mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-23 00:21:53 +08:00
f3ebfcb9a0
chg: applied @pwpiwi 's fixes for iso 14B / 15
174 lines
5.3 KiB
Verilog
174 lines
5.3 KiB
Verilog
//-----------------------------------------------------------------------------
|
|
//
|
|
// Jonathan Westhues, April 2006
|
|
//-----------------------------------------------------------------------------
|
|
|
|
module hi_read_rx_xcorr(
|
|
pck0, ck_1356meg, ck_1356megb,
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
adc_d, adc_clk,
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
cross_hi, cross_lo,
|
|
dbg,
|
|
xcorr_is_848, snoop, xcorr_quarter_freq
|
|
);
|
|
input pck0, ck_1356meg, ck_1356megb;
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
input [7:0] adc_d;
|
|
output adc_clk;
|
|
input ssp_dout;
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
input cross_hi, cross_lo;
|
|
output dbg;
|
|
input xcorr_is_848, snoop, xcorr_quarter_freq;
|
|
|
|
// Carrier is steady on through this, unless we're snooping.
|
|
assign pwr_hi = ck_1356megb & (~snoop);
|
|
assign pwr_oe1 = 1'b0;
|
|
assign pwr_oe3 = 1'b0;
|
|
assign pwr_oe4 = 1'b0;
|
|
|
|
reg [2:0] fc_div;
|
|
always @(negedge ck_1356megb)
|
|
fc_div <= fc_div + 1;
|
|
|
|
(* clock_signal = "yes" *) reg adc_clk; // sample frequency, always 16 * fc
|
|
always @(ck_1356megb, xcorr_is_848, xcorr_quarter_freq, fc_div)
|
|
if (xcorr_is_848 & ~xcorr_quarter_freq) // fc = 847.5 kHz, standard ISO14443B
|
|
adc_clk <= ck_1356megb;
|
|
else if (~xcorr_is_848 & ~xcorr_quarter_freq) // fc = 423.75 kHz
|
|
adc_clk <= fc_div[0];
|
|
else if (xcorr_is_848 & xcorr_quarter_freq) // fc = 211.875 kHz
|
|
adc_clk <= fc_div[1];
|
|
else // fc = 105.9375 kHz
|
|
adc_clk <= fc_div[2];
|
|
|
|
// When we're a reader, we just need to do the BPSK demod; but when we're an
|
|
// eavesdropper, we also need to pick out the commands sent by the reader,
|
|
// using AM. Do this the same way that we do it for the simulated tag.
|
|
reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev;
|
|
reg [11:0] has_been_low_for;
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if(& adc_d[7:0]) after_hysteresis <= 1'b1;
|
|
else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;
|
|
|
|
if(after_hysteresis)
|
|
begin
|
|
has_been_low_for <= 7'b0;
|
|
end
|
|
else
|
|
begin
|
|
if(has_been_low_for == 12'd4095)
|
|
begin
|
|
has_been_low_for <= 12'd0;
|
|
after_hysteresis <= 1'b1;
|
|
end
|
|
else
|
|
has_been_low_for <= has_been_low_for + 1;
|
|
end
|
|
end
|
|
|
|
// Let us report a correlation every 4 subcarrier cycles, or 4*16=64 samples,
|
|
// so we need a 6-bit counter.
|
|
reg [5:0] corr_i_cnt;
|
|
// And a couple of registers in which to accumulate the correlations.
|
|
// We would add at most 32 times the difference between unmodulated and modulated signal. It should
|
|
// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
|
|
// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
|
|
reg signed [11:0] corr_i_accum;
|
|
reg signed [11:0] corr_q_accum;
|
|
// we will report maximum 8 significant bits
|
|
reg signed [7:0] corr_i_out;
|
|
reg signed [7:0] corr_q_out;
|
|
// clock and frame signal for communication to ARM
|
|
reg ssp_clk;
|
|
reg ssp_frame;
|
|
|
|
|
|
always @(negedge adc_clk)
|
|
begin
|
|
corr_i_cnt <= corr_i_cnt + 1;
|
|
end
|
|
|
|
|
|
// ADC data appears on the rising edge, so sample it on the falling edge
|
|
always @(negedge adc_clk)
|
|
begin
|
|
// These are the correlators: we correlate against in-phase and quadrature
|
|
// versions of our reference signal, and keep the (signed) result to
|
|
// send out later over the SSP.
|
|
if(corr_i_cnt == 6'd0)
|
|
begin
|
|
if(snoop)
|
|
begin
|
|
// Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal
|
|
corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
|
|
corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
|
|
after_hysteresis_prev_prev <= after_hysteresis;
|
|
end
|
|
else
|
|
begin
|
|
// 8 bits of tag signal
|
|
corr_i_out <= corr_i_accum[11:4];
|
|
corr_q_out <= corr_q_accum[11:4];
|
|
end
|
|
|
|
corr_i_accum <= adc_d;
|
|
corr_q_accum <= adc_d;
|
|
end
|
|
else
|
|
begin
|
|
if(corr_i_cnt[3])
|
|
corr_i_accum <= corr_i_accum - adc_d;
|
|
else
|
|
corr_i_accum <= corr_i_accum + adc_d;
|
|
|
|
if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2
|
|
corr_q_accum <= corr_q_accum + adc_d;
|
|
else
|
|
corr_q_accum <= corr_q_accum - adc_d;
|
|
|
|
end
|
|
|
|
// The logic in hi_simulate.v reports 4 samples per bit. We report two
|
|
// (I, Q) pairs per bit, so we should do 2 samples per pair.
|
|
if(corr_i_cnt == 6'd32)
|
|
after_hysteresis_prev <= after_hysteresis;
|
|
|
|
// Then the result from last time is serialized and send out to the ARM.
|
|
// We get one report each cycle, and each report is 16 bits, so the
|
|
// ssp_clk should be the adc_clk divided by 64/16 = 4.
|
|
|
|
if(corr_i_cnt[1:0] == 2'b10)
|
|
ssp_clk <= 1'b0;
|
|
|
|
if(corr_i_cnt[1:0] == 2'b00)
|
|
begin
|
|
ssp_clk <= 1'b1;
|
|
// Don't shift if we just loaded new data, obviously.
|
|
if(corr_i_cnt != 6'd0)
|
|
begin
|
|
corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};
|
|
corr_q_out[7:1] <= corr_q_out[6:0];
|
|
end
|
|
end
|
|
|
|
// set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35
|
|
// (send two frames with 8 Bits each)
|
|
if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000)
|
|
ssp_frame = 1'b1;
|
|
else
|
|
ssp_frame = 1'b0;
|
|
|
|
end
|
|
|
|
assign ssp_din = corr_i_out[7];
|
|
|
|
assign dbg = corr_i_cnt[3];
|
|
|
|
// Unused.
|
|
assign pwr_lo = 1'b0;
|
|
assign pwr_oe2 = 1'b0;
|
|
|
|
endmodule
|