proxmark3/fpga/hi_simulate.v

130 lines
4.4 KiB
Coq
Raw Normal View History

//-----------------------------------------------------------------------------
// Pretend to be an ISO 14443 tag. We will do this by alternately short-
// circuiting and open-circuiting the antenna coil, with the tri-state
// pins.
//
// We communicate over the SSP, as a bitstream (i.e., might as well be
// unframed, though we still generate the word sync signal). The output
// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA
// -> ARM) is us using the A/D as a fancy comparator; this is with
// (software-added) hysteresis, to undo the high-pass filter.
//
// At this point only Type A is implemented. This means that we are using a
// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
//
// Jonathan Westhues, October 2006
//-----------------------------------------------------------------------------
module hi_simulate(
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg,
mod_type
);
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk;
input ssp_dout;
output ssp_frame, ssp_din, ssp_clk;
input cross_hi, cross_lo;
output dbg;
input [2:0] mod_type;
// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can
// always be low.
assign pwr_hi = 1'b0;
assign pwr_lo = 1'b0;
// The comparator with hysteresis on the output from the peak detector.
reg after_hysteresis;
assign adc_clk = ck_1356meg;
always @(negedge adc_clk)
begin
if(& adc_d[7:5]) after_hysteresis = 1'b1;
else if(~(| adc_d[7:5])) after_hysteresis = 1'b0;
end
2018-09-06 04:23:20 +08:00
// Divide 13.56 MHz to produce various frequencies for SSP_CLK
// and modulation. 11 bits allow for factors of up to /128.
reg [10:0] ssp_clk_divider;
always @(posedge adc_clk)
ssp_clk_divider <= (ssp_clk_divider + 1);
reg ssp_clk;
2018-09-06 04:23:18 +08:00
always @(negedge adc_clk)
begin
if(mod_type == 3'b101)
2019-05-09 07:07:34 +08:00
// Get bit every at 53kHz (every 8th carrier bit of 424kHz)
2018-09-06 04:23:22 +08:00
ssp_clk <= ssp_clk_divider[7];
else if(mod_type == 3'b010)
// Get next bit at 212kHz
ssp_clk <= ssp_clk_divider[5];
else
2018-09-06 04:23:22 +08:00
// Get next bit at 424Khz
ssp_clk <= ssp_clk_divider[4];
end
// Divide SSP_CLK by 8 to produce the byte framing signal; the phase of
// this is arbitrary, because it's just a bitstream.
// One nasty issue, though: I can't make it work with both rx and tx at
2017-10-21 02:27:44 +08:00
// once. The phase wrt ssp_clk must be changed. TODO to find out why
// that is and make a better fix.
reg [2:0] ssp_frame_divider_to_arm;
always @(posedge ssp_clk)
ssp_frame_divider_to_arm <= (ssp_frame_divider_to_arm + 1);
reg [2:0] ssp_frame_divider_from_arm;
always @(negedge ssp_clk)
ssp_frame_divider_from_arm <= (ssp_frame_divider_from_arm + 1);
2018-09-06 04:23:18 +08:00
reg ssp_frame;
always @(ssp_frame_divider_to_arm or ssp_frame_divider_from_arm or mod_type)
if(mod_type == 3'b000) // not modulating, so listening, to ARM
ssp_frame = (ssp_frame_divider_to_arm == 3'b000);
else
2018-09-06 04:23:18 +08:00
ssp_frame = (ssp_frame_divider_from_arm == 3'b000);
// Synchronize up the after-hysteresis signal, to produce DIN.
reg ssp_din;
always @(posedge ssp_clk)
ssp_din = after_hysteresis;
2018-09-06 04:23:20 +08:00
// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
reg modulating_carrier;
always @(mod_type or ssp_clk or ssp_dout)
if(mod_type == 3'b000)
modulating_carrier <= 1'b0; // no modulation
else if(mod_type == 3'b001)
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
else if(mod_type == 3'b010)
2018-09-06 04:23:18 +08:00
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
else if(mod_type == 3'b100 || mod_type == 3'b101)
2018-09-06 04:23:18 +08:00
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
else
modulating_carrier <= 1'b0; // yet unused
// This one is all LF, so doesn't matter
assign pwr_oe2 = modulating_carrier;
// Toggle only one of these, since we are already producing much deeper
// modulation than a real tag would.
assign pwr_oe1 = modulating_carrier;
assign pwr_oe4 = modulating_carrier;
// This one is always on, so that we can watch the carrier.
assign pwr_oe3 = 1'b0;
assign dbg = ssp_din;
endmodule