mirror of
https://github.com/Proxmark/proxmark3.git
synced 2024-11-14 12:45:26 +08:00
469 lines
12 KiB
C
469 lines
12 KiB
C
/*****************************************************************************
|
||
* This file is part of iClassCipher. It is a reconstructon of the cipher engine
|
||
* used in iClass, and RFID techology.
|
||
*
|
||
* The implementation is based on the work performed by
|
||
* Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and
|
||
* Milosch Meriac in the paper "Dismantling IClass".
|
||
*
|
||
* Copyright (C) 2014 Martin Holst Swende
|
||
*
|
||
* This is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License version 2 as published
|
||
* by the Free Software Foundation.
|
||
*
|
||
* This file is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with IClassCipher. If not, see <http://www.gnu.org/licenses/>.
|
||
****************************************************************************/
|
||
/**
|
||
From "Dismantling iclass":
|
||
This section describes in detail the built-in key diversification algorithm of iClass.
|
||
Besides the obvious purpose of deriving a card key from a master key, this
|
||
algorithm intends to circumvent weaknesses in the cipher by preventing the
|
||
usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
|
||
reader first encrypts the card identity id with the master key K, using single
|
||
DES. The resulting ciphertext is then input to a function called hash0 which
|
||
outputs the diversified key k.
|
||
|
||
k = hash0(DES enc (id, K))
|
||
|
||
Here the DES encryption of id with master key K outputs a cryptogram c
|
||
of 64 bits. These 64 bits are divided as c = x, y, z [0] , . . . , z [7] ∈ F 82 × F 82 × (F 62 ) 8
|
||
which is used as input to the hash0 function. This function introduces some
|
||
obfuscation by performing a number of permutations, complement and modulo
|
||
operations, see Figure 2.5. Besides that, it checks for and removes patterns like
|
||
similar key bytes, which could produce a strong bias in the cipher. Finally, the
|
||
output of hash0 is the diversified card key k = k [0] , . . . , k [7] ∈ (F 82 ) 8 .
|
||
|
||
|
||
**/
|
||
|
||
|
||
#include <stdint.h>
|
||
#include <stdbool.h>
|
||
#include <string.h>
|
||
#include "cipherutils.h"
|
||
#include "cipher.h"
|
||
#include "../util.h"
|
||
#include <stdio.h>
|
||
#include "des.h"
|
||
#include <inttypes.h>
|
||
|
||
uint8_t pi[35] = {0x0F,0x17,0x1B,0x1D,0x1E,0x27,0x2B,0x2D,0x2E,0x33,0x35,0x39,0x36,0x3A,0x3C,0x47,0x4B,0x4D,0x4E,0x53,0x55,0x56,0x59,0x5A,0x5C,0x63,0x65,0x66,0x69,0x6A,0x6C,0x71,0x72,0x74,0x78};
|
||
|
||
static des_context ctx_enc = {DES_ENCRYPT,{0}};
|
||
static des_context ctx_dec = {DES_DECRYPT,{0}};
|
||
|
||
static bool debug_print = false;
|
||
|
||
/**
|
||
* @brief The key diversification algorithm uses 6-bit bytes.
|
||
* This implementation uses 64 bit uint to pack seven of them into one
|
||
* variable. When they are there, they are placed as follows:
|
||
* XXXX XXXX N0 .... N7, occupying the lsat 48 bits.
|
||
*
|
||
* This function picks out one from such a collection
|
||
* @param all
|
||
* @param n bitnumber
|
||
* @return
|
||
*/
|
||
uint8_t getSixBitByte(uint64_t c, int n)
|
||
{
|
||
return (c >> (42-6*n)) & 0x3F;
|
||
//return (c >> n*6) & 0x3f;
|
||
}
|
||
|
||
/**
|
||
* @brief Puts back a six-bit 'byte' into a uint64_t.
|
||
* @param c buffer
|
||
* @param z the value to place there
|
||
* @param n bitnumber.
|
||
*/
|
||
void pushbackSixBitByte(uint64_t *c, uint8_t z, int n)
|
||
{
|
||
//0x XXXX YYYY ZZZZ ZZZZ ZZZZ
|
||
// ^z0 ^z7
|
||
//z0: 1111 1100 0000 0000
|
||
|
||
uint64_t masked = z & 0x3F;
|
||
uint64_t eraser = 0x3F;
|
||
masked <<= 42-6*n;
|
||
eraser <<= 42-6*n;
|
||
|
||
//masked <<= 6*n;
|
||
//eraser <<= 6*n;
|
||
|
||
eraser = ~eraser;
|
||
(*c) &= eraser;
|
||
(*c) |= masked;
|
||
|
||
}
|
||
|
||
uint64_t swapZvalues(uint64_t c)
|
||
{
|
||
uint64_t newz = 0;
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,0),7);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,1),6);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,2),5);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,3),4);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,4),3);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,5),2);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,6),1);
|
||
pushbackSixBitByte(&newz, getSixBitByte(c,7),0);
|
||
newz |= (c & 0xFFFF000000000000);
|
||
return newz;
|
||
}
|
||
|
||
/**
|
||
* @return 4 six-bit bytes chunked into a uint64_t,as 00..00a0a1a2a3
|
||
*/
|
||
uint64_t ck(int i, int j, uint64_t z)
|
||
{
|
||
|
||
// printf("ck( i=%d, j=%d), zi=[%d],zj=[%d] \n",i,j,getSixBitByte(z,i),getSixBitByte(z,j) );
|
||
|
||
if(i == 1 && j == -1)
|
||
{
|
||
// ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
|
||
return z;
|
||
|
||
}else if( j == -1)
|
||
{
|
||
// ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
|
||
return ck(i-1,i-2, z);
|
||
}
|
||
|
||
if(getSixBitByte(z,i) == getSixBitByte(z,j))
|
||
{
|
||
// TODO, I dont know what they mean here in the paper
|
||
//ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] )
|
||
uint64_t newz = 0;
|
||
int c;
|
||
//printf("z[i]=z[i] (0x%02x), i=%d, j=%d\n",getSixBitByte(z,i),i,j );
|
||
for(c = 0; c < 4 ;c++)
|
||
{
|
||
uint8_t val = getSixBitByte(z,c);
|
||
if(c == i)
|
||
{
|
||
//printf("oops\n");
|
||
pushbackSixBitByte(&newz, j, c);
|
||
}else
|
||
{
|
||
pushbackSixBitByte(&newz, val, c);
|
||
}
|
||
}
|
||
return ck(i,j-1,newz);
|
||
}else
|
||
{
|
||
return ck(i,j-1,z);
|
||
}
|
||
|
||
}
|
||
/**
|
||
|
||
Definition 8.
|
||
Let the function check : (F 62 ) 8 → (F 62 ) 8 be defined as
|
||
check(z [0] . . . z [7] ) = ck(3, 2, z [0] . . . z [3] ) · ck(3, 2, z [4] . . . z [7] )
|
||
|
||
where ck : N × N × (F 62 ) 4 → (F 62 ) 4 is defined as
|
||
|
||
ck(1, −1, z [0] . . . z [3] ) = z [0] . . . z [3]
|
||
ck(i, −1, z [0] . . . z [3] ) = ck(i − 1, i − 2, z [0] . . . z [3] )
|
||
ck(i, j, z [0] . . . z [3] ) =
|
||
ck(i, j − 1, z [0] . . . z [i] ← j . . . z [3] ), if z [i] = z [j] ;
|
||
ck(i, j − 1, z [0] . . . z [3] ), otherwise
|
||
|
||
otherwise.
|
||
**/
|
||
|
||
uint64_t check(uint64_t z)
|
||
{
|
||
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
|
||
|
||
// ck(3, 2, z [0] . . . z [3] )
|
||
uint64_t ck1 = ck(3,2, z );
|
||
|
||
// ck(3, 2, z [4] . . . z [7] )
|
||
uint64_t ck2 = ck(3,2, z << 24);
|
||
ck1 &= 0x00000000FFFFFF000000;
|
||
ck2 &= 0x00000000FFFFFF000000;
|
||
|
||
return ck1 | ck2 >> 24;
|
||
|
||
}
|
||
|
||
void permute(BitstreamIn *p_in, uint64_t z,int l,int r, BitstreamOut* out)
|
||
{
|
||
if(bitsLeft(p_in) == 0)
|
||
{
|
||
return;
|
||
}
|
||
bool pn = tailBit(p_in);
|
||
if( pn ) // pn = 1
|
||
{
|
||
uint8_t zl = getSixBitByte(z,l);
|
||
//printf("permute pushing, zl=0x%02x, zl+1=0x%02x\n", zl, zl+1);
|
||
push6bits(out, zl+1);
|
||
permute(p_in, z, l+1,r, out);
|
||
}else // otherwise
|
||
{
|
||
uint8_t zr = getSixBitByte(z,r);
|
||
//printf("permute pushing, zr=0x%02x\n", zr);
|
||
push6bits(out, zr);
|
||
permute(p_in,z,l,r+1,out);
|
||
}
|
||
}
|
||
void testPermute()
|
||
{
|
||
|
||
uint64_t x = 0;
|
||
pushbackSixBitByte(&x,0x00,0);
|
||
pushbackSixBitByte(&x,0x01,1);
|
||
pushbackSixBitByte(&x,0x02,2);
|
||
pushbackSixBitByte(&x,0x03,3);
|
||
pushbackSixBitByte(&x,0x04,4);
|
||
pushbackSixBitByte(&x,0x05,5);
|
||
pushbackSixBitByte(&x,0x06,6);
|
||
pushbackSixBitByte(&x,0x07,7);
|
||
|
||
uint8_t mres[8] = { getSixBitByte(x, 0),
|
||
getSixBitByte(x, 1),
|
||
getSixBitByte(x, 2),
|
||
getSixBitByte(x, 3),
|
||
getSixBitByte(x, 4),
|
||
getSixBitByte(x, 5),
|
||
getSixBitByte(x, 6),
|
||
getSixBitByte(x, 7)};
|
||
printarr("input_perm", mres,8);
|
||
|
||
uint8_t p = ~pi[0];
|
||
BitstreamIn p_in = { &p, 8,0 };
|
||
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
|
||
BitstreamOut out = {outbuffer,0,0};
|
||
|
||
permute(&p_in, x,0,4, &out);
|
||
|
||
uint64_t permuted = bytes_to_num(outbuffer,8);
|
||
//printf("zTilde 0x%"PRIX64"\n", zTilde);
|
||
permuted >>= 16;
|
||
|
||
uint8_t res[8] = { getSixBitByte(permuted, 0),
|
||
getSixBitByte(permuted, 1),
|
||
getSixBitByte(permuted, 2),
|
||
getSixBitByte(permuted, 3),
|
||
getSixBitByte(permuted, 4),
|
||
getSixBitByte(permuted, 5),
|
||
getSixBitByte(permuted, 6),
|
||
getSixBitByte(permuted, 7)};
|
||
printarr("permuted", res, 8);
|
||
}
|
||
void printbegin()
|
||
{
|
||
if(! debug_print)
|
||
return;
|
||
|
||
printf(" | x| y|z0|z1|z2|z3|z4|z5|z6|z7|\n");
|
||
}
|
||
|
||
void printState(char* desc, int x,int y, uint64_t c)
|
||
{
|
||
if(! debug_print)
|
||
return;
|
||
|
||
printf("%s : ", desc);
|
||
//uint8_t x = (c & 0xFF00000000000000 ) >> 56;
|
||
//uint8_t y = (c & 0x00FF000000000000 ) >> 48;
|
||
printf(" %02x %02x", x,y);
|
||
int i ;
|
||
for(i =0 ; i < 8 ; i++)
|
||
{
|
||
printf(" %02x", getSixBitByte(c,i));
|
||
}
|
||
printf("\n");
|
||
}
|
||
|
||
/**
|
||
* @brief
|
||
*Definition 11. Let the function hash0 : F 82 × F 82 × (F 62 ) 8 → (F 82 ) 8 be defined as
|
||
* hash0(x, y, z [0] . . . z [7] ) = k [0] . . . k [7] where
|
||
* z'[i] = (z[i] mod (63-i)) + i i = 0...3
|
||
* z'[i+4] = (z[i+4] mod (64-i)) + i i = 0...3
|
||
* ẑ = check(z');
|
||
* @param c
|
||
* @param k this is where the diversified key is put (should be 8 bytes)
|
||
* @return
|
||
*/
|
||
void hash0(uint64_t c, uint8_t *k)
|
||
{
|
||
printbegin();
|
||
//These 64 bits are divided as c = x, y, z [0] , . . . , z [7]
|
||
// x = 8 bits
|
||
// y = 8 bits
|
||
// z0-z7 6 bits each : 48 bits
|
||
uint8_t x = (c & 0xFF00000000000000 ) >> 56;
|
||
uint8_t y = (c & 0x00FF000000000000 ) >> 48;
|
||
printState("origin",x,y,c);
|
||
int n;
|
||
uint8_t zn, zn4, _zn, _zn4;
|
||
uint64_t zP = 0;
|
||
|
||
for(n = 0; n < 4 ; n++)
|
||
{
|
||
zn = getSixBitByte(c,n);
|
||
zn4 = getSixBitByte(c,n+4);
|
||
|
||
_zn = (zn % (63-n)) + n;
|
||
_zn4 = (zn4 % (64-n)) + n;
|
||
|
||
pushbackSixBitByte(&zP, _zn,n);
|
||
pushbackSixBitByte(&zP, _zn4,n+4);
|
||
|
||
}
|
||
printState("x|y|z'",x,y,zP);
|
||
|
||
uint64_t zCaret = check(zP);
|
||
printState("x|y|z^",x,y,zP);
|
||
|
||
|
||
uint8_t p = pi[x % 35];
|
||
|
||
if(x & 1) //Check if x7 is 1
|
||
{
|
||
p = ~p;
|
||
}
|
||
printState("p|y|z^",p,y,zP);
|
||
//if(debug_print) printf("p:%02x\n", p);
|
||
|
||
BitstreamIn p_in = { &p, 8,0 };
|
||
uint8_t outbuffer[] = {0,0,0,0,0,0,0,0};
|
||
BitstreamOut out = {outbuffer,0,0};
|
||
permute(&p_in,zCaret,0,4,&out);//returns 48 bits? or 6 8-bytes
|
||
|
||
//Out is now a buffer containing six-bit bytes, should be 48 bits
|
||
// if all went well
|
||
//printf("Permute output is %d num bits (48?)\n", out.numbits);
|
||
//Shift z-values down onto the lower segment
|
||
|
||
uint64_t zTilde = bytes_to_num(outbuffer,8);
|
||
|
||
//printf("zTilde 0x%"PRIX64"\n", zTilde);
|
||
zTilde >>= 16;
|
||
//printf("z~ 0x%"PRIX64"\n", zTilde);
|
||
printState("p|y|z~", p,y,zTilde);
|
||
|
||
int i;
|
||
int zerocounter =0 ;
|
||
for(i =0 ; i < 8 ; i++)
|
||
{
|
||
|
||
// the key on index i is first a bit from y
|
||
// then six bits from z,
|
||
// then a bit from p
|
||
|
||
// Init with zeroes
|
||
k[i] = 0;
|
||
// First, place yi leftmost in k
|
||
//k[i] |= (y << i) & 0x80 ;
|
||
|
||
// First, place y(7-i) leftmost in k
|
||
k[i] |= (y << (7-i)) & 0x80 ;
|
||
|
||
//printf("y%d = %d\n",i,(y << i) & 0x80);
|
||
|
||
uint8_t zTilde_i = getSixBitByte(zTilde, i);
|
||
//printf("zTilde_%d 0x%02x (should be <= 0x3F)\n",i, zTilde_i);
|
||
// zTildeI is now on the form 00XXXXXX
|
||
// with one leftshift, it'll be
|
||
// 0XXXXXX0
|
||
// So after leftshift, we can OR it into k
|
||
// However, when doing complement, we need to
|
||
// again MASK 0XXXXXX0 (0x7E)
|
||
zTilde_i <<= 1;
|
||
|
||
//Finally, add bit from p or p-mod
|
||
//Shift bit i into rightmost location (mask only after complement)
|
||
uint8_t p_i = p >> i & 0x1;
|
||
|
||
if( k[i] )// yi = 1
|
||
{
|
||
//printf("k[%d] +1\n", i);
|
||
k[i] |= ~zTilde_i & 0x7E;
|
||
k[i] |= p_i & 1;
|
||
k[i] += 1;
|
||
|
||
}else // otherwise
|
||
{
|
||
k[i] |= zTilde_i & 0x7E;
|
||
k[i] |= (~p_i) & 1;
|
||
}
|
||
if((k[i] & 1 )== 0)
|
||
{
|
||
zerocounter ++;
|
||
}
|
||
}
|
||
//printf("zerocounter=%d (should be 4)\n",zerocounter);
|
||
//printf("permute fin, y:0x%02x, x: 0x%02x\n", y, x);
|
||
|
||
//return k;
|
||
}
|
||
|
||
void reorder(uint8_t arr[8])
|
||
{
|
||
uint8_t tmp[4] = {arr[3],arr[2],arr[1], arr[0]};
|
||
arr[0] = arr[7];
|
||
arr[1] = arr[6];
|
||
arr[2] = arr[5];
|
||
arr[3] = arr[4];
|
||
arr[4] = tmp[0];//arr[3];
|
||
arr[5] = tmp[1];//arr[2];
|
||
arr[6] = tmp[2];//arr[3];
|
||
arr[7] = tmp[3];//arr[1]
|
||
}
|
||
|
||
//extern void printarr(char * name, uint8_t* arr, int len);
|
||
|
||
bool des_getParityBitFromKey(uint8_t key)
|
||
{//The top 7 bits is used
|
||
bool parity = ((key & 0x80) >> 7)
|
||
^ ((key & 0x40) >> 6) ^ ((key & 0x20) >> 5)
|
||
^ ((key & 0x10) >> 4) ^ ((key & 0x08) >> 3)
|
||
^ ((key & 0x04) >> 2) ^ ((key & 0x02) >> 1);
|
||
return !parity;
|
||
}
|
||
void des_checkParity(uint8_t* key)
|
||
{
|
||
int i;
|
||
int fails =0;
|
||
for(i =0 ; i < 8 ; i++)
|
||
{
|
||
bool parity = des_getParityBitFromKey(key[i]);
|
||
if(parity != (key[i] & 0x1))
|
||
{
|
||
fails++;
|
||
printf("parity1 fail, byte %d [%02x] was %d, should be %d\n",i,key[i],(key[i] & 0x1),parity);
|
||
}
|
||
}
|
||
if(fails)
|
||
{
|
||
printf("parity fails: %d\n", fails);
|
||
}else
|
||
{
|
||
printf("Key syntax is with parity bits inside each byte\n");
|
||
}
|
||
}
|
||
|
||
void printarr2(char * name, uint8_t* arr, int len)
|
||
{
|
||
int i ;
|
||
printf("%s :", name);
|
||
for(i =0 ; i< len ; i++)
|
||
{
|
||
printf("%02x",*(arr+i));
|
||
}
|
||
printf("\n");
|
||
}
|