mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-01-05 07:36:14 +08:00
1622 lines
No EOL
40 KiB
C
1622 lines
No EOL
40 KiB
C
//-----------------------------------------------------------------------------
|
|
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
|
|
// 2016 Iceman
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// LEGIC RF simulation code
|
|
//-----------------------------------------------------------------------------
|
|
#include "legicrf.h"
|
|
|
|
static struct legic_frame {
|
|
uint8_t bits;
|
|
uint32_t data;
|
|
} current_frame;
|
|
|
|
static enum {
|
|
STATE_DISCON,
|
|
STATE_IV,
|
|
STATE_CON,
|
|
} legic_state;
|
|
|
|
static crc_t legic_crc;
|
|
static int legic_read_count;
|
|
static uint32_t legic_prng_bc;
|
|
static uint32_t legic_prng_iv;
|
|
|
|
static int legic_phase_drift;
|
|
static int legic_frame_drift;
|
|
static int legic_reqresp_drift;
|
|
|
|
AT91PS_TC timer;
|
|
AT91PS_TC prng_timer;
|
|
|
|
/*
|
|
static void setup_timer(void) {
|
|
// Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging
|
|
// this it won't be terribly accurate but should be good enough.
|
|
//
|
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
|
|
timer = AT91C_BASE_TC1;
|
|
timer->TC_CCR = AT91C_TC_CLKDIS;
|
|
timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
|
|
timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
|
|
|
//
|
|
// Set up Timer 2 to use for measuring time between frames in
|
|
// tag simulation mode. Runs 4x faster as Timer 1
|
|
//
|
|
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2);
|
|
prng_timer = AT91C_BASE_TC2;
|
|
prng_timer->TC_CCR = AT91C_TC_CLKDIS;
|
|
prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK;
|
|
prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
|
|
}
|
|
|
|
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
|
|
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
|
|
|
|
// fast clock
|
|
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
|
|
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
|
|
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
|
|
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
|
|
AT91C_BASE_TC0->TC_RA = 1;
|
|
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
|
|
|
|
*/
|
|
|
|
// At TIMER_CLOCK3 (MCK/32)
|
|
// testing calculating in ticks. 1.5ticks = 1us
|
|
#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
|
|
#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
|
|
#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
|
|
#define TAG_BIT_PERIOD 142 // 100us == 100 * 1.5 == 150ticks
|
|
#define TAG_FRAME_WAIT 495 // 330us from READER frame end to TAG frame start. 330 * 1.5 == 495
|
|
|
|
#define RWD_TIME_FUZZ 20 // rather generous 13us, since the peak detector + hysteresis fuzz quite a bit
|
|
|
|
#define SIM_DIVISOR 586 /* prng_time/SIM_DIVISOR count prng needs to be forwared */
|
|
#define SIM_SHIFT 900 /* prng_time+SIM_SHIFT shift of delayed start */
|
|
|
|
#define OFFSET_LOG 1024
|
|
|
|
#define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz)))
|
|
|
|
#ifndef SHORT_COIL
|
|
# define SHORT_COIL LOW(GPIO_SSC_DOUT);
|
|
#endif
|
|
#ifndef OPEN_COIL
|
|
# define OPEN_COIL HIGH(GPIO_SSC_DOUT);
|
|
#endif
|
|
#ifndef LINE_IN
|
|
# define LINE_IN AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
|
|
#endif
|
|
// Pause pulse, off in 20us / 30ticks,
|
|
// ONE / ZERO bit pulse,
|
|
// one == 80us / 120ticks
|
|
// zero == 40us / 60ticks
|
|
#ifndef COIL_PULSE
|
|
# define COIL_PULSE(x) \
|
|
do { \
|
|
SHORT_COIL; \
|
|
WaitTicks( (RWD_TIME_PAUSE) ); \
|
|
OPEN_COIL; \
|
|
WaitTicks((x)); \
|
|
} while (0);
|
|
#endif
|
|
|
|
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
|
|
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
|
|
#define LEGIC_CARD_MEMSIZE 1024
|
|
static uint8_t* cardmem;
|
|
|
|
static void frame_append_bit(struct legic_frame * const f, uint8_t bit) {
|
|
// Overflow, won't happen
|
|
if (f->bits >= 31) return;
|
|
|
|
f->data |= (bit << f->bits);
|
|
f->bits++;
|
|
}
|
|
|
|
static void frame_clean(struct legic_frame * const f) {
|
|
f->data = 0;
|
|
f->bits = 0;
|
|
}
|
|
|
|
// Prng works when waiting in 99.1us cycles.
|
|
// and while sending/receiving in bit frames (100, 60)
|
|
/*static void CalibratePrng( uint32_t time){
|
|
// Calculate Cycles based on timer 100us
|
|
uint32_t i = (time - sendFrameStop) / 100 ;
|
|
|
|
// substract cycles of finished frames
|
|
int k = i - legic_prng_count()+1;
|
|
|
|
// substract current frame length, rewind to beginning
|
|
if ( k > 0 )
|
|
legic_prng_forward(k);
|
|
}
|
|
*/
|
|
|
|
/* Generate Keystream */
|
|
uint32_t get_key_stream(int skip, int count) {
|
|
|
|
int i;
|
|
|
|
// Use int to enlarge timer tc to 32bit
|
|
legic_prng_bc += prng_timer->TC_CV;
|
|
|
|
// reset the prng timer.
|
|
|
|
/* If skip == -1, forward prng time based */
|
|
if(skip == -1) {
|
|
i = (legic_prng_bc + SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */
|
|
i -= legic_prng_count(); /* substract cycles of finished frames */
|
|
i -= count; /* substract current frame length, rewind to beginning */
|
|
legic_prng_forward(i);
|
|
} else {
|
|
legic_prng_forward(skip);
|
|
}
|
|
|
|
i = (count == 6) ? -1 : legic_read_count;
|
|
|
|
/* Generate KeyStream */
|
|
return legic_prng_get_bits(count);
|
|
}
|
|
|
|
/* Send a frame in tag mode, the FPGA must have been set up by
|
|
* LegicRfSimulate
|
|
*/
|
|
void frame_send_tag(uint16_t response, uint8_t bits) {
|
|
|
|
uint16_t mask = 1;
|
|
|
|
/* Bitbang the response */
|
|
SHORT_COIL;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
|
|
/* TAG_FRAME_WAIT -> shift by 2 */
|
|
legic_prng_forward(3);
|
|
response ^= legic_prng_get_bits(bits);
|
|
|
|
/* Wait for the frame start */
|
|
WaitTicks( TAG_FRAME_WAIT );
|
|
|
|
for (; mask < BITMASK(bits); mask <<= 1) {
|
|
if (response & mask)
|
|
OPEN_COIL
|
|
else
|
|
SHORT_COIL
|
|
WaitTicks(TAG_BIT_PERIOD);
|
|
}
|
|
SHORT_COIL;
|
|
}
|
|
|
|
/* Send a frame in reader mode, the FPGA must have been set up by
|
|
* LegicRfReader
|
|
*/
|
|
void frame_sendAsReader(uint32_t data, uint8_t bits){
|
|
|
|
uint32_t starttime = GET_TICKS, send = 0, mask = 1;
|
|
|
|
// xor lsfr onto data.
|
|
send = data ^ legic_prng_get_bits(bits);
|
|
|
|
for (; mask < BITMASK(bits); mask <<= 1) {
|
|
if (send & mask)
|
|
COIL_PULSE(RWD_TIME_1)
|
|
else
|
|
COIL_PULSE(RWD_TIME_0)
|
|
}
|
|
|
|
// Final pause to mark the end of the frame
|
|
COIL_PULSE(0);
|
|
|
|
// log
|
|
uint8_t cmdbytes[] = {bits, BYTEx(data,0), BYTEx(data,1), BYTEx(data,2), BYTEx(send,0), BYTEx(send,1), BYTEx(send,2)};
|
|
LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, TRUE);
|
|
}
|
|
|
|
/* Receive a frame from the card in reader emulation mode, the FPGA and
|
|
* timer must have been set up by LegicRfReader and frame_sendAsReader.
|
|
*
|
|
* The LEGIC RF protocol from card to reader does not include explicit
|
|
* frame start/stop information or length information. The reader must
|
|
* know beforehand how many bits it wants to receive. (Notably: a card
|
|
* sending a stream of 0-bits is indistinguishable from no card present.)
|
|
*
|
|
* Receive methodology: There is a fancy correlator in hi_read_rx_xcorr, but
|
|
* I'm not smart enough to use it. Instead I have patched hi_read_tx to output
|
|
* the ADC signal with hysteresis on SSP_DIN. Bit-bang that signal and look
|
|
* for edges. Count the edges in each bit interval. If they are approximately
|
|
* 0 this was a 0-bit, if they are approximately equal to the number of edges
|
|
* expected for a 212kHz subcarrier, this was a 1-bit. For timing we use the
|
|
* timer that's still running from frame_sendAsReader in order to get a synchronization
|
|
* with the frame that we just sent.
|
|
*
|
|
* FIXME: Because we're relying on the hysteresis to just do the right thing
|
|
* the range is severely reduced (and you'll probably also need a good antenna).
|
|
* So this should be fixed some time in the future for a proper receiver.
|
|
*/
|
|
static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
|
|
|
|
if ( bits > 32 ) return;
|
|
|
|
uint8_t i = bits, edges = 0;
|
|
uint32_t the_bit = 1, next_bit_at = 0, data = 0;
|
|
uint32_t old_level = 0;
|
|
volatile uint32_t level = 0;
|
|
|
|
frame_clean(f);
|
|
|
|
// calibrate the prng.
|
|
legic_prng_forward(2);
|
|
data = legic_prng_get_bits(bits);
|
|
|
|
//FIXED time between sending frame and now listening frame. 330us
|
|
uint32_t starttime = GET_TICKS;
|
|
// its about 9+9 ticks delay from end-send to here.
|
|
WaitTicks( 477 );
|
|
|
|
next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
|
|
|
|
while ( i-- ){
|
|
edges = 0;
|
|
while ( GET_TICKS < next_bit_at) {
|
|
|
|
level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
|
|
|
|
if (level != old_level)
|
|
++edges;
|
|
|
|
old_level = level;
|
|
}
|
|
|
|
next_bit_at += TAG_BIT_PERIOD;
|
|
|
|
// We expect 42 edges (ONE)
|
|
if ( edges > 20 )
|
|
data ^= the_bit;
|
|
|
|
the_bit <<= 1;
|
|
}
|
|
|
|
// output
|
|
f->data = data;
|
|
f->bits = bits;
|
|
|
|
// log
|
|
uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
|
|
LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
|
|
}
|
|
|
|
// Setup pm3 as a Legic Reader
|
|
static uint32_t setup_phase_reader(uint8_t iv) {
|
|
|
|
// Switch on carrier and let the tag charge for 5ms
|
|
HIGH(GPIO_SSC_DOUT);
|
|
WaitUS(5000);
|
|
|
|
ResetTicks();
|
|
|
|
legic_prng_init(0);
|
|
|
|
// send IV handshake
|
|
frame_sendAsReader(iv, 7);
|
|
|
|
// tag and reader has same IV.
|
|
legic_prng_init(iv);
|
|
|
|
frame_receiveAsReader(¤t_frame, 6);
|
|
|
|
// 292us (438t) - fixed delay before sending ack.
|
|
// minus log and stuff 100tick?
|
|
WaitTicks(338);
|
|
legic_prng_forward(3);
|
|
|
|
// Send obsfuscated acknowledgment frame.
|
|
// 0x19 = 0x18 MIM22, 0x01 LSB READCMD
|
|
// 0x39 = 0x38 MIM256, MIM1024 0x01 LSB READCMD
|
|
switch ( current_frame.data ) {
|
|
case 0x0D: frame_sendAsReader(0x19, 6); break;
|
|
case 0x1D:
|
|
case 0x3D: frame_sendAsReader(0x39, 6); break;
|
|
default: break;
|
|
}
|
|
|
|
legic_prng_forward(2);
|
|
return current_frame.data;
|
|
}
|
|
|
|
void LegicCommonInit(bool clear_mem) {
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
/* Bitbang the transmitter */
|
|
SHORT_COIL;
|
|
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
|
|
|
|
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
|
|
cardmem = BigBuf_get_EM_addr();
|
|
if ( clear_mem )
|
|
memset(cardmem, 0x00, LEGIC_CARD_MEMSIZE);
|
|
|
|
clear_trace();
|
|
set_tracing(TRUE);
|
|
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
|
|
|
|
StartTicks();
|
|
}
|
|
|
|
// Switch off carrier, make sure tag is reset
|
|
static void switch_off_tag_rwd(void) {
|
|
SHORT_COIL;
|
|
WaitUS(20);
|
|
WDT_HIT();
|
|
}
|
|
|
|
// calculate crc4 for a legic READ command
|
|
static uint32_t legic4Crc(uint8_t cmd, uint16_t byte_index, uint8_t value, uint8_t cmd_sz) {
|
|
crc_clear(&legic_crc);
|
|
uint32_t temp = (value << cmd_sz) | (byte_index << 1) | cmd;
|
|
crc_update(&legic_crc, temp, cmd_sz + 8 );
|
|
return crc_finish(&legic_crc);
|
|
}
|
|
|
|
int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
|
|
|
|
uint8_t byte, crc, calcCrc = 0;
|
|
uint32_t cmd = (index << 1) | LEGIC_READ;
|
|
|
|
// 90ticks = 60us (should be 100us but crc calc takes time.)
|
|
//WaitTicks(330); // 330ticks prng(4) - works
|
|
WaitTicks(240); // 240ticks prng(3) - works
|
|
|
|
frame_sendAsReader(cmd, cmd_sz);
|
|
frame_receiveAsReader(¤t_frame, 12);
|
|
|
|
// CRC check.
|
|
byte = BYTEx(current_frame.data, 0);
|
|
crc = BYTEx(current_frame.data, 1);
|
|
calcCrc = legic4Crc(LEGIC_READ, index, byte, cmd_sz);
|
|
|
|
if( calcCrc != crc ) {
|
|
Dbprintf("!!! crc mismatch: %x != %x !!!", calcCrc, crc);
|
|
return -1;
|
|
}
|
|
|
|
legic_prng_forward(3);
|
|
return byte;
|
|
}
|
|
|
|
/*
|
|
* - assemble a write_cmd_frame with crc and send it
|
|
* - wait until the tag sends back an ACK ('1' bit unencrypted)
|
|
* - forward the prng based on the timing
|
|
*/
|
|
bool legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
|
|
|
|
bool isOK = false;
|
|
int8_t i = 40;
|
|
uint8_t edges = 0;
|
|
uint8_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd;
|
|
uint32_t steps = 0, next_bit_at, start, crc, old_level = 0;
|
|
|
|
crc = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
|
|
|
|
// send write command
|
|
uint32_t cmd = LEGIC_WRITE;
|
|
cmd |= index << 1; // index
|
|
cmd |= byte << (addr_sz+1); // Data
|
|
cmd |= (crc & 0xF ) << (addr_sz+1+8); // CRC
|
|
|
|
WaitTicks(240);
|
|
|
|
frame_sendAsReader(cmd, cmd_sz);
|
|
|
|
LINE_IN;
|
|
|
|
start = GET_TICKS;
|
|
|
|
// ACK, - one single "1" bit after 3.6ms
|
|
// 3.6ms = 3600us * 1.5 = 5400ticks.
|
|
WaitTicks(5400);
|
|
|
|
next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
|
|
|
|
while ( i-- ) {
|
|
WDT_HIT();
|
|
edges = 0;
|
|
while ( GET_TICKS < next_bit_at) {
|
|
|
|
volatile uint32_t level = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
|
|
|
|
if (level != old_level)
|
|
++edges;
|
|
|
|
old_level = level;
|
|
}
|
|
|
|
next_bit_at += TAG_BIT_PERIOD;
|
|
|
|
// We expect 42 edges (ONE)
|
|
if(edges > 20 ) {
|
|
steps = ( (GET_TICKS - start) / TAG_BIT_PERIOD);
|
|
legic_prng_forward(steps);
|
|
isOK = true;
|
|
goto OUT;
|
|
}
|
|
}
|
|
|
|
OUT: ;
|
|
legic_prng_forward(1);
|
|
|
|
uint8_t cmdbytes[] = {1, isOK, BYTEx(steps, 0), BYTEx(steps, 1) };
|
|
LogTrace(cmdbytes, sizeof(cmdbytes), start, GET_TICKS, NULL, FALSE);
|
|
return isOK;
|
|
}
|
|
|
|
int LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
|
|
|
|
uint16_t i = 0;
|
|
uint8_t isOK = 1;
|
|
legic_card_select_t card;
|
|
|
|
LegicCommonInit(TRUE);
|
|
|
|
if ( legic_select_card_iv(&card, iv) ) {
|
|
isOK = 0;
|
|
goto OUT;
|
|
}
|
|
|
|
if (len + offset > card.cardsize)
|
|
len = card.cardsize - offset;
|
|
|
|
LED_B_ON();
|
|
while (i < len) {
|
|
int r = legic_read_byte(offset + i, card.cmdsize);
|
|
|
|
if (r == -1 || BUTTON_PRESS()) {
|
|
if ( MF_DBGLEVEL >= 2) DbpString("operation aborted");
|
|
isOK = 0;
|
|
goto OUT;
|
|
}
|
|
cardmem[i++] = r;
|
|
WDT_HIT();
|
|
}
|
|
|
|
OUT:
|
|
WDT_HIT();
|
|
switch_off_tag_rwd();
|
|
LEDsoff();
|
|
cmd_send(CMD_ACK, isOK, len, 0, cardmem, len);
|
|
return 0;
|
|
}
|
|
|
|
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
|
|
|
|
#define LOWERLIMIT 4
|
|
uint8_t isOK = 1, msg = 0;
|
|
legic_card_select_t card;
|
|
|
|
// uid NOT is writeable.
|
|
if ( offset <= LOWERLIMIT ) {
|
|
isOK = 0;
|
|
goto OUT;
|
|
}
|
|
|
|
LegicCommonInit(TRUE);
|
|
|
|
if ( legic_select_card_iv(&card, iv) ) {
|
|
isOK = 0;
|
|
msg = 1;
|
|
goto OUT;
|
|
}
|
|
|
|
if ( len + offset > card.cardsize)
|
|
len = card.cardsize - offset;
|
|
|
|
LED_B_ON();
|
|
while( len > 0 ) {
|
|
--len;
|
|
if ( !legic_write_byte( len + offset, data[len], card.addrsize) ) {
|
|
Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len] );
|
|
isOK = 0;
|
|
goto OUT;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
OUT:
|
|
cmd_send(CMD_ACK, isOK, msg,0,0,0);
|
|
switch_off_tag_rwd();
|
|
LEDsoff();
|
|
}
|
|
|
|
int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
|
|
|
|
if ( p_card == NULL ) return 1;
|
|
|
|
p_card->tagtype = setup_phase_reader(iv);
|
|
|
|
switch(p_card->tagtype) {
|
|
case 0x0d:
|
|
p_card->cmdsize = 6;
|
|
p_card->addrsize = 5;
|
|
p_card->cardsize = 22;
|
|
break;
|
|
case 0x1d:
|
|
p_card->cmdsize = 9;
|
|
p_card->addrsize = 8;
|
|
p_card->cardsize = 256;
|
|
break;
|
|
case 0x3d:
|
|
p_card->cmdsize = 11;
|
|
p_card->addrsize = 10;
|
|
p_card->cardsize = 1024;
|
|
break;
|
|
default:
|
|
p_card->cmdsize = 0;
|
|
p_card->addrsize = 0;
|
|
p_card->cardsize = 0;
|
|
return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
int legic_select_card(legic_card_select_t *p_card){
|
|
return legic_select_card_iv(p_card, 0x01);
|
|
}
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Work with emulator memory
|
|
//
|
|
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
|
|
// involved in dealing with emulator memory. But if it is called later, it might
|
|
// destroy the Emulator Memory.
|
|
//-----------------------------------------------------------------------------
|
|
// arg0 = offset
|
|
// arg1 = num of bytes
|
|
void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
legic_emlset_mem(data, arg0, arg1);
|
|
}
|
|
// arg0 = offset
|
|
// arg1 = num of bytes
|
|
void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
|
|
legic_emlget_mem(buf, arg0, arg1);
|
|
LED_B_ON();
|
|
cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
|
|
LED_B_OFF();
|
|
}
|
|
void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
|
|
cardmem = BigBuf_get_EM_addr();
|
|
memcpy(cardmem + offset, data, numofbytes);
|
|
}
|
|
void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
|
|
cardmem = BigBuf_get_EM_addr();
|
|
memcpy(data, cardmem + offset, numofbytes);
|
|
}
|
|
|
|
void LegicRfInfo(void){
|
|
|
|
int r;
|
|
|
|
uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
|
|
legic_card_select_t *card = (legic_card_select_t*) buf;
|
|
|
|
LegicCommonInit(FALSE);
|
|
|
|
if ( legic_select_card(card) ) {
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
goto OUT;
|
|
}
|
|
|
|
// read UID bytes
|
|
for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
|
|
r = legic_read_byte(i, card->cmdsize);
|
|
if ( r == -1 ) {
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
goto OUT;
|
|
}
|
|
card->uid[i] = r & 0xFF;
|
|
}
|
|
|
|
// MCC byte.
|
|
r = legic_read_byte(4, card->cmdsize);
|
|
uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
|
|
if ( r != calc_mcc) {
|
|
cmd_send(CMD_ACK,0,0,0,0,0);
|
|
goto OUT;
|
|
}
|
|
|
|
// OK
|
|
cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
|
|
|
|
OUT:
|
|
switch_off_tag_rwd();
|
|
LEDsoff();
|
|
}
|
|
|
|
/* Handle (whether to respond) a frame in tag mode
|
|
* Only called when simulating a tag.
|
|
*/
|
|
static void frame_handle_tag(struct legic_frame const * const f)
|
|
{
|
|
// log
|
|
//uint8_t cmdbytes[] = {bits, BYTEx(data, 0), BYTEx(data, 1)};
|
|
//LogTrace(cmdbytes, sizeof(cmdbytes), starttime, GET_TICKS, NULL, FALSE);
|
|
//Dbprintf("ICE: enter frame_handle_tag: %02x ", f->bits);
|
|
|
|
/* First Part of Handshake (IV) */
|
|
if(f->bits == 7) {
|
|
|
|
LED_C_ON();
|
|
|
|
// Reset prng timer
|
|
//ResetTimer(prng_timer);
|
|
ResetTicks();
|
|
|
|
// IV from reader.
|
|
legic_prng_init(f->data);
|
|
|
|
Dbprintf("ICE: IV: %02x ", f->data);
|
|
|
|
// We should have three tagtypes with three different answers.
|
|
legic_prng_forward(2);
|
|
//frame_send_tag(0x3d, 6); /* MIM1024 0x3d^0x26 = 0x1B */
|
|
frame_send_tag(0x1d, 6); // MIM256
|
|
|
|
legic_state = STATE_IV;
|
|
legic_read_count = 0;
|
|
legic_prng_bc = 0;
|
|
legic_prng_iv = f->data;
|
|
|
|
//ResetTimer(timer);
|
|
//WaitUS(280);
|
|
WaitTicks(388);
|
|
return;
|
|
}
|
|
|
|
/* 0x19==??? */
|
|
if(legic_state == STATE_IV) {
|
|
uint32_t local_key = get_key_stream(3, 6);
|
|
int xored = 0x39 ^ local_key;
|
|
if((f->bits == 6) && (f->data == xored)) {
|
|
legic_state = STATE_CON;
|
|
|
|
ResetTimer(timer);
|
|
WaitTicks(300);
|
|
return;
|
|
|
|
} else {
|
|
legic_state = STATE_DISCON;
|
|
LED_C_OFF();
|
|
Dbprintf("iv: %02x frame: %02x key: %02x xored: %02x", legic_prng_iv, f->data, local_key, xored);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Read */
|
|
if(f->bits == 11) {
|
|
if(legic_state == STATE_CON) {
|
|
uint32_t key = get_key_stream(2, 11); //legic_phase_drift, 11);
|
|
uint16_t addr = f->data ^ key;
|
|
addr >>= 1;
|
|
uint8_t data = cardmem[addr];
|
|
|
|
uint32_t crc = legic4Crc(LEGIC_READ, addr, data, 11) << 8;
|
|
|
|
//legic_read_count++;
|
|
//legic_prng_forward(legic_reqresp_drift);
|
|
|
|
frame_send_tag(crc | data, 12);
|
|
//ResetTimer(timer);
|
|
legic_prng_forward(2);
|
|
WaitTicks(330);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Write */
|
|
if (f->bits == 23 || f->bits == 21 ) {
|
|
uint32_t key = get_key_stream(-1, 23); //legic_frame_drift, 23);
|
|
uint16_t addr = f->data ^ key;
|
|
addr >>= 1;
|
|
addr &= 0x3ff;
|
|
uint32_t data = f->data ^ key;
|
|
data >>= 11;
|
|
data &= 0xff;
|
|
|
|
cardmem[addr] = data;
|
|
/* write command */
|
|
legic_state = STATE_DISCON;
|
|
LED_C_OFF();
|
|
Dbprintf("write - addr: %x, data: %x", addr, data);
|
|
// should send a ACK after 3.6ms
|
|
return;
|
|
}
|
|
|
|
if(legic_state != STATE_DISCON) {
|
|
Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count);
|
|
Dbprintf("IV: %03.3x", legic_prng_iv);
|
|
}
|
|
|
|
legic_state = STATE_DISCON;
|
|
legic_read_count = 0;
|
|
WaitMS(10);
|
|
LED_C_OFF();
|
|
return;
|
|
}
|
|
|
|
/* Read bit by bit untill full frame is received
|
|
* Call to process frame end answer
|
|
*/
|
|
static void emit(int bit) {
|
|
|
|
switch (bit) {
|
|
case 1:
|
|
frame_append_bit(¤t_frame, 1);
|
|
break;
|
|
case 0:
|
|
frame_append_bit(¤t_frame, 0);
|
|
break;
|
|
default:
|
|
if(current_frame.bits <= 4) {
|
|
frame_clean(¤t_frame);
|
|
} else {
|
|
frame_handle_tag(¤t_frame);
|
|
frame_clean(¤t_frame);
|
|
}
|
|
WDT_HIT();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void LegicRfSimulate(int phase, int frame, int reqresp)
|
|
{
|
|
/* ADC path high-frequency peak detector, FPGA in high-frequency simulator mode,
|
|
* modulation mode set to 212kHz subcarrier. We are getting the incoming raw
|
|
* envelope waveform on DIN and should send our response on DOUT.
|
|
*
|
|
* The LEGIC RF protocol is pulse-pause-encoding from reader to card, so we'll
|
|
* measure the time between two rising edges on DIN, and no encoding on the
|
|
* subcarrier from card to reader, so we'll just shift out our verbatim data
|
|
* on DOUT, 1 bit is 100us. The time from reader to card frame is still unclear,
|
|
* seems to be 330us.
|
|
*/
|
|
|
|
int old_level = 0, active = 0;
|
|
volatile int32_t level = 0;
|
|
|
|
legic_state = STATE_DISCON;
|
|
legic_phase_drift = phase;
|
|
legic_frame_drift = frame;
|
|
legic_reqresp_drift = reqresp;
|
|
|
|
|
|
/* to get the stream of bits from FPGA in sim mode.*/
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
// Set up the synchronous serial port
|
|
//FpgaSetupSsc();
|
|
// connect Demodulated Signal to ADC:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_212K);
|
|
//FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
|
|
|
|
#define LEGIC_DMA_BUFFER 256
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
//uint8_t *dmaBuf = BigBuf_malloc(LEGIC_DMA_BUFFER);
|
|
//uint8_t *data = dmaBuf;
|
|
// Setup and start DMA.
|
|
// if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER) ){
|
|
// if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
|
|
// return;
|
|
// }
|
|
|
|
//StartCountSspClk();
|
|
/* Bitbang the receiver */
|
|
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
|
|
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
|
|
|
|
// need a way to determine which tagtype we are simulating
|
|
|
|
// hook up emulator memory
|
|
cardmem = BigBuf_get_EM_addr();
|
|
|
|
clear_trace();
|
|
set_tracing(TRUE);
|
|
|
|
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
|
|
|
|
StartTicks();
|
|
|
|
LED_B_ON();
|
|
DbpString("Starting Legic emulator, press button to end");
|
|
|
|
/*
|
|
* The mode FPGA_HF_SIMULATOR_MODULATE_212K works like this.
|
|
* - A 1-bit input to the FPGA becomes 8 pulses on 212kHz (fc/64) (18.88us).
|
|
* - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us
|
|
*
|
|
* In this mode the SOF can be written as 00011101 = 0x1D
|
|
* The EOF can be written as 10111000 = 0xb8
|
|
* A logic 1 is 01
|
|
* A logic 0 is 10
|
|
volatile uint8_t b;
|
|
uint8_t i = 0;
|
|
while( !BUTTON_PRESS() ) {
|
|
WDT_HIT();
|
|
|
|
// not sending anything.
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0x00;
|
|
}
|
|
|
|
// receive
|
|
if ( AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY ) {
|
|
b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;
|
|
bd[i] = b;
|
|
++i;
|
|
// if(OutOfNDecoding(b & 0x0f))
|
|
// *len = Uart.byteCnt;
|
|
}
|
|
|
|
}
|
|
*/
|
|
|
|
while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
|
|
|
|
level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN);
|
|
|
|
uint32_t time = GET_TICKS;
|
|
|
|
if (level != old_level) {
|
|
if (level == 1) {
|
|
|
|
//Dbprintf("start, %u ", time);
|
|
StartTicks();
|
|
// did we get a signal
|
|
if (FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) {
|
|
// 1 bit
|
|
emit(1);
|
|
active = 1;
|
|
LED_A_ON();
|
|
} else if (FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) {
|
|
// 0 bit
|
|
emit(0);
|
|
active = 1;
|
|
LED_A_ON();
|
|
} else if (active) {
|
|
// invalid
|
|
emit(-1);
|
|
active = 0;
|
|
LED_A_OFF();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Frame end */
|
|
if(time >= (RWD_TIME_1 + RWD_TIME_FUZZ) && active) {
|
|
emit(-1);
|
|
active = 0;
|
|
LED_A_OFF();
|
|
}
|
|
|
|
/*
|
|
* Disable the counter, Then wait for the clock to acknowledge the
|
|
* shutdown in its status register. Reading the SR has the
|
|
* side-effect of clearing any pending state in there.
|
|
*/
|
|
//if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA))
|
|
if(time >= (20 * RWD_TIME_1) )
|
|
StopTicks();
|
|
|
|
old_level = level;
|
|
WDT_HIT();
|
|
}
|
|
|
|
WDT_HIT();
|
|
DbpString("LEGIC Prime emulator stopped");
|
|
switch_off_tag_rwd();
|
|
FpgaDisableSscDma();
|
|
LEDsoff();
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
}
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code up a string of octets at layer 2 (including CRC, we don't generate
|
|
// that here) so that they can be transmitted to the reader. Doesn't transmit
|
|
// them yet, just leaves them ready to send in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
// static void CodeLegicAsTag(const uint8_t *cmd, int len)
|
|
// {
|
|
// int i;
|
|
|
|
// ToSendReset();
|
|
|
|
// // Transmit a burst of ones, as the initial thing that lets the
|
|
// // reader get phase sync. This (TR1) must be > 80/fs, per spec,
|
|
// // but tag that I've tried (a Paypass) exceeds that by a fair bit,
|
|
// // so I will too.
|
|
// for(i = 0; i < 20; i++) {
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// }
|
|
|
|
// // Send SOF.
|
|
// for(i = 0; i < 10; i++) {
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// }
|
|
// for(i = 0; i < 2; i++) {
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// }
|
|
|
|
// for(i = 0; i < len; i++) {
|
|
// int j;
|
|
// uint8_t b = cmd[i];
|
|
|
|
// // Start bit
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
|
|
// // Data bits
|
|
// for(j = 0; j < 8; j++) {
|
|
// if(b & 1) {
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// } else {
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// }
|
|
// b >>= 1;
|
|
// }
|
|
|
|
// // Stop bit
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// }
|
|
|
|
// // Send EOF.
|
|
// for(i = 0; i < 10; i++) {
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// ToSendStuffBit(0);
|
|
// }
|
|
// for(i = 0; i < 2; i++) {
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// ToSendStuffBit(1);
|
|
// }
|
|
|
|
// // Convert from last byte pos to length
|
|
// ToSendMax++;
|
|
// }
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
/*
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_GOT_FALLING_EDGE_OF_SOF,
|
|
STATE_AWAITING_START_BIT,
|
|
STATE_RECEIVING_DATA
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
uint8_t *output;
|
|
} Uart;
|
|
*/
|
|
/* Receive & handle a bit coming from the reader.
|
|
*
|
|
* This function is called 4 times per bit (every 2 subcarrier cycles).
|
|
* Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
|
|
*
|
|
* LED handling:
|
|
* LED A -> ON once we have received the SOF and are expecting the rest.
|
|
* LED A -> OFF once we have received EOF or are in error state or unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*/
|
|
// static RAMFUNC int HandleLegicUartBit(uint8_t bit)
|
|
// {
|
|
// switch(Uart.state) {
|
|
// case STATE_UNSYNCD:
|
|
// if(!bit) {
|
|
// // we went low, so this could be the beginning of an SOF
|
|
// Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
|
|
// Uart.posCnt = 0;
|
|
// Uart.bitCnt = 0;
|
|
// }
|
|
// break;
|
|
|
|
// case STATE_GOT_FALLING_EDGE_OF_SOF:
|
|
// Uart.posCnt++;
|
|
// if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
|
|
// if(bit) {
|
|
// if(Uart.bitCnt > 9) {
|
|
// // we've seen enough consecutive
|
|
// // zeros that it's a valid SOF
|
|
// Uart.posCnt = 0;
|
|
// Uart.byteCnt = 0;
|
|
// Uart.state = STATE_AWAITING_START_BIT;
|
|
// LED_A_ON(); // Indicate we got a valid SOF
|
|
// } else {
|
|
// // didn't stay down long enough
|
|
// // before going high, error
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// }
|
|
// } else {
|
|
// // do nothing, keep waiting
|
|
// }
|
|
// Uart.bitCnt++;
|
|
// }
|
|
// if(Uart.posCnt >= 4) Uart.posCnt = 0;
|
|
// if(Uart.bitCnt > 12) {
|
|
// // Give up if we see too many zeros without
|
|
// // a one, too.
|
|
// LED_A_OFF();
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// }
|
|
// break;
|
|
|
|
// case STATE_AWAITING_START_BIT:
|
|
// Uart.posCnt++;
|
|
// if(bit) {
|
|
// if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
|
|
// // stayed high for too long between
|
|
// // characters, error
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// }
|
|
// } else {
|
|
// // falling edge, this starts the data byte
|
|
// Uart.posCnt = 0;
|
|
// Uart.bitCnt = 0;
|
|
// Uart.shiftReg = 0;
|
|
// Uart.state = STATE_RECEIVING_DATA;
|
|
// }
|
|
// break;
|
|
|
|
// case STATE_RECEIVING_DATA:
|
|
// Uart.posCnt++;
|
|
// if(Uart.posCnt == 2) {
|
|
// // time to sample a bit
|
|
// Uart.shiftReg >>= 1;
|
|
// if(bit) {
|
|
// Uart.shiftReg |= 0x200;
|
|
// }
|
|
// Uart.bitCnt++;
|
|
// }
|
|
// if(Uart.posCnt >= 4) {
|
|
// Uart.posCnt = 0;
|
|
// }
|
|
// if(Uart.bitCnt == 10) {
|
|
// if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
|
|
// {
|
|
// // this is a data byte, with correct
|
|
// // start and stop bits
|
|
// Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
|
|
// Uart.byteCnt++;
|
|
|
|
// if(Uart.byteCnt >= Uart.byteCntMax) {
|
|
// // Buffer overflowed, give up
|
|
// LED_A_OFF();
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// } else {
|
|
// // so get the next byte now
|
|
// Uart.posCnt = 0;
|
|
// Uart.state = STATE_AWAITING_START_BIT;
|
|
// }
|
|
// } else if (Uart.shiftReg == 0x000) {
|
|
// // this is an EOF byte
|
|
// LED_A_OFF(); // Finished receiving
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// if (Uart.byteCnt != 0) {
|
|
// return TRUE;
|
|
// }
|
|
// } else {
|
|
// // this is an error
|
|
// LED_A_OFF();
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// }
|
|
// }
|
|
// break;
|
|
|
|
// default:
|
|
// LED_A_OFF();
|
|
// Uart.state = STATE_UNSYNCD;
|
|
// break;
|
|
// }
|
|
|
|
// return FALSE;
|
|
// }
|
|
/*
|
|
|
|
static void UartReset() {
|
|
Uart.byteCntMax = 3;
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.byteCnt = 0;
|
|
Uart.bitCnt = 0;
|
|
Uart.posCnt = 0;
|
|
memset(Uart.output, 0x00, 3);
|
|
}
|
|
*/
|
|
// static void UartInit(uint8_t *data) {
|
|
// Uart.output = data;
|
|
// UartReset();
|
|
// }
|
|
|
|
//=============================================================================
|
|
// An LEGIC reader. We take layer two commands, code them
|
|
// appropriately, and then send them to the tag. We then listen for the
|
|
// tag's response, which we leave in the buffer to be demodulated on the
|
|
// PC side.
|
|
//=============================================================================
|
|
/*
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_PHASE_REF_TRAINING,
|
|
DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
|
|
DEMOD_GOT_FALLING_EDGE_OF_SOF,
|
|
DEMOD_AWAITING_START_BIT,
|
|
DEMOD_RECEIVING_DATA
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int thisBit;
|
|
uint16_t shiftReg;
|
|
uint8_t *output;
|
|
int len;
|
|
int sumI;
|
|
int sumQ;
|
|
} Demod;
|
|
*/
|
|
/*
|
|
* Handles reception of a bit from the tag
|
|
*
|
|
* This function is called 2 times per bit (every 4 subcarrier cycles).
|
|
* Subcarrier frequency fs is 212kHz, 1/fs = 4,72us, i.e. function is called every 9,44us
|
|
*
|
|
* LED handling:
|
|
* LED C -> ON once we have received the SOF and are expecting the rest.
|
|
* LED C -> OFF once we have received EOF or are unsynced
|
|
*
|
|
* Returns: true if we received a EOF
|
|
* false if we are still waiting for some more
|
|
*
|
|
*/
|
|
|
|
/*
|
|
static RAMFUNC int HandleLegicSamplesDemod(int ci, int cq)
|
|
{
|
|
int v = 0;
|
|
int ai = ABS(ci);
|
|
int aq = ABS(cq);
|
|
int halfci = (ai >> 1);
|
|
int halfcq = (aq >> 1);
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_UNSYNCD:
|
|
|
|
CHECK_FOR_SUBCARRIER()
|
|
|
|
if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
|
|
Demod.state = DEMOD_PHASE_REF_TRAINING;
|
|
Demod.sumI = ci;
|
|
Demod.sumQ = cq;
|
|
Demod.posCount = 1;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_PHASE_REF_TRAINING:
|
|
if(Demod.posCount < 8) {
|
|
|
|
CHECK_FOR_SUBCARRIER()
|
|
|
|
if (v > SUBCARRIER_DETECT_THRESHOLD) {
|
|
// set the reference phase (will code a logic '1') by averaging over 32 1/fs.
|
|
// note: synchronization time > 80 1/fs
|
|
Demod.sumI += ci;
|
|
Demod.sumQ += cq;
|
|
++Demod.posCount;
|
|
} else {
|
|
// subcarrier lost
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
} else {
|
|
Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
|
|
|
|
MAKE_SOFT_DECISION()
|
|
|
|
//Dbprintf("ICE: %d %d %d %d %d", v, Demod.sumI, Demod.sumQ, ci, cq );
|
|
// logic '0' detected
|
|
if (v <= 0) {
|
|
|
|
Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
|
|
|
|
// start of SOF sequence
|
|
Demod.posCount = 0;
|
|
} else {
|
|
// maximum length of TR1 = 200 1/fs
|
|
if(Demod.posCount > 25*2) Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
++Demod.posCount;
|
|
break;
|
|
|
|
case DEMOD_GOT_FALLING_EDGE_OF_SOF:
|
|
++Demod.posCount;
|
|
|
|
MAKE_SOFT_DECISION()
|
|
|
|
if(v > 0) {
|
|
// low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
|
|
if(Demod.posCount < 10*2) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
} else {
|
|
LED_C_ON(); // Got SOF
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
Demod.posCount = 0;
|
|
Demod.len = 0;
|
|
}
|
|
} else {
|
|
// low phase of SOF too long (> 12 etu)
|
|
if(Demod.posCount > 13*2) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DEMOD_AWAITING_START_BIT:
|
|
++Demod.posCount;
|
|
|
|
MAKE_SOFT_DECISION()
|
|
|
|
if(v > 0) {
|
|
// max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
|
|
if(Demod.posCount > 3*2) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
}
|
|
} else {
|
|
// start bit detected
|
|
Demod.bitCount = 0;
|
|
Demod.posCount = 1; // this was the first half
|
|
Demod.thisBit = v;
|
|
Demod.shiftReg = 0;
|
|
Demod.state = DEMOD_RECEIVING_DATA;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_RECEIVING_DATA:
|
|
|
|
MAKE_SOFT_DECISION()
|
|
|
|
if(Demod.posCount == 0) {
|
|
// first half of bit
|
|
Demod.thisBit = v;
|
|
Demod.posCount = 1;
|
|
} else {
|
|
// second half of bit
|
|
Demod.thisBit += v;
|
|
Demod.shiftReg >>= 1;
|
|
// logic '1'
|
|
if(Demod.thisBit > 0)
|
|
Demod.shiftReg |= 0x200;
|
|
|
|
++Demod.bitCount;
|
|
|
|
if(Demod.bitCount == 10) {
|
|
|
|
uint16_t s = Demod.shiftReg;
|
|
|
|
if((s & 0x200) && !(s & 0x001)) {
|
|
// stop bit == '1', start bit == '0'
|
|
uint8_t b = (s >> 1);
|
|
Demod.output[Demod.len] = b;
|
|
++Demod.len;
|
|
Demod.state = DEMOD_AWAITING_START_BIT;
|
|
} else {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
|
|
if(s == 0x000) {
|
|
// This is EOF (start, stop and all data bits == '0'
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
Demod.posCount = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
break;
|
|
}
|
|
return FALSE;
|
|
}
|
|
*/
|
|
/*
|
|
// Clear out the state of the "UART" that receives from the tag.
|
|
static void DemodReset() {
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
Demod.posCount = 0;
|
|
Demod.sumI = 0;
|
|
Demod.sumQ = 0;
|
|
Demod.bitCount = 0;
|
|
Demod.thisBit = 0;
|
|
Demod.shiftReg = 0;
|
|
memset(Demod.output, 0x00, 3);
|
|
}
|
|
|
|
static void DemodInit(uint8_t *data) {
|
|
Demod.output = data;
|
|
DemodReset();
|
|
}
|
|
*/
|
|
|
|
/*
|
|
* Demodulate the samples we received from the tag, also log to tracebuffer
|
|
* quiet: set to 'TRUE' to disable debug output
|
|
*/
|
|
|
|
/*
|
|
#define LEGIC_DMA_BUFFER_SIZE 256
|
|
|
|
static void GetSamplesForLegicDemod(int n, bool quiet)
|
|
{
|
|
int max = 0;
|
|
bool gotFrame = FALSE;
|
|
int lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
|
|
int ci, cq, samples = 0;
|
|
|
|
BigBuf_free();
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ);
|
|
|
|
// The response (tag -> reader) that we're receiving.
|
|
// Set up the demodulator for tag -> reader responses.
|
|
DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
|
|
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
int8_t *dmaBuf = (int8_t*) BigBuf_malloc(LEGIC_DMA_BUFFER_SIZE);
|
|
int8_t *upTo = dmaBuf;
|
|
|
|
// Setup and start DMA.
|
|
if ( !FpgaSetupSscDma((uint8_t*) dmaBuf, LEGIC_DMA_BUFFER_SIZE) ){
|
|
if (MF_DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
|
|
return;
|
|
}
|
|
|
|
// Signal field is ON with the appropriate LED:
|
|
LED_D_ON();
|
|
for(;;) {
|
|
int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
|
|
if(behindBy > max) max = behindBy;
|
|
|
|
while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (LEGIC_DMA_BUFFER_SIZE-1)) > 2) {
|
|
ci = upTo[0];
|
|
cq = upTo[1];
|
|
upTo += 2;
|
|
if(upTo >= dmaBuf + LEGIC_DMA_BUFFER_SIZE) {
|
|
upTo = dmaBuf;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = LEGIC_DMA_BUFFER_SIZE;
|
|
}
|
|
lastRxCounter -= 2;
|
|
if(lastRxCounter <= 0)
|
|
lastRxCounter = LEGIC_DMA_BUFFER_SIZE;
|
|
|
|
samples += 2;
|
|
|
|
gotFrame = HandleLegicSamplesDemod(ci , cq );
|
|
if ( gotFrame )
|
|
break;
|
|
}
|
|
|
|
if(samples > n || gotFrame)
|
|
break;
|
|
}
|
|
|
|
FpgaDisableSscDma();
|
|
|
|
if (!quiet && Demod.len == 0) {
|
|
Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d",
|
|
max,
|
|
samples,
|
|
gotFrame,
|
|
Demod.len,
|
|
Demod.sumI,
|
|
Demod.sumQ
|
|
);
|
|
}
|
|
|
|
//Tracing
|
|
if (Demod.len > 0) {
|
|
uint8_t parity[MAX_PARITY_SIZE] = {0x00};
|
|
LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
|
|
}
|
|
}
|
|
|
|
*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Transmit the command (to the tag) that was placed in ToSend[].
|
|
//-----------------------------------------------------------------------------
|
|
/*
|
|
static void TransmitForLegic(void)
|
|
{
|
|
int c;
|
|
|
|
FpgaSetupSsc();
|
|
|
|
while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
|
|
// Signal field is ON with the appropriate Red LED
|
|
LED_D_ON();
|
|
|
|
// Signal we are transmitting with the Green LED
|
|
LED_B_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
|
|
|
|
for(c = 0; c < 10;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = 0xff;
|
|
c++;
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
|
|
c = 0;
|
|
for(;;) {
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
|
|
AT91C_BASE_SSC->SSC_THR = ToSend[c];
|
|
legic_prng_forward(1); // forward the lfsr
|
|
c++;
|
|
if(c >= ToSendMax) {
|
|
break;
|
|
}
|
|
}
|
|
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
|
|
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
|
|
(void)r;
|
|
}
|
|
WDT_HIT();
|
|
}
|
|
LED_B_OFF();
|
|
}
|
|
*/
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
|
|
// so that it is ready to transmit to the tag using TransmitForLegic().
|
|
//-----------------------------------------------------------------------------
|
|
/*
|
|
static void CodeLegicBitsAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
|
|
{
|
|
int i, j;
|
|
uint8_t b;
|
|
|
|
ToSendReset();
|
|
|
|
// Send SOF
|
|
for(i = 0; i < 7; i++)
|
|
ToSendStuffBit(1);
|
|
|
|
|
|
for(i = 0; i < cmdlen; i++) {
|
|
// Start bit
|
|
ToSendStuffBit(0);
|
|
|
|
// Data bits
|
|
b = cmd[i];
|
|
for(j = 0; j < bits; j++) {
|
|
if(b & 1) {
|
|
ToSendStuffBit(1);
|
|
} else {
|
|
ToSendStuffBit(0);
|
|
}
|
|
b >>= 1;
|
|
}
|
|
}
|
|
|
|
// Convert from last character reference to length
|
|
++ToSendMax;
|
|
}
|
|
*/
|
|
/**
|
|
Convenience function to encode, transmit and trace Legic comms
|
|
**/
|
|
/*
|
|
static void CodeAndTransmitLegicAsReader(const uint8_t *cmd, uint8_t cmdlen, int bits)
|
|
{
|
|
CodeLegicBitsAsReader(cmd, cmdlen, bits);
|
|
TransmitForLegic();
|
|
if (tracing) {
|
|
uint8_t parity[1] = {0x00};
|
|
LogTrace(cmd, cmdlen, 0, 0, parity, TRUE);
|
|
}
|
|
}
|
|
|
|
*/
|
|
// Set up LEGIC communication
|
|
/*
|
|
void ice_legic_setup() {
|
|
|
|
// standard things.
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
BigBuf_free(); BigBuf_Clear_ext(false);
|
|
clear_trace();
|
|
set_tracing(TRUE);
|
|
DemodReset();
|
|
UartReset();
|
|
|
|
// Set up the synchronous serial port
|
|
FpgaSetupSsc();
|
|
|
|
// connect Demodulated Signal to ADC:
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
// Signal field is on with the appropriate LED
|
|
LED_D_ON();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
|
|
SpinDelay(20);
|
|
// Start the timer
|
|
//StartCountSspClk();
|
|
|
|
// initalize CRC
|
|
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
|
|
|
|
// initalize prng
|
|
legic_prng_init(0);
|
|
}
|
|
*/ |