proxmark3/client/cmdhf14b.c

886 lines
25 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency ISO14443B commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include "cmdhf14b.h"
#define TIMEOUT 2000
static int CmdHelp(const char *Cmd);
int usage_hf_14b_info(void){
PrintAndLog("Usage: hf 14b info [-h] [-s]");
PrintAndLog(" -h this help");
PrintAndLog(" -s silently");
return 0;
}
int usage_hf_14b_reader(void){
PrintAndLog("Usage: hf 14b reader [-h] [-s]");
PrintAndLog(" -h this help");
PrintAndLog(" -s silently");
return 0;
}
int usage_hf_14b_raw(void){
PrintAndLog("Usage: hf 14b raw [-h] [-r] [-c] [-p] [-s || -ss] <0A 0B 0C ... hex>");
PrintAndLog(" -h this help");
PrintAndLog(" -r do not read response");
PrintAndLog(" -c calculate and append CRC");
PrintAndLog(" -p leave the field on after receive");
PrintAndLog(" -s active signal field ON with select");
PrintAndLog(" -ss active signal field ON with select for SRx ST Microelectronics tags");
return 0;
}
int usage_hf_14b_snoop(void){
PrintAndLog("It get data from the field and saves it into command buffer.");
PrintAndLog("Buffer accessible from command 'hf list 14b'");
PrintAndLog("Usage: hf 14b snoop [-h]");
PrintAndLog(" -h this help");
PrintAndLog("sample: hf 14b snoop");
return 0;
}
int usage_hf_14b_sim(void){
PrintAndLog("Emulating ISO/IEC 14443 type B tag with 4 UID");
PrintAndLog("Usage: hf 14b sim [-h]");
PrintAndLog(" -h this help");
PrintAndLog("sample: hf 14b sim");
return 0;
}
int usage_hf_14b_read_srx(void){
PrintAndLog("Usage: hf 14b read [h] <1|2>");
PrintAndLog("Options:");
PrintAndLog(" h this help");
PrintAndLog(" <1|2> 1 = SRIX4K , 2 = SRI512");
PrintAndLog("sample: hf 14b read 1");
PrintAndLog(" : hf 14b read 2");
return 0;
}
int usage_hf_14b_write_srx(void){
PrintAndLog("Usage: hf 14b write <1|2> <BLOCK> <DATA>");
PrintAndLog("Options:");
PrintAndLog(" h this help");
PrintAndLog(" <1|2> 1 = SRIX4K , 2 = SRI512");
PrintAndLog(" <block> BLOCK number depends on tag, special block == FF");
PrintAndLog(" <data> hex bytes of data to be written");
PrintAndLog("sample : hf 14b write 1 7F 11223344");
PrintAndLog(" : hf 14b write 1 FF 11223344");
PrintAndLog(" : hf 14b write 2 15 11223344");
PrintAndLog(" : hf 14b write 2 FF 11223344");
return 0;
}
static int rawClose(){
UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_DISCONNECT, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 1;
}
int CmdHF14BList(const char *Cmd) {
CmdHFList("14b");
return 0;
}
int CmdHF14BSim(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_sim();
UsbCommand c = {CMD_SIMULATE_TAG_ISO_14443B, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHF14BSnoop(const char *Cmd) {
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_snoop();
UsbCommand c = {CMD_SNOOP_ISO_14443B, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHF14BCmdRaw (const char *Cmd) {
bool reply = TRUE;
bool power = FALSE;
bool select = FALSE;
char buf[5]="";
int i = 0;
uint8_t data[USB_CMD_DATA_SIZE] = {0x00};
uint16_t datalen = 0;
uint32_t flags = 0;
uint32_t temp = 0;
if (strlen(Cmd)<3) return usage_hf_14b_raw();
// strip
while (*Cmd==' ' || *Cmd=='\t') ++Cmd;
while (Cmd[i]!='\0') {
if (Cmd[i]==' ' || Cmd[i]=='\t') { ++i; continue; }
if (Cmd[i]=='-') {
switch (Cmd[i+1]) {
case 'H':
case 'h':
return usage_hf_14b_raw();
case 'r':
case 'R':
reply = FALSE;
break;
case 'c':
case 'C':
flags |= ISO14B_APPEND_CRC;
break;
case 'p':
case 'P':
power = TRUE;
break;
case 's':
case 'S':
flags |= ISO14B_CONNECT;
select = TRUE;
if (Cmd[i+2]=='s' || Cmd[i+2]=='S') {
flags |= ISO14B_SELECT_SR;
++i;
} else {
flags |= ISO14B_SELECT_STD;
}
break;
default:
return usage_hf_14b_raw();
}
i+=2;
continue;
}
if ((Cmd[i]>='0' && Cmd[i]<='9') ||
(Cmd[i]>='a' && Cmd[i]<='f') ||
(Cmd[i]>='A' && Cmd[i]<='F') ) {
buf[strlen(buf)+1]=0;
buf[strlen(buf)]=Cmd[i];
i++;
if (strlen(buf)>=2) {
sscanf(buf,"%x",&temp);
data[datalen++] = (uint8_t)(temp & 0xff);
*buf=0;
memset(buf, 0x00, sizeof(buf));
}
continue;
}
PrintAndLog("Invalid char on input");
return 0;
}
if(!power)
flags |= ISO14B_DISCONNECT;
if(datalen>0)
flags |= ISO14B_RAW;
// Max buffer is USB_CMD_DATA_SIZE
datalen = (datalen > USB_CMD_DATA_SIZE) ? USB_CMD_DATA_SIZE : datalen;
UsbCommand c = {CMD_ISO_14443B_COMMAND, {flags, datalen, 0}};
memcpy(c.d.asBytes, data, datalen);
clearCommandBuffer();
SendCommand(&c);
if (!reply) return 1;
bool success = TRUE;
// get back iso14b_card_select_t, don't print it.
if(select)
success = waitCmd(FALSE);
// get back response from the raw bytes you sent.
if(success && datalen>0) waitCmd(TRUE);
return 1;
}
// print full atqb info
// bytes
// 0,1,2,3 = application data
// 4 = bit rate capacity
// 5 = max frame size / -4 info
// 6 = FWI / Coding options
static void print_atqb_resp(uint8_t *data, uint8_t cid){
//PrintAndLog(" UID: %s", sprint_hex(data+1,4));
PrintAndLog(" App Data: %s", sprint_hex(data,4));
PrintAndLog(" Protocol: %s", sprint_hex(data+4,3));
uint8_t BitRate = data[4];
if (!BitRate) PrintAndLog(" Bit Rate: 106 kbit/s only PICC <-> PCD");
if (BitRate & 0x10) PrintAndLog(" Bit Rate: 212 kbit/s PICC -> PCD supported");
if (BitRate & 0x20) PrintAndLog(" Bit Rate: 424 kbit/s PICC -> PCD supported");
if (BitRate & 0x40) PrintAndLog(" Bit Rate: 847 kbit/s PICC -> PCD supported");
if (BitRate & 0x01) PrintAndLog(" Bit Rate: 212 kbit/s PICC <- PCD supported");
if (BitRate & 0x02) PrintAndLog(" Bit Rate: 424 kbit/s PICC <- PCD supported");
if (BitRate & 0x04) PrintAndLog(" Bit Rate: 847 kbit/s PICC <- PCD supported");
if (BitRate & 0x80) PrintAndLog(" Same bit rate <-> required");
uint16_t maxFrame = data[5]>>4;
if (maxFrame < 5) maxFrame = 8 * maxFrame + 16;
else if (maxFrame == 5) maxFrame = 64;
else if (maxFrame == 6) maxFrame = 96;
else if (maxFrame == 7) maxFrame = 128;
else if (maxFrame == 8) maxFrame = 256;
else maxFrame = 257;
PrintAndLog("Max Frame Size: %u%s bytes",maxFrame, (maxFrame == 257) ? "+ RFU" : "");
uint8_t protocolT = data[5] & 0xF;
PrintAndLog(" Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4",(protocolT) ? "" : "not " );
uint8_t fwt = data[6]>>4;
if ( fwt < 16 ){
uint32_t etus = (32 << fwt);
uint32_t fwt_time = (302 << fwt);
PrintAndLog("Frame Wait Integer: %u - %u ETUs | %u µS", fwt, etus, fwt_time);
} else {
PrintAndLog("Frame Wait Integer: %u - RFU", fwt);
}
PrintAndLog(" App Data Code: Application is %s",(data[6]&4) ? "Standard" : "Proprietary");
PrintAndLog(" Frame Options: NAD is %ssupported",(data[6]&2) ? "" : "not ");
PrintAndLog(" Frame Options: CID is %ssupported",(data[6]&1) ? "" : "not ");
PrintAndLog("Tag :");
PrintAndLog(" Max Buf Length: %u (MBLI) %s", cid>>4, (cid & 0xF0) ? "" : "chained frames not supported");
PrintAndLog(" CDI : %u", cid & 0x0f);
return;
}
// get SRx chip model (from UID) // from ST Microelectronics
char *get_ST_Chip_Model(uint8_t data){
static char model[20];
char *retStr = model;
memset(model,0, sizeof(model));
switch (data) {
case 0x0: sprintf(retStr, "SRIX4K (Special)"); break;
case 0x2: sprintf(retStr, "SR176"); break;
case 0x3: sprintf(retStr, "SRIX4K"); break;
case 0x4: sprintf(retStr, "SRIX512"); break;
case 0x6: sprintf(retStr, "SRI512"); break;
case 0x7: sprintf(retStr, "SRI4K"); break;
case 0xC: sprintf(retStr, "SRT512"); break;
default : sprintf(retStr, "Unknown"); break;
}
return retStr;
}
// REMAKE:
int print_ST_Lock_info(uint8_t model){
// PrintAndLog("Chip Write Protection Bits:");
// // now interpret the data
// switch (model){
// case 0x0: //fall through (SRIX4K special)
// case 0x3: //fall through (SRIx4K)
// case 0x7: // (SRI4K)
// //only need data[3]
// blk1 = 9;
// PrintAndLog(" raw: %s", sprint_bin(data+3, 1));
// PrintAndLog(" 07/08:%slocked", (data[3] & 1) ? " not " : " " );
// for (uint8_t i = 1; i<8; i++){
// PrintAndLog(" %02u:%slocked", blk1, (data[3] & (1 << i)) ? " not " : " " );
// blk1++;
// }
// break;
// case 0x4: //fall through (SRIX512)
// case 0x6: //fall through (SRI512)
// case 0xC: // (SRT512)
// //need data[2] and data[3]
// blk1 = 0;
// PrintAndLog(" raw: %s", sprint_bin(data+2, 2));
// for (uint8_t b=2; b<4; b++){
// for (uint8_t i=0; i<8; i++){
// PrintAndLog(" %02u:%slocked", blk1, (data[b] & (1 << i)) ? " not " : " " );
// blk1++;
// }
// }
// break;
// case 0x2: // (SR176)
// //need data[2]
// blk1 = 0;
// PrintAndLog(" raw: %s", sprint_bin(data+2, 1));
// for (uint8_t i = 0; i<8; i++){
// PrintAndLog(" %02u/%02u:%slocked", blk1, blk1+1, (data[2] & (1 << i)) ? " " : " not " );
// blk1+=2;
// }
// break;
// default:
// return rawClose();
// }
return 1;
}
// print UID info from SRx chips (ST Microelectronics)
static void print_st_general_info(uint8_t *data, uint8_t len){
//uid = first 8 bytes in data
PrintAndLog(" UID: %s", sprint_hex(SwapEndian64(data,8,8), len));
PrintAndLog(" MFG: %02X, %s", data[6], getTagInfo(data[6]));
PrintAndLog("Chip: %02X, %s", data[5]>>2, get_ST_Chip_Model(data[5]>>2));
return;
}
//05 00 00 = find one tag in field
//1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0])
//a3 = ? (resp 03 [e2 c2])
//02 = ? (resp 02 [6a d3])
// 022b (resp 02 67 00 [29 5b])
// 0200a40400 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b])
// 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c])
// 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b])
// 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c])
// 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c])
// 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c])
//03 = ? (resp 03 [e3 c2])
//c2 = ? (resp c2 [66 15])
//b2 = ? (resp a3 [e9 67])
//a2 = ? (resp 02 [6a d3])
// 14b get and print Full Info (as much as we know)
bool HF14B_Std_Info(bool verbose){
//add more info here
return FALSE;
}
// SRx get and print full info (needs more info...)
bool HF14B_ST_Info(bool verbose){
UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) {
if (verbose) PrintAndLog("timeout while waiting for reply.");
return FALSE;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t));
uint64_t status = resp.arg[0];
if ( status > 0 ) {
rawClose();
return FALSE;
}
//add locking bit information here. uint8_t data[16] = {0x00};
// uint8_t datalen = 2;
// uint8_t resplen;
// uint8_t blk1;
// data[0] = 0x08;
//
// if (model == 0x2) { //SR176 has special command:
// data[1] = 0xf;
// resplen = 4;
// } else {
// data[1] = 0xff;
// resplen = 6;
// }
// //std read cmd
// if (HF14BCmdRaw(true, true, data, &datalen, false)==0)
// return rawClose();
// if (datalen != resplen || !crc) return rawClose();
//print_ST_Lock_info(data[5]>>2);
rawClose();
return TRUE;
}
// get and print all info known about any known 14b tag
bool HF14BInfo(bool verbose){
// try std 14b (atqb)
if (HF14B_Std_Info(verbose)) return TRUE;
// try st 14b
if (HF14B_ST_Info(verbose)) return TRUE;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (verbose) PrintAndLog("no 14443B tag found");
return FALSE;
}
// menu command to get and print all info known about any known 14b tag
int CmdHF14Binfo(const char *Cmd){
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_info();
bool verbose = !((cmdp == 's') || (cmdp == 'S'));
return HF14BInfo(verbose);
}
bool HF14B_ST_Reader(bool verbose){
bool isSuccess = FALSE;
// SRx get and print general info about SRx chip from UID
UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_SR | ISO14B_DISCONNECT, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) {
if (verbose) PrintAndLog("timeout while waiting for reply.");
return FALSE;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t));
uint64_t status = resp.arg[0];
switch( status ){
case 0:
print_st_general_info(card.uid, card.uidlen);
isSuccess = TRUE;
break;
case 1:
if (verbose) PrintAndLog("iso14443-3 random chip id fail");
break;
case 2:
if (verbose) PrintAndLog("iso14443-3 ATTRIB fail");
break;
case 3:
if (verbose) PrintAndLog("iso14443-3 CRC fail");
break;
default:
if (verbose) PrintAndLog("iso14443b card select SRx failed");
break;
}
rawClose();
return isSuccess;
}
bool HF14B_Std_Reader(bool verbose){
bool isSuccess = FALSE;
// 14b get and print UID only (general info)
UsbCommand c = {CMD_ISO_14443B_COMMAND, {ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_DISCONNECT, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) {
if (verbose) PrintAndLog("timeout while waiting for reply.");
return FALSE;
}
iso14b_card_select_t card;
memcpy(&card, (iso14b_card_select_t *)resp.d.asBytes, sizeof(iso14b_card_select_t));
uint64_t status = resp.arg[0];
switch( status ){
case 0:
PrintAndLog(" UID : %s", sprint_hex(card.uid, card.uidlen));
PrintAndLog(" ATQB : %s", sprint_hex(card.atqb, sizeof(card.atqb)));
PrintAndLog(" CHIPID : %02X", card.chipid);
print_atqb_resp(card.atqb, card.cid);
isSuccess = TRUE;
break;
case 2:
if (verbose) PrintAndLog("iso14443-3 ATTRIB fail");
break;
case 3:
if (verbose) PrintAndLog("iso14443-3 CRC fail");
break;
default:
if (verbose) PrintAndLog("iso14443b card select failed");
break;
}
rawClose();
return isSuccess;
}
// test for other 14b type tags (mimic another reader - don't have tags to identify)
bool HF14B_Other_Reader(){
// uint8_t data[] = {0x00, 0x0b, 0x3f, 0x80};
// uint8_t datalen = 4;
// // 14b get and print UID only (general info)
// uint32_t flags = ISO14B_CONNECT | ISO14B_SELECT_STD | ISO14B_RAW | ISO14B_APPEND_CRC;
// UsbCommand c = {CMD_ISO_14443B_COMMAND, {flags, datalen, 0}};
// memcpy(c.d.asBytes, data, datalen);
// clearCommandBuffer();
// SendCommand(&c);
// UsbCommand resp;
// WaitForResponse(CMD_ACK,&resp);
// if (datalen > 2 ) {
// printandlog ("\n14443-3b tag found:");
// printandlog ("unknown tag type answered to a 0x000b3f80 command ans:");
// //printandlog ("%s", sprint_hex(data, datalen));
// rawclose();
// return true;
// }
// c.arg1 = 1;
// c.d.asBytes[0] = ISO14443B_AUTHENTICATE;
// clearCommandBuffer();
// SendCommand(&c);
// UsbCommand resp;
// WaitForResponse(CMD_ACK, &resp);
// if (datalen > 0) {
// PrintAndLog ("\n14443-3b tag found:");
// PrintAndLog ("Unknown tag type answered to a 0x0A command ans:");
// // PrintAndLog ("%s", sprint_hex(data, datalen));
// rawClose();
// return TRUE;
// }
// c.arg1 = 1;
// c.d.asBytes[0] = ISO14443B_RESET;
// clearCommandBuffer();
// SendCommand(&c);
// UsbCommand resp;
// WaitForResponse(CMD_ACK, &resp);
// if (datalen > 0) {
// PrintAndLog ("\n14443-3b tag found:");
// PrintAndLog ("Unknown tag type answered to a 0x0C command ans:");
// PrintAndLog ("%s", sprint_hex(data, datalen));
// rawClose();
// return TRUE;
// }
// rawClose();
return FALSE;
}
// get and print general info about all known 14b chips
bool HF14BReader(bool verbose){
// try std 14b (atqb)
if (HF14B_Std_Reader(verbose)) return TRUE;
// try ST Microelectronics 14b
if (HF14B_ST_Reader(verbose)) return TRUE;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (HF14B_Other_Reader()) return TRUE;
if (verbose) PrintAndLog("no 14443B tag found");
return FALSE;
}
// menu command to get and print general info about all known 14b chips
int CmdHF14BReader(const char *Cmd){
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_hf_14b_reader();
bool verbose = !((cmdp == 's') || (cmdp == 'S'));
return HF14BReader(verbose);
}
/* New command to read the contents of a SRI512|SRIX4K tag
* SRI* tags are ISO14443-B modulated memory tags,
* this command just dumps the contents of the memory/
*/
int CmdHF14BReadSri(const char *Cmd){
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') return usage_hf_14b_read_srx();
uint8_t tagtype = param_get8(Cmd, 0);
uint8_t blocks = (tagtype == 1) ? 0x7F : 0x0F;
UsbCommand c = {CMD_READ_SRI_TAG, {blocks, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// New command to write a SRI512/SRIX4K tag.
int CmdHF14BWriteSri(const char *Cmd){
/*
* For SRIX4K blocks 00 - 7F
* hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata
*
* For SR512 blocks 00 - 0F
* hf 14b raw -c -p 09 $sr512wblock $sr512wdata
*
* Special block FF = otp_lock_reg block.
* Data len 4 bytes-
*/
char cmdp = param_getchar(Cmd, 0);
uint8_t blockno = -1;
uint8_t data[4] = {0x00};
bool isSrix4k = true;
char str[30];
memset(str, 0x00, sizeof(str));
if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') return usage_hf_14b_write_srx();
if ( cmdp == '2' )
isSrix4k = false;
//blockno = param_get8(Cmd, 1);
if ( param_gethex(Cmd, 1, &blockno, 2) ) {
PrintAndLog("Block number must include 2 HEX symbols");
return 0;
}
if ( isSrix4k ){
if ( blockno > 0x7f && blockno != 0xff ){
PrintAndLog("Block number out of range");
return 0;
}
} else {
if ( blockno > 0x0f && blockno != 0xff ){
PrintAndLog("Block number out of range");
return 0;
}
}
if (param_gethex(Cmd, 2, data, 8)) {
PrintAndLog("Data must include 8 HEX symbols");
return 0;
}
if ( blockno == 0xff) {
PrintAndLog("[%s] Write special block %02X [ %s ]",
(isSrix4k) ? "SRIX4K":"SRI512",
blockno,
sprint_hex(data,4)
);
} else {
PrintAndLog("[%s] Write block %02X [ %s ]",
(isSrix4k) ? "SRIX4K":"SRI512",
blockno,
sprint_hex(data,4)
);
}
sprintf(str, "-ss -c %02x %02x %02x%02x%02x%02x", ISO14443B_WRITE_BLK, blockno, data[0], data[1], data[2], data[3]);
CmdHF14BCmdRaw(str);
return 0;
}
uint32_t srix4kEncode(uint32_t value) {
/*
// vv = value
// pp = position
// vv vv vv pp
4 bytes : 00 1A 20 01
*/
// only the lower crumbs.
uint8_t block = (value & 0xFF);
uint8_t i = 0;
uint8_t valuebytes[] = {0,0,0};
num_to_bytes(value, 3, valuebytes);
// Scrambled part
// Crumb swapping of value.
uint8_t temp[] = {0,0};
temp[0] = (CRUMB(value, 22) << 4 | CRUMB(value, 14 ) << 2 | CRUMB(value, 6)) << 4;
temp[0] |= CRUMB(value, 20) << 4 | CRUMB(value, 12 ) << 2 | CRUMB(value, 4);
temp[1] = (CRUMB(value, 18) << 4 | CRUMB(value, 10 ) << 2 | CRUMB(value, 2)) << 4;
temp[1] |= CRUMB(value, 16) << 4 | CRUMB(value, 8 ) << 2 | CRUMB(value, 0);
// chksum part
uint32_t chksum = 0xFF - block;
// chksum is reduced by each nibbles of value.
for (i = 0; i < 3; ++i){
chksum -= NIBBLE_HIGH(valuebytes[i]);
chksum -= NIBBLE_LOW(valuebytes[i]);
}
// base4 conversion and left shift twice
i = 3;
uint8_t base4[] = {0,0,0,0};
while( chksum !=0 ){
base4[i--] = (chksum % 4 << 2);
chksum /= 4;
}
// merge scambled and chksum parts
uint32_t encvalue =
( NIBBLE_LOW ( base4[0]) << 28 ) |
( NIBBLE_HIGH( temp[0]) << 24 ) |
( NIBBLE_LOW ( base4[1]) << 20 ) |
( NIBBLE_LOW ( temp[0]) << 16 ) |
( NIBBLE_LOW ( base4[2]) << 12 ) |
( NIBBLE_HIGH( temp[1]) << 8 ) |
( NIBBLE_LOW ( base4[3]) << 4 ) |
NIBBLE_LOW ( temp[1] );
PrintAndLog("ICE encoded | %08X -> %08X", value, encvalue);
return encvalue;
}
uint32_t srix4kDecode(uint32_t value) {
switch(value) {
case 0xC04F42C5: return 0x003139;
case 0xC1484807: return 0x002943;
case 0xC0C60848: return 0x001A20;
}
return 0;
}
uint32_t srix4kDecodeCounter(uint32_t num) {
uint32_t value = ~num;
++value;
return value;
}
uint32_t srix4kGetMagicbytes( uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19 ){
#define MASK 0xFFFFFFFF;
uint32_t uid32 = uid & MASK;
uint32_t counter = srix4kDecodeCounter(block6);
uint32_t decodedBlock18 = srix4kDecode(block18);
uint32_t decodedBlock19 = srix4kDecode(block19);
uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1;
uint32_t result = (uid32 * doubleBlock * counter) & MASK;
PrintAndLog("Magic bytes | %08X", result);
return result;
}
int srix4kValid(const char *Cmd){
uint64_t uid = 0xD00202501A4532F9;
uint32_t block6 = 0xFFFFFFFF;
uint32_t block18 = 0xC04F42C5;
uint32_t block19 = 0xC1484807;
uint32_t block21 = 0xD1BCABA4;
uint32_t test_b18 = 0x00313918;
uint32_t test_b18_enc = srix4kEncode(test_b18);
//uint32_t test_b18_dec = srix4kDecode(test_b18_enc);
PrintAndLog("ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc , "");
uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19);
PrintAndLog("BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21);
return 0;
}
int CmdteaSelfTest(const char *Cmd){
uint8_t v[8], v_le[8];
memset(v, 0x00, sizeof(v));
memset(v_le, 0x00, sizeof(v_le));
uint8_t* v_ptr = v_le;
uint8_t cmdlen = strlen(Cmd);
cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen;
if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){
PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen);
return 1;
}
SwapEndian64ex(v , 8, 4, v_ptr);
// ENCRYPTION KEY:
uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB };
uint8_t keyle[16];
uint8_t* key_ptr = keyle;
SwapEndian64ex(key , sizeof(key), 4, key_ptr);
PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8));
tea_decrypt(v_ptr, key_ptr);
PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8));
tea_encrypt(v_ptr, key_ptr);
tea_encrypt(v_ptr, key_ptr);
PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8));
return 0;
}
bool waitCmd(bool verbose) {
bool crc = FALSE;
uint8_t b1 = 0, b2 = 0;
uint8_t data[USB_CMD_DATA_SIZE] = {0x00};
uint8_t status = 0;
uint16_t len = 0;
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, TIMEOUT)) {
status = (resp.arg[0] & 0xFFFF);
if ( status > 0 ) return FALSE;
len = (resp.arg[1] & 0xFFFF);
memcpy(data, resp.d.asBytes, len);
if (verbose) {
ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2);
crc = ( data[len-2] == b1 && data[len-1] == b2);
PrintAndLog("[LEN %u] %s[%02X %02X] %s",
len,
sprint_hex(data, len-2),
data[len-2],
data[len-1],
(crc) ? "OK" : "FAIL"
);
}
return TRUE;
} else {
PrintAndLog("timeout while waiting for reply.");
return FALSE;
}
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"info", CmdHF14Binfo, 0, "Find and print details about a 14443B tag"},
{"list", CmdHF14BList, 0, "[Deprecated] List ISO 14443B history"},
{"raw", CmdHF14BCmdRaw, 0, "Send raw hex data to tag"},
{"reader", CmdHF14BReader, 0, "Act as a 14443B reader to identify a tag"},
{"sim", CmdHF14BSim, 0, "Fake ISO 14443B tag"},
{"snoop", CmdHF14BSnoop, 0, "Eavesdrop ISO 14443B"},
{"sriread", CmdHF14BReadSri, 0, "Read contents of a SRI512 | SRIX4K tag"},
{"sriwrite", CmdHF14BWriteSri, 0, "Write data to a SRI512 | SRIX4K tag"},
//{"valid", srix4kValid, 1, "srix4k checksum test"},
//{"valid", CmdteaSelfTest, 1, "tea test"},
{NULL, NULL, 0, NULL}
};
int CmdHF14B(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}