proxmark3/client/src/util.c
2022-01-08 00:40:52 +01:00

1143 lines
31 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// utilities
//-----------------------------------------------------------------------------
// ensure gmtime_r is available even with -std=c99; must be included before
#if !defined(_WIN32) && !defined(__APPLE__)
#define _POSIX_C_SOURCE 200112L
#endif
#include "util.h"
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h> // Mingw
#include "ui.h" // PrintAndLog
#define UTIL_BUFFER_SIZE_SPRINT 8193
// global client debug variable
uint8_t g_debugMode = 0;
// global client disable logging variable
uint8_t g_printAndLog = PRINTANDLOG_PRINT | PRINTANDLOG_LOG;
// global client tell if a pending prompt is present
bool g_pendingPrompt = false;
#ifdef _WIN32
#include <windows.h>
#endif
#define MAX_BIN_BREAK_LENGTH (3072+384+1)
#ifndef _WIN32
#include <unistd.h>
#include <fcntl.h>
int kbd_enter_pressed(void) {
int flags;
if ((flags = fcntl(STDIN_FILENO, F_GETFL, 0)) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
//non-blocking
flags |= O_NONBLOCK;
if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
int c;
int ret = 0;
do { //get all available chars
c = getchar();
ret |= c == '\n';
} while (c != EOF);
//blocking
flags &= ~O_NONBLOCK;
if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
return ret;
}
#else
#include <conio.h>
int kbd_enter_pressed(void) {
int ret = 0;
while (kbhit()) {
ret |= getch() == '\r';
}
return ret;
}
#endif
// create filename on hex uid.
// param *fn - pointer to filename char array
// param *uid - pointer to uid byte array
// param *ext - ".log"
// param uidlen - length of uid array.
void FillFileNameByUID(char *filenamePrefix, const uint8_t *uid, const char *ext, const int uidlen) {
if (filenamePrefix == NULL || uid == NULL || ext == NULL) {
return;
}
int len = strlen(filenamePrefix);
for (int j = 0; j < uidlen; j++)
sprintf(filenamePrefix + len + j * 2, "%02X", uid[j]);
strcat(filenamePrefix, ext);
}
// fill buffer from structure [{uint8_t data, size_t length},...]
int FillBuffer(uint8_t *data, size_t maxDataLength, size_t *dataLength, ...) {
*dataLength = 0;
va_list valist;
va_start(valist, dataLength);
uint8_t *vdata = NULL;
do {
vdata = va_arg(valist, uint8_t *);
if (!vdata)
break;
size_t vlength = va_arg(valist, size_t);
if (*dataLength + vlength > maxDataLength) {
va_end(valist);
return 1;
}
memcpy(&data[*dataLength], vdata, vlength);
*dataLength += vlength;
} while (vdata);
va_end(valist);
return 0;
}
bool CheckStringIsHEXValue(const char *value) {
for (size_t i = 0; i < strlen(value); i++)
if (!isxdigit(value[i]))
return false;
if (strlen(value) % 2)
return false;
return true;
}
void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len,
const size_t min_str_len, const size_t spaces_between, bool uppercase) {
if (buf == NULL) return;
char *tmp = (char *)buf;
size_t i;
memset(tmp, 0x00, hex_max_len);
size_t max_len = (hex_len > hex_max_len) ? hex_max_len : hex_len;
for (i = 0; i < max_len; ++i, tmp += 2 + spaces_between) {
sprintf(tmp, (uppercase) ? "%02X" : "%02x", (unsigned int) hex_data[i]);
for (size_t j = 0; j < spaces_between; j++)
sprintf(tmp + 2 + j, " ");
}
i *= (2 + spaces_between);
size_t mlen = min_str_len > i ? min_str_len : 0;
if (mlen > hex_max_len)
mlen = hex_max_len;
for (; i < mlen; i++, tmp += 1)
sprintf(tmp, " ");
// remove last space
*tmp = '\0';
return;
}
// printing and converting functions
void print_hex(const uint8_t *data, const size_t len) {
if (data == NULL || len == 0) return;
for (size_t i = 0; i < len; i++)
PrintAndLogEx(NORMAL, "%02x " NOLF, data[i]);
PrintAndLogEx(NORMAL, "");
}
void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) {
if (data == NULL || len == 0 || breaks == 0) return;
uint16_t rownum = 0;
int i;
for (i = 0; i < len; i += breaks, rownum++) {
if (len - i < breaks) { // incomplete block, will be treated out of the loop
break;
}
PrintAndLogEx(INFO, "%02u | %s", rownum, sprint_hex_ascii(data + i, breaks));
}
// the last odd bytes
uint8_t mod = len % breaks;
if (mod) {
char buf[UTIL_BUFFER_SIZE_SPRINT + 3];
memset(buf, 0, sizeof(buf));
hex_to_buffer((uint8_t *)buf, data + i, mod, (sizeof(buf) - 1), 0, 1, true);
// add the spaces...
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " ");
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod));
PrintAndLogEx(INFO, "%02u | %s", rownum, buf);
}
}
static void print_buffer_ex(const uint8_t *data, const size_t len, int level, uint8_t breaks) {
if (len < 1)
return;
char buf[UTIL_BUFFER_SIZE_SPRINT + 3];
int i;
for (i = 0; i < len; i += breaks) {
if (len - i < breaks) { // incomplete block, will be treated out of the loop
break;
}
// (16 * 3) + (16) + + 1
memset(buf, 0, sizeof(buf));
sprintf(buf, "%*s%02x: ", (level * 4), " ", i);
hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, breaks, (sizeof(buf) - strlen(buf) - 1), 0, 1, true);
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, breaks));
PrintAndLogEx(INFO, "%s", buf);
}
// the last odd bytes
uint8_t mod = len % breaks;
if (mod) {
memset(buf, 0, sizeof(buf));
sprintf(buf, "%*s%02x: ", (level * 4), " ", i);
hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, mod, (sizeof(buf) - strlen(buf) - 1), 0, 1, true);
// add the spaces...
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " ");
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod));
PrintAndLogEx(INFO, "%s", buf);
}
}
void print_buffer(const uint8_t *data, const size_t len, int level) {
print_buffer_ex(data, len, level, 16);
}
void print_buffer_with_offset(const uint8_t *data, const size_t len, int offset, bool print_header) {
if (print_header) {
PrintAndLogEx(INFO, " Offset | Data | Ascii");
PrintAndLogEx(INFO, "----------------------------------------------------------------------------");
}
for (uint32_t i = 0; i < len; i += 16) {
uint32_t l = len - i;
PrintAndLogEx(INFO, "%3d/0x%02X | %s" NOLF, offset + i, offset + i, sprint_hex(&data[i], l > 16 ? 16 : l));
if (l < 16)
PrintAndLogEx(NORMAL, "%*s" NOLF, 3 * (16 - l), " ");
PrintAndLogEx(NORMAL, "| %s", sprint_ascii(&data[i], l > 16 ? 16 : l));
}
}
void print_blocks(uint32_t *data, size_t len) {
PrintAndLogEx(SUCCESS, "Blk | Data ");
PrintAndLogEx(SUCCESS, "----+------------");
if (!data) {
PrintAndLogEx(ERR, "..empty data");
} else {
for (uint8_t i = 0; i < len; i++)
PrintAndLogEx(SUCCESS, " %02d | %08X", i, data[i]);
}
}
char *sprint_hex(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT - 3] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true);
return buf;
}
char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true);
return buf;
}
char *sprint_hex_inrow(const uint8_t *data, const size_t len) {
return sprint_hex_inrow_ex(data, len, 0);
}
char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true);
return buf;
}
char *sprint_bytebits_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) {
// make sure we don't go beyond our char array memory
size_t rowlen = (len > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len;
// 3072 + end of line characters if broken at 8 bits
static char buf[MAX_BIN_BREAK_LENGTH];
memset(buf, 0x00, sizeof(buf));
char *tmp = buf;
// loop through the out_index to make sure we don't go too far
for (int i = 0; i < rowlen; i++) {
char c = data[i];
// manchester wrong bit marker
if (c == 7) {
c = '.';
} else if (c < 2) {
c += '0';
} else {
PrintAndLogEx(ERR, "Invalid data passed to sprint_bytebits_bin_break()");
return buf;
}
*(tmp++) = c;
// check if a line break is needed and we have room to print it in our array
if (breaks > 1) {
if (((i + 1) % breaks) == 0) {
*(tmp++) = '\n';
}
}
}
return buf;
}
/*
void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) {
if ( src == NULL ) return;
if ( srclen < 1 ) return;
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
int rowlen;
if (breaks==0)
rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len;
else
rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks);
PrintAndLogEx(NORMAL, "(sprint_bin_break) rowlen %d", rowlen);
// 3072 + end of line characters if broken at 8 bits
dest = (char *)calloc(MAX_BIN_BREAK_LENGTH, sizeof(uint8_t));
if (dest == NULL) return;
//clear memory
memset(dest, 0x00, sizeof(dest));
// loop through the out_index to make sure we don't go too far
for (out_index=0; out_index < rowlen-1; out_index++) {
// set character
sprintf(dest++, "%u", src[in_index]);
// check if a line break is needed and we have room to print it in our array
if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) {
// increment and print line break
out_index++;
sprintf(dest++, "%s","\n");
}
in_index++;
}
// last char.
sprintf(dest++, "%u", src[in_index]);
}
*/
char *sprint_bytebits_bin(const uint8_t *data, const size_t len) {
return sprint_bytebits_bin_break(data, len, 0);
}
char *sprint_bin(const uint8_t *data, const size_t len) {
size_t binlen = (len * 8 > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len * 8;
static uint8_t buf[MAX_BIN_BREAK_LENGTH];
bytes_to_bytebits(data, binlen / 8, buf);
return sprint_bytebits_bin_break(buf, binlen, 0);
}
char *sprint_hex_ascii(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT];
char *tmp = buf;
memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT);
size_t max_len = (len > 1010) ? 1010 : len;
snprintf(tmp, UTIL_BUFFER_SIZE_SPRINT, "%s| ", sprint_hex(data, max_len));
size_t i = 0;
size_t pos = (max_len * 3) + 2;
while (i < max_len) {
char c = data[i];
if ((c < 32) || (c == 127))
c = '.';
sprintf(tmp + pos + i, "%c", c);
++i;
}
return buf;
}
char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT];
char *tmp = buf;
memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT);
size_t max_len = (len > 1010) ? 1010 : len;
size_t i = 0;
while (i < max_len) {
char c = data[i];
tmp[i] = ((c < 32) || (c == 127)) ? '.' : c;
++i;
}
size_t m = min_str_len > i ? min_str_len : 0;
for (; i < m; ++i)
tmp[i] = ' ';
return buf;
}
char *sprint_ascii(const uint8_t *data, const size_t len) {
return sprint_ascii_ex(data, len, 0);
}
int hex_to_bytes(const char *hexValue, uint8_t *bytesValue, size_t maxBytesValueLen) {
char buf[4] = {0};
int indx = 0;
int bytesValueLen = 0;
while (hexValue[indx]) {
if (hexValue[indx] == '\t' || hexValue[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(hexValue[indx])) {
buf[strlen(buf)] = hexValue[indx];
} else {
// if we have symbols other than spaces and hex
return -1;
}
if (maxBytesValueLen && bytesValueLen >= maxBytesValueLen) {
// if we don't have space in buffer and have symbols to translate
return -2;
}
if (strlen(buf) >= 2) {
uint32_t temp = 0;
sscanf(buf, "%x", &temp);
bytesValue[bytesValueLen] = (uint8_t)(temp & 0xff);
memset(buf, 0, sizeof(buf));
bytesValueLen++;
}
indx++;
}
if (strlen(buf) > 0)
//error when not completed hex bytes
return -3;
return bytesValueLen;
}
// takes a number (uint64_t) and creates a binarray in dest.
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = n & 1;
n >>= 1;
}
}
// least significant bit (lsb) first
void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) {
for (size_t i = 0 ; i < len ; ++i) {
dest[i] = n & 1;
n >>= 1;
}
}
void bytes_to_bytebits(const void *src, const size_t srclen, void *dest) {
uint8_t *s = (uint8_t *)src;
uint8_t *d = (uint8_t *)dest;
uint32_t i = srclen * 8;
size_t j = srclen;
while (j--) {
uint8_t b = s[j];
d[--i] = (b >> 0) & 1;
d[--i] = (b >> 1) & 1;
d[--i] = (b >> 2) & 1;
d[--i] = (b >> 3) & 1;
d[--i] = (b >> 4) & 1;
d[--i] = (b >> 5) & 1;
d[--i] = (b >> 6) & 1;
d[--i] = (b >> 7) & 1;
}
}
// aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp
// to
// hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii
// up to 64 bytes or 512 bits
uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize) {
static uint8_t buf[64];
memset(buf, 0x00, 64);
uint8_t *tmp = buf;
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
tmp[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
return buf;
}
// takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64),
// returns: the dest array contains the reordered src array.
void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest) {
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
dest[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
}
// -------------------------------------------------------------------------
// string parameters lib
// -------------------------------------------------------------------------
// -------------------------------------------------------------------------
// line - param line
// bg, en - symbol numbers in param line of beginning and ending parameter
// paramnum - param number (from 0)
// -------------------------------------------------------------------------
int param_getptr(const char *line, int *bg, int *en, int paramnum) {
int i;
int len = strlen(line);
*bg = 0;
*en = 0;
// skip spaces
while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++;
if (*bg >= len) {
return 1;
}
for (i = 0; i < paramnum; i++) {
while (line[*bg] != ' ' && line[*bg] != '\t' && line[*bg] != '\0')(*bg)++;
while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++;
if (line[*bg] == '\0') return 1;
}
*en = *bg;
while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0')(*en)++;
(*en)--;
return 0;
}
int param_getlength(const char *line, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0;
return en - bg + 1;
}
char param_getchar(const char *line, int paramnum) {
return param_getchar_indx(line, 0, paramnum);
}
char param_getchar_indx(const char *line, int indx, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) return 0x00;
if (bg + indx > en)
return '\0';
return line[bg + indx];
}
uint8_t param_get8(const char *line, int paramnum) {
return param_get8ex(line, paramnum, 0, 10);
}
/**
* @brief Reads a decimal integer (actually, 0-254, not 255)
* @param line
* @param paramnum
* @return -1 if error
*/
uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) {
uint8_t val = param_get8ex(line, paramnum, 255, 10);
if ((int8_t) val == -1) return 1;
(*destination) = val;
return 0;
}
/**
* @brief Checks if param is decimal
* @param line
* @param paramnum
* @return
*/
uint8_t param_isdec(const char *line, int paramnum) {
int bg, en;
//TODO, check more thorougly
if (!param_getptr(line, &bg, &en, paramnum)) return 1;
// return strtoul(&line[bg], NULL, 10) & 0xff;
return 0;
}
uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base) & 0xff;
else
return deflt;
}
uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoul(&line[bg], NULL, base);
else
return deflt;
}
uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtoull(&line[bg], NULL, base);
else
return deflt;
}
float param_getfloat(const char *line, int paramnum, float deflt) {
int bg, en;
if (!param_getptr(line, &bg, &en, paramnum))
return strtof(&line[bg], NULL);
else
return deflt;
}
int param_gethex(const char *line, int paramnum, uint8_t *data, int hexcnt) {
int bg, en, i;
uint32_t temp;
if (hexcnt & 1) return 1;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
if (en - bg + 1 != hexcnt) return 1;
for (i = 0; i < hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1;
sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_ex(const char *line, int paramnum, uint8_t *data, int *hexcnt) {
int bg, en, i;
uint32_t temp;
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*hexcnt = en - bg + 1;
if (*hexcnt % 2) //error if not complete hex bytes
return 1;
for (i = 0; i < *hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1;
sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) {
int bg, en;
uint32_t temp;
char buf[5] = {0};
if (param_getptr(line, &bg, &en, paramnum)) return 1;
*datalen = 0;
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(line[indx])) {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and hex
return 1;
}
if (*datalen >= maxdatalen) {
// if we don't have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) >= 2) {
sscanf(buf, "%x", &temp);
data[*datalen] = (uint8_t)(temp & 0xff);
*buf = 0;
(*datalen)++;
}
indx++;
}
if (strlen(buf) > 0)
//error when not completed hex bytes
return 3;
return 0;
}
int param_getbin_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 1;
}
*datalen = 0;
char buf[5] = {0};
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (line[indx] == '0' || line[indx] == '1') {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and 0/1
return 1;
}
if (*datalen >= maxdatalen) {
// if we don't have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) > 0) {
uint32_t temp = 0;
sscanf(buf, "%d", &temp);
data[*datalen] = (uint8_t)(temp & 0xff);
*buf = 0;
(*datalen)++;
}
indx++;
}
return 0;
}
int param_getstr(const char *line, int paramnum, char *str, size_t buffersize) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
// Prevent out of bounds errors
if (en - bg + 1 >= buffersize) {
PrintAndLogEx(ERR, "out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize);
return 0;
}
memcpy(str, line + bg, en - bg + 1);
str[en - bg + 1] = 0;
return en - bg + 1;
}
/*
The following methods comes from Rfidler sourcecode.
https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/
*/
// convert hex to sequence of 0/1 bit values
// returns number of bits converted
int hextobinarray(char *target, char *source) {
int length, i, count = 0;
char *start = source;
length = strlen(source);
// process 4 bits (1 hex digit) at a time
while (length--) {
char x = *(source++);
// capitalize
if (x >= 'a' && x <= 'f')
x -= 32;
// convert to numeric value
if (x >= '0' && x <= '9')
x -= '0';
else if (x >= 'A' && x <= 'F')
x -= 'A' - 10;
else {
PrintAndLogEx(INFO, "(hextobinarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start);
return 0;
}
// output
for (i = 0 ; i < 4 ; ++i, ++count)
*(target++) = (x >> (3 - i)) & 1;
}
return count;
}
// convert hex to human readable binary string
int hextobinstring(char *target, char *source) {
int length = hextobinarray(target, source);
if (length == 0)
return 0;
binarraytobinstring(target, target, length);
return length;
}
// convert binary array of 0x00/0x01 values to hex
// return number of bits converted
int binarraytohex(char *target, const size_t targetlen, const char *source, size_t srclen) {
uint8_t i = 0, x = 0;
uint32_t t = 0; // written target chars
uint32_t r = 0; // consumed bits
uint8_t w = 0; // wrong bits separator printed
for (size_t s = 0 ; s < srclen; s++) {
if ((source[s] == 0) || (source[s] == 1)) {
w = 0;
x += (source[s] << (3 - i));
i++;
if (i == 4) {
if (t >= targetlen - 2) {
return r;
}
sprintf(target + t, "%X", x);
t++;
r += 4;
x = 0;
i = 0;
}
} else {
if (i > 0) {
if (t >= targetlen - 5) {
return r;
}
sprintf(target + t, "%X[%i]", x, i);
t += 4;
r += i;
x = 0;
i = 0;
w = 1;
}
if (w == 0) {
if (t >= targetlen - 2) {
return r;
}
sprintf(target + t, " ");
t++;
}
r++;
}
}
return r;
}
// convert binary array to human readable binary
void binarraytobinstring(char *target, char *source, int length) {
for (int i = 0 ; i < length; ++i)
*(target++) = *(source++) + '0';
*target = '\0';
}
int binstring2binarray(uint8_t *target, char *source, int length) {
int count = 0;
char *start = source;
while (length--) {
char x = *(source++);
// convert from binary value
if (x >= '0' && x <= '1')
x -= '0';
else {
PrintAndLogEx(WARNING, "(binstring2binarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start);
return 0;
}
*(target++) = x;
count++;
}
return count;
}
// return parity bit required to match type
uint8_t GetParity(const uint8_t *bits, uint8_t type, int length) {
int x;
for (x = 0 ; length > 0 ; --length)
x += bits[length - 1];
x %= 2;
return x ^ type;
}
// add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half
void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, EVEN, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, ODD, length / 2);
}
// add HID parity to binary array: ODD prefix for 1st half of ID, EVEN suffix for 2nd half
void wiegand_add_parity_swapped(uint8_t *target, uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, ODD, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, EVEN, length / 2);
}
// Pack a bitarray into a uint32_t.
uint32_t PackBits(uint8_t start, uint8_t len, const uint8_t *bits) {
if (len > 32) return 0;
int i = start;
int j = len - 1;
uint32_t tmp = 0;
for (; j >= 0; --j, ++i)
tmp |= bits[i] << j;
return tmp;
}
uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) {
uint64_t remaind = 0, quotient = 0, result = 0;
remaind = num % divider;
quotient = num / divider;
if (!(quotient == 0 && remaind == 0))
result += HornerScheme(quotient, divider, factor) * factor + remaind;
return result;
}
// determine number of logical CPU cores (use for multithreaded functions)
int num_CPUs(void) {
#if defined(_WIN32)
#include <sysinfoapi.h>
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
#else
#include <unistd.h>
int count = sysconf(_SC_NPROCESSORS_ONLN);
if (count <= 0)
count = 1;
return count;
#endif
}
void str_lower(char *s) {
for (size_t i = 0; i < strlen(s); i++)
s[i] = tolower(s[i]);
}
// check for prefix in string
bool str_startswith(const char *s, const char *pre) {
return strncmp(pre, s, strlen(pre)) == 0;
}
// check for suffix in string
bool str_endswith(const char *s, const char *suffix) {
size_t ls = strlen(s);
size_t lsuffix = strlen(suffix);
if (ls >= lsuffix) {
return strncmp(suffix, s + (ls - lsuffix), lsuffix) == 0;
}
return false;
}
// Replace unprintable characters with a dot in char buffer
void clean_ascii(unsigned char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
if (!isprint(buf[i]))
buf[i] = '.';
}
}
// replace \r \n to \0
void strcleanrn(char *buf, size_t len) {
strcreplace(buf, len, '\n', '\0');
strcreplace(buf, len, '\r', '\0');
}
// replace char in buffer
void strcreplace(char *buf, size_t len, char from, char to) {
for (size_t i = 0; i < len; i++) {
if (buf[i] == from)
buf[i] = to;
}
}
char *str_dup(const char *src) {
return str_ndup(src, strlen(src));
}
char *str_ndup(const char *src, size_t len) {
char *dest = (char *) calloc(len + 1, sizeof(uint8_t));
if (dest != NULL) {
memcpy(dest, src, len);
dest[len] = '\0';
}
return dest;
}
/**
* Converts a hex string to component "hi2", "hi" and "lo" 32-bit integers
* one nibble at a time.
*
* Returns the number of nibbles (4 bits) entered.
*/
int hexstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) {
uint32_t n = 0, i = 0;
while (sscanf(&str[i++], "%1x", &n) == 1) {
*hi2 = (*hi2 << 4) | (*hi >> 28);
*hi = (*hi << 4) | (*lo >> 28);
*lo = (*lo << 4) | (n & 0xf);
}
return i - 1;
}
/**
* Converts a binary string to component "hi2", "hi" and "lo" 32-bit integers,
* one bit at a time.
*
* Returns the number of bits entered.
*/
int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) {
uint32_t n = 0, i = 0;
for (;;) {
int res = sscanf(&str[i], "%1u", &n);
if ((res != 1) || (n > 1))
break;
*hi2 = (*hi2 << 1) | (*hi >> 31);
*hi = (*hi << 1) | (*lo >> 31);
*lo = (*lo << 1) | (n & 0x1);
i++;
}
return i;
}
/**
* Converts a binary array to component "hi2", "hi" and "lo" 32-bit integers,
* one bit at a time.
*
* Returns the number of bits entered.
*/
int binarray_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const uint8_t *arr, int arrlen) {
int i = 0;
for (; i < arrlen; i++) {
uint8_t n = arr[i];
if (n > 1)
break;
*hi2 = (*hi2 << 1) | (*hi >> 31);
*hi = (*hi << 1) | (*lo >> 31);
*lo = (*lo << 1) | (n & 0x1);
}
return i;
}
inline uint32_t bitcount32(uint32_t a) {
#if defined __GNUC__
return __builtin_popcountl(a);
#else
a = a - ((a >> 1) & 0x55555555);
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24;
#endif
}
inline uint64_t bitcount64(uint64_t a) {
#if defined __GNUC__
return __builtin_popcountll(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}
inline uint32_t leadingzeros32(uint32_t a) {
#if defined __GNUC__
return __builtin_clzl(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}
inline uint64_t leadingzeros64(uint64_t a) {
#if defined __GNUC__
return __builtin_clzll(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}