AN10787.pdf
int CmdHF14AMfMAD(const char *cmd) {
CLIParserInit("hf mf mad",
"Checks and prints Mifare Application Directory (MAD)",
"Usage:\n\thf mf mad -> shows MAD if exists\n"
"\thf mf mad -a 03e1 -k ffffffffffff -b -> shows NDEF data if exists. read card with custom key and key B\n");
void *argtable[] = {
arg_param_begin,
arg_lit0("vV", "verbose", "show technical data"),
arg_str0("aA", "aid", "print all sectors with aid", NULL),
arg_str0("kK", "key", "key for printing sectors", NULL),
arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[6] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
if (aidlen != 2 && keylen > 0) {
PrintAndLogEx(WARNING, "do not need a key without aid.");
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) {
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
if (verbose) {
for (int i = 0; i < 4; i ++)
PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(&sector0[i * 16], 16));
}
bool haveMAD2 = false;
MAD1DecodeAndPrint(sector0, verbose, &haveMAD2);
if (haveMAD2) {
if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) {
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
MAD2DecodeAndPrint(sector10, verbose);
}
if (aidlen == 2) {
uint16_t aaid = (aid[0] << 8) + aid[1];
PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid);
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, sector10, mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
uint8_t akey[6] = {0};
memcpy(akey, g_mifare_ndef_key, 6);
if (keylen == 6) {
memcpy(akey, key, 6);
}
for (int i = 0; i < madlen; i++) {
if (aaid == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector)) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
for (int j = 0; j < (verbose ? 4 : 3); j ++)
PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16));
}
}
}
return 0;
}
int CmdHFMFNDEF(const char *cmd) {
CLIParserInit("hf mf ndef",
"Prints NFC Data Exchange Format (NDEF)",
"Usage:\n\thf mf ndef -> shows NDEF data\n"
"\thf mf ndef -a 03e1 -k ffffffffffff -b -> shows NDEF data with custom AID, key and with key B\n");
void *argtable[] = {
arg_param_begin,
arg_litn("vV", "verbose", 0, 2, "show technical data"),
arg_str0("aA", "aid", "replace default aid for NDEF", NULL),
arg_str0("kK", "key", "replace default key for NDEF", NULL),
arg_lit0("bB", "keyb", "use key B for access sectors (by default: key A)"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
bool verbose = arg_get_lit(1);
bool verbose2 = arg_get_lit(1) > 1;
uint8_t aid[2] = {0};
int aidlen;
CLIGetHexWithReturn(2, aid, &aidlen);
uint8_t key[6] = {0};
int keylen;
CLIGetHexWithReturn(3, key, &keylen);
bool keyB = arg_get_lit(4);
CLIParserFree();
uint16_t ndefAID = 0x03e1;
if (aidlen == 2)
ndefAID = (aid[0] << 8) + aid[1];
uint8_t ndefkey[6] = {0};
memcpy(ndefkey, g_mifare_ndef_key, 6);
if (keylen == 6) {
memcpy(ndefkey, key, 6);
}
uint8_t sector0[16 * 4] = {0};
uint8_t sector10[16 * 4] = {0};
uint8_t data[4096] = {0};
int datalen = 0;
PrintAndLogEx(NORMAL, "");
if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) {
PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
bool haveMAD2 = false;
int res = MADCheck(sector0, NULL, verbose, &haveMAD2);
if (res) {
PrintAndLogEx(ERR, "MAD error %d.", res);
return res;
}
if (haveMAD2) {
if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) {
PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys.");
return 2;
}
}
uint16_t mad[7 + 8 + 8 + 8 + 8] = {0};
size_t madlen = 0;
if (MADDecode(sector0, (haveMAD2 ? sector10 : NULL), mad, &madlen)) {
PrintAndLogEx(ERR, "can't decode mad.");
return 10;
}
printf("data reading:");
for (int i = 0; i < madlen; i++) {
if (ndefAID == mad[i]) {
uint8_t vsector[16 * 4] = {0};
if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, ndefkey, vsector)) {
PrintAndLogEx(ERR, "read sector %d error.", i + 1);
return 2;
}
memcpy(&data[datalen], vsector, 16 * 3);
datalen += 16 * 3;
printf(".");
}
}
printf(" OK\n");
if (!datalen) {
PrintAndLogEx(ERR, "no NDEF data.");
return 11;
}
if (verbose2) {
PrintAndLogEx(NORMAL, "NDEF data:");
dump_buffer(data, datalen, stdout, 1);
}
NDEFDecodeAndPrint(data, datalen, verbose);
return 0;
}
int CmdHFMFPersonalize(const char *cmd) {
CLIParserInit("hf mf personalize",
"Personalize the UID of a Mifare Classic EV1 card. This is only possible if it is a 7Byte UID card and if it is not already personalized.",
"Usage:\n\thf mf personalize UIDF0 -> double size UID according to ISO/IEC14443-3\n"
"\thf mf personalize UIDF1 -> double size UID according to ISO/IEC14443-3, optional usage of selection process shortcut\n"
"\thf mf personalize UIDF2 -> single size random ID according to ISO/IEC14443-3\n"
"\thf mf personalize UIDF3 -> single size NUID according to ISO/IEC14443-3\n"
"\thf mf personalize -t B -k B0B1B2B3B4B5 UIDF3 -> use key B = 0xB0B1B2B3B4B5 instead of default key A\n");
void *argtable[] = {
arg_param_begin,
arg_str0("tT", "keytype", "<A|B>", "key type (A or B) to authenticate sector 0 (default: A)"),
arg_str0("kK", "key", "<key (hex 6 Bytes)>", "key to authenticate sector 0 (default: FFFFFFFFFFFF)"),
arg_str1(NULL, NULL, "<UIDF0|UIDF1|UIDF2|UIDF3>", "Personalization Option"),
arg_param_end
};
CLIExecWithReturn(cmd, argtable, true);
char keytypestr[2] = "A";
uint8_t keytype = 0x00;
int keytypestr_len;
int res = CLIParamStrToBuf(arg_get_str(1), (uint8_t*)keytypestr, 1, &keytypestr_len);
if (res || (keytypestr[0] != 'a' && keytypestr[0] != 'A' && keytypestr[0] != 'b' && keytypestr[0] != 'B')) {
PrintAndLog("ERROR: not a valid key type. Key type must be A or B");
CLIParserFree();
return 1;
}
if (keytypestr[0] == 'B' || keytypestr[0] == 'b') {
keytype = 0x01;
}
uint8_t key[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
int key_len;
res = CLIParamHexToBuf(arg_get_str(2), key, 6, &key_len);
if (res || (!res && key_len > 0 && key_len != 6)) {
PrintAndLog("ERROR: not a valid key. Key must be 12 hex digits");
CLIParserFree();
return 1;
}
char pers_optionstr[6];
int opt_len;
uint8_t pers_option;
res = CLIParamStrToBuf(arg_get_str(3), (uint8_t*)pers_optionstr, 5, &opt_len);
if (res || (!res && opt_len > 0 && opt_len != 5)
|| (strncmp(pers_optionstr, "UIDF0", 5) && strncmp(pers_optionstr, "UIDF1", 5) && strncmp(pers_optionstr, "UIDF2", 5) && strncmp(pers_optionstr, "UIDF3", 5))) {
PrintAndLog("ERROR: invalid personalization option. Must be one of UIDF0, UIDF1, UIDF2, or UIDF3");
CLIParserFree();
return 1;
}
if (!strncmp(pers_optionstr, "UIDF0", 5)) {
pers_option = MIFARE_EV1_UIDF0;
} else if (!strncmp(pers_optionstr, "UIDF1", 5)) {
pers_option = MIFARE_EV1_UIDF1;
} else if (!strncmp(pers_optionstr, "UIDF2", 5)) {
pers_option = MIFARE_EV1_UIDF2;
} else {
pers_option = MIFARE_EV1_UIDF3;
}
CLIParserFree();
UsbCommand c = {CMD_MIFARE_PERSONALIZE_UID, {keytype, pers_option, 0}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLog("Personalization %s", isOK ? "FAILED" : "SUCCEEDED");
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"},
{"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"},
{"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"},
{"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"},
{"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"},
{"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"},
{"auth4", CmdHF14AMfAuth4, 0, "ISO14443-4 AES authentication"},
{"chk", CmdHF14AMfChk, 0, "Test block keys"},
{"mifare", CmdHF14AMifare, 0, "Read parity error messages."},
{"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"},
{"nested", CmdHF14AMfNested, 0, "Test nested authentication"},
{"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"},
{"sim", CmdHF14AMfSim, 0, "Simulate MIFARE card"},
{"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory"},
{"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"},
{"eset", CmdHF14AMfESet, 0, "Set simulator memory block"},
{"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"},
{"esave", CmdHF14AMfESave, 0, "Save to file emul dump"},
{"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"},
{"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"},
{"cwipe", CmdHF14AMfCWipe, 0, "Wipe magic Chinese card"},
{"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"},
{"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"},
{"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"},
{"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"},
{"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"},
{"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"},
{"decrypt", CmdDecryptTraceCmds, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"},
{"mad", CmdHF14AMfMAD, 0, "Checks and prints MAD"},
{"ndef", CmdHFMFNDEF, 0, "Prints NDEF records from card"},
{"personalize", CmdHFMFPersonalize, 0, "Personalize UID (Mifare Classic EV1 only)"},
{NULL, NULL, 0, NULL}
};
int CmdHFMF(const char *Cmd) {
(void)WaitForResponseTimeout(CMD_ACK,NULL,100);
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}