change: remove dead legic code

This code was either disabled or never reached.
This commit is contained in:
Andreas Dröscher 2018-07-29 11:57:24 +02:00
parent e779f06c5e
commit 8a53137ab0

View file

@ -30,43 +30,8 @@ static int legic_phase_drift;
static int legic_frame_drift;
static int legic_reqresp_drift;
AT91PS_TC timer;
AT91PS_TC prng_timer;
/*
static void setup_timer(void) {
// Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
// this it won't be terribly accurate but should be good enough.
//
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
timer = AT91C_BASE_TC1;
timer->TC_CCR = AT91C_TC_CLKDIS;
timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
//
// Set up Timer 2 to use for measuring time between frames in
// tag simulation mode. Runs 4x faster as Timer 1
//
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
prng_timer = AT91C_BASE_TC2;
prng_timer->TC_CCR = AT91C_TC_CLKDIS;
prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
}
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
*/
// At TIMER_CLOCK3 (MCK/32)
// testing calculating in ticks. 1.5ticks = 1us
@ -126,20 +91,9 @@ static void frame_clean(struct legic_frame * const f) {
f->bits = 0;
}
// Prng works when waiting in 99.1us cycles.
// and while sending/receiving in bit frames (100, 60)
/*static void CalibratePrng( uint32_t time){
// Calculate Cycles based on timer 100us
uint32_t i = (time - sendFrameStop) / 100 ;
// substract cycles of finished frames
int k = i - legic_prng_count()+1;
// substract current frame length, rewind to beginning
if ( k > 0 )
legic_prng_forward(k);
}
*/
/* Generate Keystream */
uint32_t get_key_stream(int skip, int count) {
@ -575,36 +529,7 @@ int legic_select_card(legic_card_select_t *p_card){
}
//-----------------------------------------------------------------------------
// Work with emulator memory
//
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it might
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
// arg0 = offset
// arg1 = num of bytes
void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
legic_emlset_mem(data, arg0, arg1);
}
// arg0 = offset
// arg1 = num of bytes
void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
legic_emlget_mem(buf, arg0, arg1);
LED_B_ON();
cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
LED_B_OFF();
}
void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
cardmem = BigBuf_get_EM_addr();
memcpy(cardmem + offset, data, numofbytes);
}
void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
cardmem = BigBuf_get_EM_addr();
memcpy(data, cardmem + offset, numofbytes);
}
void LegicRfInfo(void){
@ -932,691 +857,6 @@ void LegicRfSimulate(int phase, int frame, int reqresp)
LEDsoff();
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
}
//-----------------------------------------------------------------------------
// Code up a string of octets at layer 2 (including CRC, we don't generate
// that here) so that they can be transmitted to the reader. Doesn't transmit
// them yet, just leaves them ready to send in ToSend[].
//-----------------------------------------------------------------------------
// static void CodeLegicAsTag(const uint8_t *cmd, int len)
// {
// int i;
// ToSendReset();
// // Transmit a burst of ones, as the initial thing that lets the
// // reader get phase sync. This (TR1) must be > 80/fs, per spec,
// // but tag that I've tried (a Paypass) exceeds that by a fair bit,
// // so I will too.
// for(i = 0; i < 20; i++) {
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// }
// // Send SOF.
// for(i = 0; i < 10; i++) {
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// }
// for(i = 0; i < 2; i++) {
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// }
// for(i = 0; i < len; i++) {
// int j;
// uint8_t b = cmd[i];
// // Start bit
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// // Data bits
// for(j = 0; j < 8; j++) {
// if(b & 1) {
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// } else {
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// }
// b >>= 1;
// }
// // Stop bit
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// }
// // Send EOF.
// for(i = 0; i < 10; i++) {
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// ToSendStuffBit(0);
// }
// for(i = 0; i < 2; i++) {
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// ToSendStuffBit(1);
// }
// // Convert from last byte pos to length
// ToSendMax++;
// }
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
/*
static struct {
enum {
STATE_UNSYNCD,
STATE_GOT_FALLING_EDGE_OF_SOF,
STATE_AWAITING_START_BIT,
STATE_RECEIVING_DATA
} state;
uint16_t shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
int posCnt;
uint8_t *output;
} Uart;
*/
/* Receive & handle a bit coming from the reader.
*
* This function is called 4 times per bit (every 2 subcarrier cycles).
* Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
*
* LED handling:
* LED A -> ON once we have received the SOF and are expecting the rest.
* LED A -> OFF once we have received EOF or are in error state or unsynced
*
* Returns: true if we received a EOF
* false if we are still waiting for some more
*/
// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
// {
// switch(Uart.state) {
// case STATE_UNSYNCD:
// if(!bit) {
// // we went low, so this could be the beginning of an SOF
// Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
// Uart.posCnt = 0;
// Uart.bitCnt = 0;
// }
// break;
// case STATE_GOT_FALLING_EDGE_OF_SOF:
// Uart.posCnt++;
// if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
// if(bit) {
// if(Uart.bitCnt > 9) {
// // we've seen enough consecutive
// // zeros that it's a valid SOF
// Uart.posCnt = 0;
// Uart.byteCnt = 0;
// Uart.state = STATE_AWAITING_START_BIT;
// LED_A_ON(); // Indicate we got a valid SOF
// } else {
// // didn't stay down long enough
// // before going high, error
// Uart.state = STATE_UNSYNCD;
// }
// } else {
// // do nothing, keep waiting
// }
// Uart.bitCnt++;
// }
// if(Uart.posCnt >= 4) Uart.posCnt = 0;
// if(Uart.bitCnt > 12) {
// // Give up if we see too many zeros without
// // a one, too.
// LED_A_OFF();
// Uart.state = STATE_UNSYNCD;
// }
// break;
// case STATE_AWAITING_START_BIT:
// Uart.posCnt++;
// if(bit) {
// if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
// // stayed high for too long between
// // characters, error
// Uart.state = STATE_UNSYNCD;
// }
// } else {
// // falling edge, this starts the data byte
// Uart.posCnt = 0;
// Uart.bitCnt = 0;
// Uart.shiftReg = 0;
// Uart.state = STATE_RECEIVING_DATA;
// }
// break;
// case STATE_RECEIVING_DATA:
// Uart.posCnt++;
// if(Uart.posCnt == 2) {
// // time to sample a bit
// Uart.shiftReg >>= 1;
// if(bit) {
// Uart.shiftReg |= 0x200;
// }
// Uart.bitCnt++;
// }
// if(Uart.posCnt >= 4) {
// Uart.posCnt = 0;
// }
// if(Uart.bitCnt == 10) {
// if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
// {
// // this is a data byte, with correct
// // start and stop bits
// Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
// Uart.byteCnt++;
// if(Uart.byteCnt >= Uart.byteCntMax) {
// // Buffer overflowed, give up
// LED_A_OFF();
// Uart.state = STATE_UNSYNCD;
// } else {
// // so get the next byte now
// Uart.posCnt = 0;
// Uart.state = STATE_AWAITING_START_BIT;
// }
// } else if (Uart.shiftReg == 0x000) {
// // this is an EOF byte
// LED_A_OFF(); // Finished receiving
// Uart.state = STATE_UNSYNCD;
// if (Uart.byteCnt != 0) {
// return TRUE;
// }
// } else {
// // this is an error
// LED_A_OFF();
// Uart.state = STATE_UNSYNCD;
// }
// }
// break;
// default:
// LED_A_OFF();
// Uart.state = STATE_UNSYNCD;
// break;
// }
// return false;
// }
/*
static void UartReset() {
Uart.byteCntMax = 3;
Uart.state = STATE_UNSYNCD;
Uart.byteCnt = 0;
Uart.bitCnt = 0;
Uart.posCnt = 0;
memset(Uart.output, 0x00, 3);
}
*/
// static void UartInit(uint8_t *data) {
// Uart.output = data;
// UartReset();
// }
//=============================================================================
// An LEGIC reader. We take layer two commands, code them
// appropriately, and then send them to the tag. We then listen for the
// tag's response, which we leave in the buffer to be demodulated on the
// PC side.
//=============================================================================
/*
static struct {
enum {
DEMOD_UNSYNCD,
DEMOD_PHASE_REF_TRAINING,
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
DEMOD_GOT_FALLING_EDGE_OF_SOF,
DEMOD_AWAITING_START_BIT,
DEMOD_RECEIVING_DATA
} state;
int bitCount;
int posCount;
int thisBit;
uint16_t shiftReg;
uint8_t *output;
int len;
int sumI;
int sumQ;
} Demod;
*/
/*
* Handles reception of a bit from the tag
*
* This function is called 2 times per bit (every 4 subcarrier cycles).
* Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
*
* LED handling:
* LED C -> ON once we have received the SOF and are expecting the rest.
* LED C -> OFF once we have received EOF or are unsynced
*
* Returns: true if we received a EOF
* false if we are still waiting for some more
*
*/
/*
static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
{
int v = 0;
int ai = ABS(ci);
int aq = ABS(cq);
int halfci = (ai >> 1);
int halfcq = (aq >> 1);
switch(Demod.state) {
case DEMOD_UNSYNCD:
CHECK_FOR_SUBCARRIER()
if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
Demod.state = DEMOD_PHASE_REF_TRAINING;
Demod.sumI = ci;
Demod.sumQ = cq;
Demod.posCount = 1;
}
break;
case DEMOD_PHASE_REF_TRAINING:
if(Demod.posCount < 8) {
CHECK_FOR_SUBCARRIER()
if (v > SUBCARRIER_DETECT_THRESHOLD) {
// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
// note: synchronization time > 80 1/fs
Demod.sumI += ci;
Demod.sumQ += cq;
++Demod.posCount;
} else {
// subcarrier lost
Demod.state = DEMOD_UNSYNCD;
}
} else {
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
}
break;
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
MAKE_SOFT_DECISION()
//Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
// logic '0' detected
if (v <= 0) {
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
// start of SOF sequence
Demod.posCount = 0;
} else {
// maximum length of TR1 = 200 1/fs
if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
}
++Demod.posCount;
break;
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
++Demod.posCount;
MAKE_SOFT_DECISION()
if(v > 0) {
// low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
if(Demod.posCount < 10*2) {
Demod.state = DEMOD_UNSYNCD;
} else {
LED_C_ON(); // Got SOF
Demod.state = DEMOD_AWAITING_START_BIT;
Demod.posCount = 0;
Demod.len = 0;
}
} else {
// low phase of SOF too long (> 12 etu)
if(Demod.posCount > 13*2) {
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
}
break;
case DEMOD_AWAITING_START_BIT:
++Demod.posCount;
MAKE_SOFT_DECISION()
if(v > 0) {
// max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
if(Demod.posCount > 3*2) {
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
} else {
// start bit detected
Demod.bitCount = 0;
Demod.posCount = 1; // this was the first half
Demod.thisBit = v;
Demod.shiftReg = 0;
Demod.state = DEMOD_RECEIVING_DATA;
}
break;
case DEMOD_RECEIVING_DATA:
MAKE_SOFT_DECISION()
if(Demod.posCount == 0) {
// first half of bit
Demod.thisBit = v;
Demod.posCount = 1;
} else {
// second half of bit
Demod.thisBit += v;
Demod.shiftReg >>= 1;
// logic '1'
if(Demod.thisBit > 0)
Demod.shiftReg |= 0x200;
++Demod.bitCount;
if(Demod.bitCount == 10) {
uint16_t s = Demod.shiftReg;
if((s & 0x200) && !(s & 0x001)) {
// stop bit == '1', start bit == '0'
uint8_t b = (s >> 1);
Demod.output[Demod.len] = b;
++Demod.len;
Demod.state = DEMOD_AWAITING_START_BIT;
} else {
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
if(s == 0x000) {
// This is EOF (start, stop and all data bits == '0'
return true;
}
}
}
Demod.posCount = 0;
}
break;
default:
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
break;
}
return false;
}
*/
/*
// Clear out the state of the "UART" that receives from the tag.
static void DemodReset() {
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
Demod.posCount = 0;
Demod.sumI = 0;
Demod.sumQ = 0;
Demod.bitCount = 0;
Demod.thisBit = 0;
Demod.shiftReg = 0;
memset(Demod.output, 0x00, 3);
}
static void DemodInit(uint8_t *data) {
Demod.output = data;
DemodReset();
}
*/
/*
* Demodulate the samples we received from the tag, also log to tracebuffer
* quiet: set to 'TRUE' to disable debug output
*/
/*
#define LEGIC_DMA_BUFFER_SIZE 256
static void GetSamplesForLegicDemod(int n, bool quiet)
{
int max = 0;
bool gotFrame = false;
int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
int ci, cq, samples = 0;
BigBuf_free();
// And put the FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
// The response (tag -> reader) that we're receiving.
// Set up the demodulator for tag -> reader responses.
DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
// The DMA buffer, used to stream samples from the FPGA
int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
int8_t *upTo = dmaBuf;
// Setup and start DMA.
if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
return;
}
// Signal field is ON with the appropriate LED:
LED_D_ON();
for(;;) {
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
if(behindBy > max) max = behindBy;
while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
ci = upTo[0];
cq = upTo[1];
upTo += 2;
if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
upTo = dmaBuf;
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
}
lastRxCounter -= 2;
if(lastRxCounter <= 0)
lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
samples += 2;
gotFrame = HandleLegicSamplesDemod(ci , cq );
if ( gotFrame )
break;
}
if(samples > n || gotFrame)
break;
}
FpgaDisableSscDma();
if (!quiet && Demod.len == 0) {
Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
max,
samples,
gotFrame,
Demod.len,
Demod.sumI,
Demod.sumQ
);
}
//Tracing
if (Demod.len > 0) {
uint8_t parity[MAX_PARITY_SIZE] = {0x00};
LogTrace(Demod.output, Demod.len, 0, 0, parity, false);
}
}
*/
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
/*
static void TransmitForLegic(void)
{
int c;
FpgaSetupSsc();
while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
AT91C_BASE_SSC->SSC_THR = 0xff;
// Signal field is ON with the appropriate Red LED
LED_D_ON();
// Signal we are transmitting with the Green LED
LED_B_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
for(c = 0; c < 10;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0xff;
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = ToSend[c];
legic_prng_forward(1); // forward the lfsr
c++;
if(c >= ToSendMax) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
LED_B_OFF();
}
*/
//-----------------------------------------------------------------------------
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
// so that it is ready to transmit to the tag using TransmitForLegic().
//-----------------------------------------------------------------------------
/*
static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
{
int i, j;
uint8_t b;
ToSendReset();
// Send SOF
for(i = 0; i < 7; i++)
ToSendStuffBit(1);
for(i = 0; i < cmdlen; i++) {
// Start bit
ToSendStuffBit(0);
// Data bits
b = cmd[i];
for(j = 0; j < bits; j++) {
if(b & 1) {
ToSendStuffBit(1);
} else {
ToSendStuffBit(0);
}
b >>= 1;
}
}
// Convert from last character reference to length
++ToSendMax;
}
*/
/**
Convenience function to encode, transmit and trace Legic comms
**/
/*
static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
{
CodeLegicBitsAsReader(cmd, cmdlen, bits);
TransmitForLegic();
if (tracing) {
uint8_t parity[1] = {0x00};
LogTrace(cmd, cmdlen, 0, 0, parity, true);
}
}
*/
// Set up LEGIC communication
/*
void ice_legic_setup() {
// standard things.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
DemodReset();
UartReset();
// Set up the synchronous serial port
FpgaSetupSsc();
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
SpinDelay(20);
// Start the timer
//StartCountSspClk();
// initalize CRC
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
// initalize prng
legic_prng_init(0);
}
*/
}