proxmark3/client/cmdlfindala.c
2019-03-09 08:59:13 +01:00

486 lines
14 KiB
C

//-----------------------------------------------------------------------------
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency Indala commands
// PSK1, rf/32, 64 or 224 bits (known)
//-----------------------------------------------------------------------------
#include "cmdlfindala.h"
static int CmdHelp(const char *Cmd);
int usage_lf_indala_demod(void) {
PrintAndLogEx(NORMAL, "Enables Indala compatible reader mode printing details of scanned tags.");
PrintAndLogEx(NORMAL, "By default, values are printed and logged until the button is pressed or another USB command is issued.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf indala demod [h]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : This help");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf indala demod");
return 0;
}
int usage_lf_indala_sim(void) {
PrintAndLogEx(NORMAL, "Enables simulation of Indala card with specified uid.");
PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf indala sim [h] <uid>");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : This help");
PrintAndLogEx(NORMAL, " <uid> : 64/224 UID");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf indala sim deadc0de");
return 0;
}
int usage_lf_indala_clone(void) {
PrintAndLogEx(NORMAL, "Enables cloning of Indala card with specified uid onto T55x7.");
PrintAndLogEx(NORMAL, "The T55x7 must be on the antenna when issuing this command. T55x7 blocks are calculated and printed in the process.");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf indala clone [h] <uid> [Q5]");
PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : This help");
PrintAndLogEx(NORMAL, " <uid> : 64/224 UID");
PrintAndLogEx(NORMAL, " Q5 : optional - clone to Q5 (T5555) instead of T55x7 chip");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf indala clone 112233");
return 0;
}
// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding
int indala64decode(uint8_t *dest, size_t *size, uint8_t *invert) {
//standard 64 bit indala formats including 26 bit 40134 format
uint8_t preamble64[] = {1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1};
uint8_t preamble64_i[] = {0,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0};
size_t idx = 0;
size_t found_size = *size;
if (!preambleSearch(dest, preamble64, sizeof(preamble64), &found_size, &idx) ) {
// if didn't find preamble try again inverting
if (!preambleSearch(dest, preamble64_i, sizeof(preamble64_i), &found_size, &idx)) return -1;
*invert ^= 1;
}
if (found_size != 64) return -2;
if (*invert == 1)
for (size_t i = idx; i < found_size + idx; i++)
dest[i] ^= 1;
// note: don't change *size until we are sure we got it...
*size = found_size;
return (int) idx;
}
int indala224decode(uint8_t *dest, size_t *size, uint8_t *invert) {
//large 224 bit indala formats (different preamble too...)
uint8_t preamble224[] = {1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1};
uint8_t preamble224_i[] = {0,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 0};
size_t idx = 0;
size_t found_size = *size;
if (!preambleSearch(dest, preamble224, sizeof(preamble224), &found_size, &idx) ) {
// if didn't find preamble try again inverting
if (!preambleSearch(dest, preamble224_i, sizeof(preamble224_i), &found_size, &idx)) return -1;
*invert ^= 1;
}
if (found_size != 224) return -2;
if (*invert==1 && idx > 0)
for (size_t i = idx-1; i < found_size + idx + 2; i++)
dest[i] ^= 1;
// 224 formats are typically PSK2 (afaik 2017 Marshmellow)
// note loses 1 bit at beginning of transformation...
// don't need to verify array is big enough as to get here there has to be a full preamble after all of our data
psk1TOpsk2(dest + (idx-1), found_size+2);
idx++;
*size = found_size;
return (int) idx;
}
// this read is the "normal" read, which download lf signal and tries to demod here.
int CmdIndalaRead(const char *Cmd) {
lf_read(true, 30000);
return CmdIndalaDemod(Cmd);
}
// Indala 26 bit decode
// by marshmellow
// optional arguments - same as PSKDemod (clock & invert & maxerr)
int CmdIndalaDemod(const char *Cmd) {
int ans;
if (strlen(Cmd) > 0)
ans = PSKDemod(Cmd, 0);
else //default to RF/32
ans = PSKDemod("32", 0);
if (!ans){
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala can't demod signal: %d", ans);
return 0;
}
uint8_t invert = 0;
size_t size = DemodBufferLen;
int idx = indala64decode(DemodBuffer, &size, &invert);
if (idx < 0 || size != 64) {
// try 224 indala
invert = 0;
size = DemodBufferLen;
idx = indala224decode(DemodBuffer, &size, &invert);
if (idx < 0 || size != 224) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala wrong size, expected [64|224] got: %d (startindex %i)", size, idx);
return 0;
}
}
setDemodBuf(DemodBuffer, size, (size_t)idx);
setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock));
if (invert) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Indala had to invert bits");
for (size_t i = 0; i < size; i++)
DemodBuffer[i] ^= 1;
}
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
uid1 = bytebits_to_byte(DemodBuffer,32);
uid2 = bytebits_to_byte(DemodBuffer+32,32);
if (DemodBufferLen == 64){
PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x)\n%s",
DemodBufferLen, uid1, uid2, sprint_bin_break(DemodBuffer,DemodBufferLen,32)
);
} else {
uid3 = bytebits_to_byte(DemodBuffer+64,32);
uid4 = bytebits_to_byte(DemodBuffer+96,32);
uid5 = bytebits_to_byte(DemodBuffer+128,32);
uid6 = bytebits_to_byte(DemodBuffer+160,32);
uid7 = bytebits_to_byte(DemodBuffer+192,32);
PrintAndLogEx(SUCCESS, "Indala Found - bitlength %d, UID = (0x%x%08x%08x%08x%08x%08x%08x)\n%s",
DemodBufferLen,
uid1, uid2, uid3, uid4, uid5, uid6, uid7, sprint_bin_break(DemodBuffer, DemodBufferLen, 32)
);
}
if (g_debugMode){
PrintAndLogEx(DEBUG, "DEBUG: Indala - printing demodbuffer:");
printDemodBuff();
}
return 1;
}
// older alternative indala demodulate (has some positives and negatives)
// returns false positives more often - but runs against more sets of samples
// poor psk signal can be difficult to demod this approach might succeed when the other fails
// but the other appears to currently be more accurate than this approach most of the time.
int CmdIndalaDemodAlt(const char *Cmd) {
// Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID
int state = -1;
int count = 0;
int i, j;
// worst case with GraphTraceLen=40000 is < 4096
// under normal conditions it's < 2048
uint8_t data[MAX_GRAPH_TRACE_LEN] = {0};
size_t datasize = getFromGraphBuf(data);
uint8_t rawbits[4096];
int rawbit = 0;
int worst = 0, worstPos = 0;
//clear clock grid and demod plot
setClockGrid(0, 0);
DemodBufferLen = 0;
// PrintAndLogEx(NORMAL, "Expecting a bit less than %d raw bits", GraphTraceLen / 32);
// loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2)
for (i = 0; i < datasize-1; i += 2) {
count += 1;
if ((data[i] > data[i + 1]) && (state != 1)) {
// appears redundant - marshmellow
if (state == 0) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 0;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 1;
count = 0;
} else if ((data[i] < data[i + 1]) && (state != 0)) {
//appears redundant
if (state == 1) {
for (j = 0; j < count - 8; j += 16) {
rawbits[rawbit++] = 1;
}
if ((abs(count - j)) > worst) {
worst = abs(count - j);
worstPos = i;
}
}
state = 0;
count = 0;
}
}
if (rawbit > 0){
PrintAndLogEx(INFO, "Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32);
PrintAndLogEx(INFO, "worst metric (0=best..7=worst): %d at pos %d", worst, worstPos);
} else {
return 0;
}
// Finding the start of a UID
int uidlen, long_wait;
if (strcmp(Cmd, "224") == 0) {
uidlen = 224;
long_wait = 30;
} else {
uidlen = 64;
long_wait = 29;
}
int start;
int first = 0;
for (start = 0; start <= rawbit - uidlen; start++) {
first = rawbits[start];
for (i = start; i < start + long_wait; i++) {
if (rawbits[i] != first) {
break;
}
}
if (i == (start + long_wait)) {
break;
}
}
if (start == rawbit - uidlen + 1) {
PrintAndLogEx(FAILED, "nothing to wait for");
return 0;
}
// Inverting signal if needed
if (first == 1) {
for (i = start; i < rawbit; i++) {
rawbits[i] = !rawbits[i];
}
}
// Dumping UID
uint8_t bits[224] = {0x00};
char showbits[225] = {0x00};
int bit;
i = start;
int times = 0;
if (uidlen > rawbit) {
PrintAndLogEx(WARNING, "Warning: not enough raw bits to get a full UID");
for (bit = 0; bit < rawbit; bit++) {
bits[bit] = rawbits[i++];
// As we cannot know the parity, let's use "." and "/"
showbits[bit] = '.' + bits[bit];
}
showbits[bit+1]='\0';
PrintAndLogEx(SUCCESS, "Partial UID | %s", showbits);
return 0;
} else {
for (bit = 0; bit < uidlen; bit++) {
bits[bit] = rawbits[i++];
showbits[bit] = '0' + bits[bit];
}
times = 1;
}
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
int idx;
uid1 = uid2 = 0;
if (uidlen == 64){
for( idx=0; idx < 64; idx++) {
if (showbits[idx] == '0') {
uid1 = (uid1<<1) | (uid2>>31);
uid2 = (uid2<<1) | 0;
} else {
uid1 = (uid1<<1) | (uid2>>31);
uid2 = (uid2<<1) | 1;
}
}
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x)", showbits, uid1, uid2);
}
else {
uid3 = uid4 = uid5 = uid6 = uid7 = 0;
for( idx=0; idx<224; idx++) {
uid1 = (uid1<<1) | (uid2>>31);
uid2 = (uid2<<1) | (uid3>>31);
uid3 = (uid3<<1) | (uid4>>31);
uid4 = (uid4<<1) | (uid5>>31);
uid5 = (uid5<<1) | (uid6>>31);
uid6 = (uid6<<1) | (uid7>>31);
if (showbits[idx] == '0')
uid7 = (uid7<<1) | 0;
else
uid7 = (uid7<<1) | 1;
}
PrintAndLogEx(SUCCESS, "UID | %s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7);
}
// Checking UID against next occurrences
int failed = 0;
for (; i + uidlen <= rawbit;) {
failed = 0;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] != rawbits[i++]) {
failed = 1;
break;
}
}
if (failed == 1) {
break;
}
times += 1;
}
PrintAndLogEx(DEBUG, "Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen);
// Remodulating for tag cloning
// HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod)
// since this changes graphbuffer data.
GraphTraceLen = 32 * uidlen;
i = 0;
int phase = 0;
for (bit = 0; bit < uidlen; bit++) {
if (bits[bit] == 0) {
phase = 0;
} else {
phase = 1;
}
int j;
for (j = 0; j < 32; j++) {
GraphBuffer[i++] = phase;
phase = !phase;
}
}
RepaintGraphWindow();
return 1;
}
int CmdIndalaSim(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (strlen(Cmd) == 0 || cmdp == 'h') return usage_lf_indala_sim();
uint8_t bits[224];
size_t size = sizeof(bits);
memset(bits, 0x00, size);
// uid
uint8_t hexuid[100];
int len = 0;
param_gethex_ex(Cmd, 0, hexuid, &len);
if ( len > 28 )
return usage_lf_indala_sim();
// convert to binarray
uint8_t counter = 223;
for (uint8_t i = 0; i < len; i++) {
for(uint8_t j = 0; j < 8; j++) {
bits[counter--] = hexuid[i] & 1;
hexuid[i] >>= 1;
}
}
// indala PSK
uint8_t clk = 32, carrier = 2, invert = 0;
uint16_t arg1, arg2;
arg1 = clk << 8 | carrier;
arg2 = invert;
// It has to send either 64bits (8bytes) or 224bits (28bytes). Zero padding needed if not.
// lf simpsk 1 c 32 r 2 d 0102030405060708
PrintAndLogEx(SUCCESS, "Simulating Indala UID: %s", sprint_hex(hexuid, len));
PrintAndLogEx(SUCCESS, "Press pm3-button to abort simulation or run another command");
UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, bits, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
// iceman - needs refactoring
int CmdIndalaClone(const char *Cmd) {
UsbCommand c = {0};
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0;
uint32_t n = 0, i = 0;
if (strchr(Cmd,'l') != 0) {
while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
uid1 = (uid1 << 4) | (uid2 >> 28);
uid2 = (uid2 << 4) | (uid3 >> 28);
uid3 = (uid3 << 4) | (uid4 >> 28);
uid4 = (uid4 << 4) | (uid5 >> 28);
uid5 = (uid5 << 4) | (uid6 >> 28);
uid6 = (uid6 << 4) | (uid7 >> 28);
uid7 = (uid7 << 4) | (n & 0xf);
}
PrintAndLogEx(INFO, "Preparing to clone Indala 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7);
c.cmd = CMD_INDALA_CLONE_TAG_L;
c.d.asDwords[0] = uid1;
c.d.asDwords[1] = uid2;
c.d.asDwords[2] = uid3;
c.d.asDwords[3] = uid4;
c.d.asDwords[4] = uid5;
c.d.asDwords[5] = uid6;
c.d.asDwords[6] = uid7;
} else {
while (sscanf(&Cmd[i++], "%1x", &n ) == 1) {
uid1 = (uid1 << 4) | (uid2 >> 28);
uid2 = (uid2 << 4) | (n & 0xf);
}
PrintAndLogEx(INFO, "Preparing to clone Indala 64bit tag with UID %x%08x", uid1, uid2);
c.cmd = CMD_INDALA_CLONE_TAG;
c.arg[0] = uid1;
c.arg[1] = uid2;
}
clearCommandBuffer();
SendCommand(&c);
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "this help"},
{"demod", CmdIndalaDemod, 1, "demodulate an indala tag (PSK1) from GraphBuffer"},
{"altdemod", CmdIndalaDemodAlt, 1, "alternative method to Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"},
{"read", CmdIndalaRead, 0, "read an Indala Prox tag from the antenna"},
{"clone", CmdIndalaClone, 0, "clone Indala to T55x7"},
{"sim", CmdIndalaSim, 0, "simulate Indala tag"},
{NULL, NULL, 0, NULL}
};
int CmdLFINDALA(const char *Cmd){
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}