proxmark3/fpga/hi_read_rx_xcorr.v

198 lines
6.5 KiB
Coq
Raw Normal View History

//-----------------------------------------------------------------------------
//
// Jonathan Westhues, April 2006
//-----------------------------------------------------------------------------
module hi_read_rx_xcorr(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
2017-10-21 02:27:44 +08:00
xcorr_is_848, snoop, xcorr_quarter_freq
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
2017-10-21 02:27:44 +08:00
input xcorr_is_848, snoop, xcorr_quarter_freq;
// Carrier is steady on through this, unless we're snooping.
assign pwr_hi = ck_1356megb & (~snoop);
assign pwr_oe1 = 1'b0;
assign pwr_oe3 = 1'b0;
assign pwr_oe4 = 1'b0;
2017-10-21 02:27:44 +08:00
reg [2:0] fc_div;
always @(negedge ck_1356megb)
2017-10-21 02:27:44 +08:00
fc_div <= fc_div + 1;
2019-07-31 04:47:23 +08:00
(* clock_signal = "yes" *) reg adc_clk; // sample frequency, always 16 * fc
2017-10-21 02:27:44 +08:00
always @(ck_1356megb, xcorr_is_848, xcorr_quarter_freq, fc_div)
2019-07-31 04:47:23 +08:00
if (xcorr_is_848 & ~xcorr_quarter_freq) // fc = 847.5 kHz, standard ISO14443B
adc_clk <= ck_1356megb;
else if (~xcorr_is_848 & ~xcorr_quarter_freq) // fc = 423.75 kHz
adc_clk <= fc_div[0];
else if (xcorr_is_848 & xcorr_quarter_freq) // fc = 211.875 kHz
adc_clk <= fc_div[1];
else // fc = 105.9375 kHz
adc_clk <= fc_div[2];
// When we're a reader, we just need to do the BPSK demod; but when we're an
// eavesdropper, we also need to pick out the commands sent by the reader,
// using AM. Do this the same way that we do it for the simulated tag.
reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
reg [11:0] has_been_low_for;
always @(negedge adc_clk)
begin
if(& adc_d[7:0]) after_hysteresis <= 1'b1;
else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
if(after_hysteresis)
begin
has_been_low_for <= 7'b0;
end
else
begin
if(has_been_low_for == 12'd4095)
begin
has_been_low_for <= 12'd0;
after_hysteresis <= 1'b1;
end
else
has_been_low_for <= has_been_low_for + 1;
end
end
// Let us report a correlation every 4 subcarrier cycles, or 4*16=64 samples,
// so we need a 6-bit counter.
reg [5:0] corr_i_cnt;
// And a couple of registers in which to accumulate the correlations. Since
// load modulation saturates the ADC we have to use a large enough register
// 32 * 255 = 8160, which can be held in 13 bits. Add 1 bit for sign.
//
// The initial code assumed a phase shift of up to 25% and the accumulators were
// 11 bits (32 * 255 * 0,25 = 2040), we will pack all bits exceeding 11 bits into
// MSB. This prevents under/-overflows but preserves sensitivity on the lower end.
reg signed [13:0] corr_i_accum;
reg signed [13:0] corr_q_accum;
// we will report maximum 8 significant bits
reg signed [7:0] corr_i_out;
reg signed [7:0] corr_q_out;
// clock and frame signal for communication to ARM
reg ssp_clk;
reg ssp_frame;
always @(negedge adc_clk)
begin
2019-07-31 04:47:23 +08:00
corr_i_cnt <= corr_i_cnt + 1;
end
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
begin
// These are the correlators: we correlate against in-phase and quadrature
// versions of our reference signal, and keep the (signed) result to
// send out later over the SSP.
if(corr_i_cnt == 6'd0)
begin
// send 10 bits of tag signal, 4 MSBs are stuffed into 2 MSB
if(~corr_i_accum[13])
corr_i_out <= {corr_i_accum[13],
corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[10],
corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[9],
corr_i_accum[8:4]};
else
corr_i_out <= {corr_i_accum[13],
corr_i_accum[12] & corr_i_accum[11] & corr_i_accum[10],
corr_i_accum[12] & corr_i_accum[11] & corr_i_accum[9],
corr_i_accum[8:4]};
if(~corr_q_accum[13])
corr_q_out <= {corr_q_accum[13],
corr_q_accum[12] | corr_q_accum[11] | corr_q_accum[10],
corr_q_accum[12] | corr_q_accum[11] | corr_q_accum[9],
corr_q_accum[8:4]};
else
corr_q_out <= {corr_q_accum[13],
corr_q_accum[12] & corr_q_accum[11] & corr_q_accum[10],
corr_q_accum[12] & corr_q_accum[11] & corr_q_accum[9],
corr_q_accum[8:4]};
if(snoop)
begin
// replace LSB with 1 bit reader signal
corr_i_out[0] <= after_hysteresis_prev_prev;
corr_q_out[0] <= after_hysteresis_prev;
after_hysteresis_prev_prev <= after_hysteresis;
end
corr_i_accum <= adc_d;
corr_q_accum <= adc_d;
end
else
begin
if(corr_i_cnt[3])
corr_i_accum <= corr_i_accum - adc_d;
else
corr_i_accum <= corr_i_accum + adc_d;
2019-07-31 04:47:23 +08:00
if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2
corr_q_accum <= corr_q_accum + adc_d;
else
corr_q_accum <= corr_q_accum - adc_d;
end
// The logic in hi_simulate.v reports 4 samples per bit. We report two
// (I, Q) pairs per bit, so we should do 2 samples per pair.
if(corr_i_cnt == 6'd32)
after_hysteresis_prev <= after_hysteresis;
// Then the result from last time is serialized and send out to the ARM.
// We get one report each cycle, and each report is 16 bits, so the
// ssp_clk should be the adc_clk divided by 64/16 = 4.
if(corr_i_cnt[1:0] == 2'b10)
ssp_clk <= 1'b0;
if(corr_i_cnt[1:0] == 2'b00)
begin
ssp_clk <= 1'b1;
// Don't shift if we just loaded new data, obviously.
if(corr_i_cnt != 6'd0)
begin
corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
corr_q_out[7:1] <= corr_q_out[6:0];
end
end
2019-07-31 04:47:23 +08:00
// set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
// (send two frames with 8 Bits each)
if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
ssp_frame = 1'b1;
else
ssp_frame = 1'b0;
end
assign ssp_din = corr_i_out[7];
assign dbg = corr_i_cnt[3];
// Unused.
assign pwr_lo = 1'b0;
assign pwr_oe2 = 1'b0;
endmodule