proxmark3/armsrc/iso14443a.c

1818 lines
52 KiB
C

//-----------------------------------------------------------------------------
// Routines to support ISO 14443 type A.
//
// Gerhard de Koning Gans - May 2008
//-----------------------------------------------------------------------------
#include <proxmark3.h>
#include "apps.h"
#include "../common/iso14443_crc.c"
typedef enum {
SEC_D = 1,
SEC_E = 2,
SEC_F = 3,
SEC_X = 4,
SEC_Y = 5,
SEC_Z = 6
} SecType;
//-----------------------------------------------------------------------------
// The software UART that receives commands from the reader, and its state
// variables.
//-----------------------------------------------------------------------------
static struct {
enum {
STATE_UNSYNCD,
STATE_START_OF_COMMUNICATION,
STATE_MILLER_X,
STATE_MILLER_Y,
STATE_MILLER_Z,
STATE_ERROR_WAIT
} state;
WORD shiftReg;
int bitCnt;
int byteCnt;
int byteCntMax;
int posCnt;
int syncBit;
int parityBits;
int samples;
int highCnt;
int bitBuffer;
enum {
DROP_NONE,
DROP_FIRST_HALF,
DROP_SECOND_HALF
} drop;
BYTE *output;
} Uart;
static BOOL MillerDecoding(int bit)
{
int error = 0;
int bitright;
if(!Uart.bitBuffer) {
Uart.bitBuffer = bit ^ 0xFF0;
return FALSE;
}
else {
Uart.bitBuffer <<= 4;
Uart.bitBuffer ^= bit;
}
BOOL EOC = FALSE;
if(Uart.state != STATE_UNSYNCD) {
Uart.posCnt++;
if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
bit = 0x00;
}
else {
bit = 0x01;
}
if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
bitright = 0x00;
}
else {
bitright = 0x01;
}
if(bit != bitright) { bit = bitright; }
if(Uart.posCnt == 1) {
// measurement first half bitperiod
if(!bit) {
Uart.drop = DROP_FIRST_HALF;
}
}
else {
// measurement second half bitperiod
if(!bit & (Uart.drop == DROP_NONE)) {
Uart.drop = DROP_SECOND_HALF;
}
else if(!bit) {
// measured a drop in first and second half
// which should not be possible
Uart.state = STATE_ERROR_WAIT;
error = 0x01;
}
Uart.posCnt = 0;
switch(Uart.state) {
case STATE_START_OF_COMMUNICATION:
Uart.shiftReg = 0;
if(Uart.drop == DROP_SECOND_HALF) {
// error, should not happen in SOC
Uart.state = STATE_ERROR_WAIT;
error = 0x02;
}
else {
// correct SOC
Uart.state = STATE_MILLER_Z;
}
break;
case STATE_MILLER_Z:
Uart.bitCnt++;
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// logic '0' followed by sequence Y
// end of communication
Uart.state = STATE_UNSYNCD;
EOC = TRUE;
}
// if(Uart.drop == DROP_FIRST_HALF) {
// Uart.state = STATE_MILLER_Z; stay the same
// we see a logic '0' }
if(Uart.drop == DROP_SECOND_HALF) {
// we see a logic '1'
Uart.shiftReg |= 0x100;
Uart.state = STATE_MILLER_X;
}
break;
case STATE_MILLER_X:
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// sequence Y, we see a '0'
Uart.state = STATE_MILLER_Y;
Uart.bitCnt++;
}
if(Uart.drop == DROP_FIRST_HALF) {
// Would be STATE_MILLER_Z
// but Z does not follow X, so error
Uart.state = STATE_ERROR_WAIT;
error = 0x03;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and stay in state X
Uart.shiftReg |= 0x100;
Uart.bitCnt++;
}
break;
case STATE_MILLER_Y:
Uart.bitCnt++;
Uart.shiftReg >>= 1;
if(Uart.drop == DROP_NONE) {
// logic '0' followed by sequence Y
// end of communication
Uart.state = STATE_UNSYNCD;
EOC = TRUE;
}
if(Uart.drop == DROP_FIRST_HALF) {
// we see a '0'
Uart.state = STATE_MILLER_Z;
}
if(Uart.drop == DROP_SECOND_HALF) {
// We see a '1' and go to state X
Uart.shiftReg |= 0x100;
Uart.state = STATE_MILLER_X;
}
break;
case STATE_ERROR_WAIT:
// That went wrong. Now wait for at least two bit periods
// and try to sync again
if(Uart.drop == DROP_NONE) {
Uart.highCnt = 6;
Uart.state = STATE_UNSYNCD;
}
break;
default:
Uart.state = STATE_UNSYNCD;
Uart.highCnt = 0;
break;
}
Uart.drop = DROP_NONE;
// should have received at least one whole byte...
if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) {
return TRUE;
}
if(Uart.bitCnt == 9) {
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
Uart.byteCnt++;
Uart.parityBits <<= 1;
Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01);
if(EOC) {
// when End of Communication received and
// all data bits processed..
return TRUE;
}
Uart.bitCnt = 0;
}
/*if(error) {
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = error & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
Uart.byteCnt++;
Uart.output[Uart.byteCnt] = 0xAA;
Uart.byteCnt++;
return TRUE;
}*/
}
}
else {
bit = Uart.bitBuffer & 0xf0;
bit >>= 4;
bit ^= 0x0F;
if(bit) {
// should have been high or at least (4 * 128) / fc
// according to ISO this should be at least (9 * 128 + 20) / fc
if(Uart.highCnt == 8) {
// we went low, so this could be start of communication
// it turns out to be safer to choose a less significant
// syncbit... so we check whether the neighbour also represents the drop
Uart.posCnt = 1; // apparently we are busy with our first half bit period
Uart.syncBit = bit & 8;
Uart.samples = 3;
if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
if(Uart.syncBit & (Uart.bitBuffer & 8)) {
Uart.syncBit = 8;
// the first half bit period is expected in next sample
Uart.posCnt = 0;
Uart.samples = 3;
}
}
else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
Uart.syncBit <<= 4;
Uart.state = STATE_START_OF_COMMUNICATION;
Uart.drop = DROP_FIRST_HALF;
Uart.bitCnt = 0;
Uart.byteCnt = 0;
Uart.parityBits = 0;
error = 0;
}
else {
Uart.highCnt = 0;
}
}
else {
if(Uart.highCnt < 8) {
Uart.highCnt++;
}
}
}
return FALSE;
}
//=============================================================================
// ISO 14443 Type A - Manchester
//=============================================================================
static struct {
enum {
DEMOD_UNSYNCD,
DEMOD_START_OF_COMMUNICATION,
DEMOD_MANCHESTER_D,
DEMOD_MANCHESTER_E,
DEMOD_MANCHESTER_F,
DEMOD_ERROR_WAIT
} state;
int bitCount;
int posCount;
int syncBit;
int parityBits;
WORD shiftReg;
int buffer;
int buff;
int samples;
int len;
enum {
SUB_NONE,
SUB_FIRST_HALF,
SUB_SECOND_HALF
} sub;
BYTE *output;
} Demod;
static BOOL ManchesterDecoding(int v)
{
int bit;
int modulation;
int error = 0;
if(!Demod.buff) {
Demod.buff = 1;
Demod.buffer = v;
return FALSE;
}
else {
bit = Demod.buffer;
Demod.buffer = v;
}
if(Demod.state==DEMOD_UNSYNCD) {
Demod.output[Demod.len] = 0xfa;
Demod.syncBit = 0;
//Demod.samples = 0;
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
if(bit & 0x08) { Demod.syncBit = 0x08; }
if(!Demod.syncBit) {
if(bit & 0x04) { Demod.syncBit = 0x04; }
}
else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; }
if(!Demod.syncBit) {
if(bit & 0x02) { Demod.syncBit = 0x02; }
}
else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; }
if(!Demod.syncBit) {
if(bit & 0x01) { Demod.syncBit = 0x01; }
if(Demod.syncBit & (Demod.buffer & 0x08)) {
Demod.syncBit = 0x08;
// The first half bitperiod is expected in next sample
Demod.posCount = 0;
Demod.output[Demod.len] = 0xfb;
}
}
else if(bit & 0x01) { Demod.syncBit = 0x01; }
if(Demod.syncBit) {
Demod.len = 0;
Demod.state = DEMOD_START_OF_COMMUNICATION;
Demod.sub = SUB_FIRST_HALF;
Demod.bitCount = 0;
Demod.shiftReg = 0;
Demod.parityBits = 0;
Demod.samples = 0;
if(Demod.posCount) {
switch(Demod.syncBit) {
case 0x08: Demod.samples = 3; break;
case 0x04: Demod.samples = 2; break;
case 0x02: Demod.samples = 1; break;
case 0x01: Demod.samples = 0; break;
}
}
error = 0;
}
}
else {
//modulation = bit & Demod.syncBit;
modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
Demod.samples += 4;
if(Demod.posCount==0) {
Demod.posCount = 1;
if(modulation) {
Demod.sub = SUB_FIRST_HALF;
}
else {
Demod.sub = SUB_NONE;
}
}
else {
Demod.posCount = 0;
if(modulation && (Demod.sub == SUB_FIRST_HALF)) {
if(Demod.state!=DEMOD_ERROR_WAIT) {
Demod.state = DEMOD_ERROR_WAIT;
Demod.output[Demod.len] = 0xaa;
error = 0x01;
}
}
else if(modulation) {
Demod.sub = SUB_SECOND_HALF;
}
switch(Demod.state) {
case DEMOD_START_OF_COMMUNICATION:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.state = DEMOD_MANCHESTER_D;
}
else {
Demod.output[Demod.len] = 0xab;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x02;
}
break;
case DEMOD_MANCHESTER_D:
case DEMOD_MANCHESTER_E:
if(Demod.sub == SUB_FIRST_HALF) {
Demod.bitCount++;
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
Demod.state = DEMOD_MANCHESTER_D;
}
else if(Demod.sub == SUB_SECOND_HALF) {
Demod.bitCount++;
Demod.shiftReg >>= 1;
Demod.state = DEMOD_MANCHESTER_E;
}
else {
Demod.state = DEMOD_MANCHESTER_F;
}
break;
case DEMOD_MANCHESTER_F:
// Tag response does not need to be a complete byte!
if(Demod.len > 0 || Demod.bitCount > 0) {
if(Demod.bitCount > 0) {
Demod.shiftReg >>= (9 - Demod.bitCount);
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
// No parity bit, so just shift a 0
Demod.parityBits <<= 1;
}
Demod.state = DEMOD_UNSYNCD;
return TRUE;
}
else {
Demod.output[Demod.len] = 0xad;
Demod.state = DEMOD_ERROR_WAIT;
error = 0x03;
}
break;
case DEMOD_ERROR_WAIT:
Demod.state = DEMOD_UNSYNCD;
break;
default:
Demod.output[Demod.len] = 0xdd;
Demod.state = DEMOD_UNSYNCD;
break;
}
if(Demod.bitCount>=9) {
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
Demod.len++;
Demod.parityBits <<= 1;
Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01);
Demod.bitCount = 0;
Demod.shiftReg = 0;
}
/*if(error) {
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = error & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
Demod.output[Demod.len] = bit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.buffer & 0xFF;
Demod.len++;
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
Demod.len++;
Demod.output[Demod.len] = 0xBB;
Demod.len++;
return TRUE;
}*/
}
} // end (state != UNSYNCED)
return FALSE;
}
//=============================================================================
// Finally, a `sniffer' for ISO 14443 Type A
// Both sides of communication!
//=============================================================================
//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
void SnoopIso14443a(void)
{
// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT
#define RECV_CMD_OFFSET 3032
#define RECV_RES_OFFSET 3096
#define DMA_BUFFER_OFFSET 3160
#define DMA_BUFFER_SIZE 4096
#define TRACE_LENGTH 3000
// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values
// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values
// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values
// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values
// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values
// We won't start recording the frames that we acquire until we trigger;
// a good trigger condition to get started is probably when we see a
// response from the tag.
BOOL triggered = TRUE; // FALSE to wait first for card
// The command (reader -> tag) that we're receiving.
// The length of a received command will in most cases be no more than 18 bytes.
// So 32 should be enough!
BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET);
// The response (tag -> reader) that we're receiving.
BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET);
// As we receive stuff, we copy it from receivedCmd or receivedResponse
// into trace, along with its length and other annotations.
BYTE *trace = (BYTE *)BigBuf;
int traceLen = 0;
// The DMA buffer, used to stream samples from the FPGA
SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET;
int lastRxCounter;
SBYTE *upTo;
int smpl;
int maxBehindBy = 0;
// Count of samples received so far, so that we can include timing
// information in the trace buffer.
int samples = 0;
int rsamples = 0;
memset(trace, 0x44, RECV_CMD_OFFSET);
// Set up the demodulator for tag -> reader responses.
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
// And the reader -> tag commands
memset(&Uart, 0, sizeof(Uart));
Uart.output = receivedCmd;
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
Uart.state = STATE_UNSYNCD;
// And put the FPGA in the appropriate mode
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Setup for the DMA.
FpgaSetupSsc();
upTo = dmaBuf;
lastRxCounter = DMA_BUFFER_SIZE;
FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE);
LED_A_ON();
// And now we loop, receiving samples.
for(;;) {
WDT_HIT();
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
(DMA_BUFFER_SIZE-1);
if(behindBy > maxBehindBy) {
maxBehindBy = behindBy;
if(behindBy > 400) {
DbpString("blew circular buffer!");
goto done;
}
}
if(behindBy < 1) continue;
smpl = upTo[0];
upTo++;
lastRxCounter -= 1;
if(upTo - dmaBuf > DMA_BUFFER_SIZE) {
upTo -= DMA_BUFFER_SIZE;
lastRxCounter += DMA_BUFFER_SIZE;
AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
samples += 4;
#define HANDLE_BIT_IF_BODY \
LED_C_ON(); \
if(triggered) { \
trace[traceLen++] = ((rsamples >> 0) & 0xff); \
trace[traceLen++] = ((rsamples >> 8) & 0xff); \
trace[traceLen++] = ((rsamples >> 16) & 0xff); \
trace[traceLen++] = ((rsamples >> 24) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \
trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \
trace[traceLen++] = Uart.byteCnt; \
memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \
traceLen += Uart.byteCnt; \
if(traceLen > TRACE_LENGTH) break; \
} \
/* And ready to receive another command. */ \
Uart.state = STATE_UNSYNCD; \
/* And also reset the demod code, which might have been */ \
/* false-triggered by the commands from the reader. */ \
Demod.state = DEMOD_UNSYNCD; \
LED_B_OFF(); \
if(MillerDecoding((smpl & 0xF0) >> 4)) {
rsamples = samples - Uart.samples;
HANDLE_BIT_IF_BODY
}
if(ManchesterDecoding(smpl & 0x0F)) {
rsamples = samples - Demod.samples;
LED_B_ON();
// timestamp, as a count of samples
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
// length
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedResponse, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) break;
triggered = TRUE;
// And ready to receive another response.
memset(&Demod, 0, sizeof(Demod));
Demod.output = receivedResponse;
Demod.state = DEMOD_UNSYNCD;
LED_C_OFF();
}
if(BUTTON_PRESS()) {
DbpString("cancelled_a");
goto done;
}
}
DbpString("COMMAND FINISHED");
DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);
DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);
done:
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt);
DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]);
LED_A_OFF();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
}
// Prepare communication bits to send to FPGA
void Sequence(SecType seq)
{
ToSendMax++;
switch(seq) {
// CARD TO READER
case SEC_D:
// Sequence D: 11110000
// modulation with subcarrier during first half
ToSend[ToSendMax] = 0xf0;
break;
case SEC_E:
// Sequence E: 00001111
// modulation with subcarrier during second half
ToSend[ToSendMax] = 0x0f;
break;
case SEC_F:
// Sequence F: 00000000
// no modulation with subcarrier
ToSend[ToSendMax] = 0x00;
break;
// READER TO CARD
case SEC_X:
// Sequence X: 00001100
// drop after half a period
ToSend[ToSendMax] = 0x0c;
break;
case SEC_Y:
default:
// Sequence Y: 00000000
// no drop
ToSend[ToSendMax] = 0x00;
break;
case SEC_Z:
// Sequence Z: 11000000
// drop at start
ToSend[ToSendMax] = 0xc0;
break;
}
}
//-----------------------------------------------------------------------------
// Prepare tag messages
//-----------------------------------------------------------------------------
static void CodeIso14443aAsTag(const BYTE *cmd, int len)
{
int i;
int oddparity;
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
Sequence(SEC_D);
for(i = 0; i < len; i++) {
int j;
BYTE b = cmd[i];
// Data bits
oddparity = 0x01;
for(j = 0; j < 8; j++) {
oddparity ^= (b & 1);
if(b & 1) {
Sequence(SEC_D);
} else {
Sequence(SEC_E);
}
b >>= 1;
}
// Parity bit
if(oddparity) {
Sequence(SEC_D);
} else {
Sequence(SEC_E);
}
}
// Send stopbit
Sequence(SEC_F);
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
Sequence(SEC_F);
}
// Convert from last byte pos to length
ToSendMax++;
// Add a few more for slop
ToSend[ToSendMax++] = 0x00;
ToSend[ToSendMax++] = 0x00;
//ToSendMax += 2;
}
//-----------------------------------------------------------------------------
// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4
//-----------------------------------------------------------------------------
static void CodeStrangeAnswer()
{
int i;
ToSendReset();
// Correction bit, might be removed when not needed
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(1); // 1
ToSendStuffBit(0);
ToSendStuffBit(0);
ToSendStuffBit(0);
// Send startbit
Sequence(SEC_D);
// 0
Sequence(SEC_E);
// 0
Sequence(SEC_E);
// 1
Sequence(SEC_D);
// Send stopbit
Sequence(SEC_F);
// Flush the buffer in FPGA!!
for(i = 0; i < 5; i++) {
Sequence(SEC_F);
}
// Convert from last byte pos to length
ToSendMax++;
// Add a few more for slop
ToSend[ToSendMax++] = 0x00;
ToSend[ToSendMax++] = 0x00;
//ToSendMax += 2;
}
//-----------------------------------------------------------------------------
// Wait for commands from reader
// Stop when button is pressed
// Or return TRUE when command is captured
//-----------------------------------------------------------------------------
static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen)
{
// Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// Now run a `software UART' on the stream of incoming samples.
Uart.output = received;
Uart.byteCntMax = maxLen;
Uart.state = STATE_UNSYNCD;
for(;;) {
WDT_HIT();
if(BUTTON_PRESS()) return FALSE;
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
if(MillerDecoding((b & 0xf0) >> 4)) {
*len = Uart.byteCnt;
return TRUE;
}
if(MillerDecoding(b & 0x0f)) {
*len = Uart.byteCnt;
return TRUE;
}
}
}
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int TagUid)
{
// This function contains the tag emulation
// Prepare protocol messages
// static const BYTE cmd1[] = { 0x26 };
// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg
//
static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me
// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me
// UID response
// static const BYTE cmd2[] = { 0x93, 0x20 };
//static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg
// my desfire
static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips
// When reader selects us during cascade1 it will send cmd3
//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE)
BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
// send cascade2 2nd half of UID
static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck
// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID
// When reader selects us during cascade2 it will send cmd3a
//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE)
BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire)
ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]);
static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce
BYTE *resp;
int respLen;
// Longest possible response will be 16 bytes + 2 CRC = 18 bytes
// This will need
// 144 data bits (18 * 8)
// 18 parity bits
// 2 Start and stop
// 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA)
// 1 just for the case
// ----------- +
// 166
//
// 166 bytes, since every bit that needs to be send costs us a byte
//
// Respond with card type
BYTE *resp1 = (((BYTE *)BigBuf) + 800);
int resp1Len;
// Anticollision cascade1 - respond with uid
BYTE *resp2 = (((BYTE *)BigBuf) + 970);
int resp2Len;
// Anticollision cascade2 - respond with 2nd half of uid if asked
// we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88
BYTE *resp2a = (((BYTE *)BigBuf) + 1140);
int resp2aLen;
// Acknowledge select - cascade 1
BYTE *resp3 = (((BYTE *)BigBuf) + 1310);
int resp3Len;
// Acknowledge select - cascade 2
BYTE *resp3a = (((BYTE *)BigBuf) + 1480);
int resp3aLen;
// Response to a read request - not implemented atm
BYTE *resp4 = (((BYTE *)BigBuf) + 1550);
int resp4Len;
// Authenticate response - nonce
BYTE *resp5 = (((BYTE *)BigBuf) + 1720);
int resp5Len;
BYTE *receivedCmd = (BYTE *)BigBuf;
int len;
int i;
int u;
BYTE b;
// To control where we are in the protocol
int order = 0;
int lastorder;
// Just to allow some checks
int happened = 0;
int happened2 = 0;
int cmdsRecvd = 0;
BOOL fdt_indicator;
memset(receivedCmd, 0x44, 400);
// Prepare the responses of the anticollision phase
// there will be not enough time to do this at the moment the reader sends it REQA
// Answer to request
CodeIso14443aAsTag(response1, sizeof(response1));
memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax;
// Send our UID (cascade 1)
CodeIso14443aAsTag(response2, sizeof(response2));
memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax;
// Answer to select (cascade1)
CodeIso14443aAsTag(response3, sizeof(response3));
memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax;
// Send the cascade 2 2nd part of the uid
CodeIso14443aAsTag(response2a, sizeof(response2a));
memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax;
// Answer to select (cascade 2)
CodeIso14443aAsTag(response3a, sizeof(response3a));
memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax;
// Strange answer is an example of rare message size (3 bits)
CodeStrangeAnswer();
memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax;
// Authentication answer (random nonce)
CodeIso14443aAsTag(response5, sizeof(response5));
memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax;
// We need to listen to the high-frequency, peak-detected path.
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
cmdsRecvd = 0;
LED_A_ON();
for(;;) {
if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) {
DbpString("button press");
break;
}
// doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated
// Okay, look at the command now.
lastorder = order;
i = 1; // first byte transmitted
if(receivedCmd[0] == 0x26) {
// Received a REQUEST
resp = resp1; respLen = resp1Len; order = 1;
//DbpString("Hello request from reader:");
} else if(receivedCmd[0] == 0x52) {
// Received a WAKEUP
resp = resp1; respLen = resp1Len; order = 6;
// //DbpString("Wakeup request from reader:");
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision
// Received request for UID (cascade 1)
resp = resp2; respLen = resp2Len; order = 2;
// DbpString("UID (cascade 1) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision
// Received request for UID (cascade 2)
resp = resp2a; respLen = resp2aLen; order = 20;
// DbpString("UID (cascade 2) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select
// Received a SELECT
resp = resp3; respLen = resp3Len; order = 3;
// DbpString("Select (cascade 1) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select
// Received a SELECT
resp = resp3a; respLen = resp3aLen; order = 30;
// DbpString("Select (cascade 2) request from reader:");
// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0x30) {
// Received a READ
resp = resp4; respLen = resp4Len; order = 4; // Do nothing
DbpString("Read request from reader:");
DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0x50) {
// Received a HALT
resp = resp1; respLen = 0; order = 5; // Do nothing
DbpString("Reader requested we HALT!:");
} else if(receivedCmd[0] == 0x60) {
// Received an authentication request
resp = resp5; respLen = resp5Len; order = 7;
DbpString("Authenticate request from reader:");
DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else if(receivedCmd[0] == 0xE0) {
// Received a RATS request
resp = resp1; respLen = 0;order = 70;
DbpString("RATS request from reader:");
DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
} else {
// Never seen this command before
DbpString("Unknown command received from reader:");
DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]);
DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]);
DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]);
// Do not respond
resp = resp1; respLen = 0; order = 0;
}
// Count number of wakeups received after a halt
if(order == 6 && lastorder == 5) { happened++; }
// Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; }
// Look at last parity bit to determine timing of answer
if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) {
// 1236, so correction bit needed
i = 0;
}
memset(receivedCmd, 0x44, 32);
if(cmdsRecvd > 999) {
DbpString("1000 commands later...");
break;
}
else {
cmdsRecvd++;
}
if(respLen <= 0) continue;
// Modulate Manchester
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD);
AT91C_BASE_SSC->SSC_THR = 0x00;
FpgaSetupSsc();
// ### Transmit the response ###
u = 0;
b = 0x00;
fdt_indicator = FALSE;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
(void)b;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
if(i > respLen) {
b = 0x00;
u++;
} else {
b = resp[i];
i++;
}
AT91C_BASE_SSC->SSC_THR = b;
if(u > 4) {
break;
}
}
if(BUTTON_PRESS()) {
break;
}
}
}
DbpIntegers(happened, happened2, cmdsRecvd);
LED_A_OFF();
}
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait)
{
int c;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
if(*wait < 10) { *wait = 10; }
for(c = 0; c < *wait;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile DWORD r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
*samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
// To generate an arbitrary stream from reader
//
//-----------------------------------------------------------------------------
void ArbitraryFromReader(const BYTE *cmd, int parity, int len)
{
int i;
int j;
int last;
BYTE b;
ToSendReset();
// Start of Communication (Seq. Z)
Sequence(SEC_Z);
last = 0;
for(i = 0; i < len; i++) {
// Data bits
b = cmd[i];
for(j = 0; j < 8; j++) {
if(b & 1) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
b >>= 1;
}
// Predefined parity bit, the flipper flips when needed, because of flips in byte sent
if(((parity >> (len - i - 1)) & 1)) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
}
// End of Communication
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
// Sequence Y
Sequence(SEC_Y);
// Just to be sure!
Sequence(SEC_Y);
Sequence(SEC_Y);
Sequence(SEC_Y);
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Code a 7-bit command without parity bit
// This is especially for 0x26 and 0x52 (REQA and WUPA)
//-----------------------------------------------------------------------------
void ShortFrameFromReader(const BYTE *cmd)
{
int j;
int last;
BYTE b;
ToSendReset();
// Start of Communication (Seq. Z)
Sequence(SEC_Z);
last = 0;
b = cmd[0];
for(j = 0; j < 7; j++) {
if(b & 1) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
b >>= 1;
}
// End of Communication
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
// Sequence Y
Sequence(SEC_Y);
// Just to be sure!
Sequence(SEC_Y);
Sequence(SEC_Y);
Sequence(SEC_Y);
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Prepare reader command to send to FPGA
//
//-----------------------------------------------------------------------------
void CodeIso14443aAsReader(const BYTE *cmd, int len)
{
int i, j;
int last;
int oddparity;
BYTE b;
ToSendReset();
// Start of Communication (Seq. Z)
Sequence(SEC_Z);
last = 0;
for(i = 0; i < len; i++) {
// Data bits
b = cmd[i];
oddparity = 0x01;
for(j = 0; j < 8; j++) {
oddparity ^= (b & 1);
if(b & 1) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
b >>= 1;
}
// Parity bit
if(oddparity) {
// Sequence X
Sequence(SEC_X);
last = 1;
} else {
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
}
}
// End of Communication
if(last == 0) {
// Sequence Z
Sequence(SEC_Z);
}
else {
// Sequence Y
Sequence(SEC_Y);
last = 0;
}
// Sequence Y
Sequence(SEC_Y);
// Just to be sure!
Sequence(SEC_Y);
Sequence(SEC_Y);
Sequence(SEC_Y);
// Convert from last character reference to length
ToSendMax++;
}
//-----------------------------------------------------------------------------
// Wait a certain time for tag response
// If a response is captured return TRUE
// If it takes to long return FALSE
//-----------------------------------------------------------------------------
static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer
{
// buffer needs to be 512 bytes
int c;
// Set FPGA mode to "reader listen mode", no modulation (listen
// only, since we are receiving, not transmitting).
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN);
// Now get the answer from the card
Demod.output = receivedResponse;
Demod.len = 0;
Demod.state = DEMOD_UNSYNCD;
BYTE b;
*elapsed = 0;
c = 0;
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
(*elapsed)++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < 512) { c++; } else { return FALSE; }
b = (BYTE)AT91C_BASE_SSC->SSC_RHR;
if(ManchesterDecoding((b & 0xf0) >> 4)) {
*samples = ((c - 1) << 3) + 4;
return TRUE;
}
if(ManchesterDecoding(b & 0x0f)) {
*samples = c << 3;
return TRUE;
}
}
}
}
//-----------------------------------------------------------------------------
// Read an ISO 14443a tag. Send out commands and store answers.
//
//-----------------------------------------------------------------------------
void ReaderIso14443a(DWORD parameter)
{
// Anticollision
static const BYTE cmd1[] = { 0x52 }; // or 0x26
static const BYTE cmd2[] = { 0x93,0x20 };
// UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes
BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
// For Ultralight add an extra anticollission layer -> 95 20 and then 95 70
// greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall...
BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select
// 95 20
//BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
// 95 70
// cascade 2 select
BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 };
// RATS (request for answer to select)
//BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS
BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS
// Mifare AUTH
BYTE cmd7[] = { 0x60, 0x00, 0x00, 0x00 };
int reqaddr = 2024; // was 2024 - tied to other size changes
int reqsize = 60;
BYTE *req1 = (((BYTE *)BigBuf) + reqaddr);
int req1Len;
BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize);
int req2Len;
BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2));
int req3Len;
// greg added req 4 & 5 to deal with cascade 2 section
BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3));
int req4Len;
BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4));
int req5Len;
BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5));
int req6Len;
BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6));
int req7Len;
BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes
BYTE *trace = (BYTE *)BigBuf;
int traceLen = 0;
int rsamples = 0;
memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages
// setting it to 3000 causes no tag responses to be detected (2900 is ok)
// setting it to 1000 causes no tag responses to be detected
// Prepare some commands!
ShortFrameFromReader(cmd1);
memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax;
CodeIso14443aAsReader(cmd2, sizeof(cmd2));
memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax;
CodeIso14443aAsReader(cmd3, sizeof(cmd3));
memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;
CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request
memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax;
CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select
memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;
CodeIso14443aAsReader(cmd6, sizeof(cmd6));
memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax;
// Setup SSC
FpgaSetupSsc();
// Start from off (no field generated)
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
// Now give it time to spin up.
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(200);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
int samples = 0;
int tsamples = 0;
int wait = 0;
int elapsed = 0;
for(;;) {
// Send WUPA (or REQA)
TransmitFor14443a(req1, req1Len, &tsamples, &wait);
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 1;
memcpy(trace+traceLen, cmd1, 1);
traceLen += 1;
if(traceLen > TRACE_LENGTH) goto done;
while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
if(BUTTON_PRESS()) goto done;
// No answer, just continue polling
TransmitFor14443a(req1, req1Len, &tsamples, &wait);
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 1;
memcpy(trace+traceLen, cmd1, 1);
traceLen += 1;
if(traceLen > TRACE_LENGTH) goto done;
}
// Store answer in buffer
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
// Ask for card UID
TransmitFor14443a(req2, req2Len, &tsamples, &wait);
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 2;
memcpy(trace+traceLen, cmd2, 2);
traceLen += 2;
if(traceLen > TRACE_LENGTH) goto done;
if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
continue;
}
// Store answer in buffer
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
// Construct SELECT UID command
// First copy the 5 bytes (Mifare Classic) after the 93 70
memcpy(cmd3+2,receivedAnswer,5);
// Secondly compute the two CRC bytes at the end
ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]);
// Prepare the bit sequence to modulate the subcarrier
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 9;
memcpy(trace+traceLen, cmd3, 9);
traceLen += 9;
if(traceLen > TRACE_LENGTH) goto done;
CodeIso14443aAsReader(cmd3, sizeof(cmd3));
memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax;
// Select the card
TransmitFor14443a(req3, req3Len, &samples, &wait);
if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
continue;
}
// Store answer in buffer
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
// OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in
// which case we need to make a cascade 2 request and select - this is a long UID
if (receivedAnswer[0] == 0x88)
{
// Do cascade level 2 stuff
///////////////////////////////////////////////////////////////////
// First issue a '95 20' identify request
// Ask for card UID (part 2)
TransmitFor14443a(req4, req4Len, &tsamples, &wait);
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 2;
memcpy(trace+traceLen, cmd4, 2);
traceLen += 2;
if(traceLen > TRACE_LENGTH) {
DbpString("Bugging out, just popped tracelength");
goto done;}
if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
continue;
}
// Store answer in buffer
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
//////////////////////////////////////////////////////////////////
// Then Construct SELECT UID (cascasde 2) command
DbpString("Just about to copy the UID out of the cascade 2 id req");
// First copy the 5 bytes (Mifare Classic) after the 95 70
memcpy(cmd5+2,receivedAnswer,5);
// Secondly compute the two CRC bytes at the end
ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]);
// Prepare the bit sequence to modulate the subcarrier
// Store answer in buffer
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 9;
memcpy(trace+traceLen, cmd5, 9);
traceLen += 9;
if(traceLen > TRACE_LENGTH) goto done;
CodeIso14443aAsReader(cmd5, sizeof(cmd5));
memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax;
// Select the card
TransmitFor14443a(req4, req4Len, &samples, &wait);
if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
continue;
}
// Store answer in buffer
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
}
// Secondly compute the two CRC bytes at the end
ComputeCrc14443(CRC_14443_A, cmd7, 2, &cmd7[2], &cmd7[3]);
CodeIso14443aAsReader(cmd7, sizeof(cmd7));
memcpy(req7, ToSend, ToSendMax); req7Len = ToSendMax;
// Send authentication request (Mifare Classic)
TransmitFor14443a(req7, req7Len, &samples, &wait);
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0;
trace[traceLen++] = 4;
memcpy(trace+traceLen, cmd7, 4);
traceLen += 4;
if(traceLen > TRACE_LENGTH) goto done;
if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) {
rsamples++;
// We received probably a random, continue and trace!
}
else {
// Received nothing
continue;
}
// Trace the random, i'm curious
rsamples = rsamples + (samples - Demod.samples);
trace[traceLen++] = ((rsamples >> 0) & 0xff);
trace[traceLen++] = ((rsamples >> 8) & 0xff);
trace[traceLen++] = ((rsamples >> 16) & 0xff);
trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff);
trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff);
trace[traceLen++] = Demod.len;
memcpy(trace+traceLen, receivedAnswer, Demod.len);
traceLen += Demod.len;
if(traceLen > TRACE_LENGTH) goto done;
// Thats it...
}
done:
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
DbpIntegers(rsamples, 0xCC, 0xCC);
DbpString("ready..");
}