proxmark3/armsrc/fpgaloader.c
2009-08-28 00:37:28 +00:00

363 lines
13 KiB
C

//-----------------------------------------------------------------------------
// Routines to load the FPGA image, and then to configure the FPGA's major
// mode once it is configured.
//
// Jonathan Westhues, April 2006
//-----------------------------------------------------------------------------
#include <proxmark3.h>
#include "apps.h"
//-----------------------------------------------------------------------------
// Set up the Serial Peripheral Interface as master
// Used to write the FPGA config word
// May also be used to write to other SPI attached devices like an LCD
//-----------------------------------------------------------------------------
void SetupSpi(int mode)
{
// PA10 -> SPI_NCS2 chip select (LCD)
// PA11 -> SPI_NCS0 chip select (FPGA)
// PA12 -> SPI_MISO Master-In Slave-Out
// PA13 -> SPI_MOSI Master-Out Slave-In
// PA14 -> SPI_SPCK Serial Clock
// Disable PIO control of the following pins, allows use by the SPI peripheral
PIO_DISABLE = (1 << GPIO_NCS0) |
(1 << GPIO_NCS2) |
(1 << GPIO_MISO) |
(1 << GPIO_MOSI) |
(1 << GPIO_SPCK);
PIO_PERIPHERAL_A_SEL = (1 << GPIO_NCS0) |
(1 << GPIO_MISO) |
(1 << GPIO_MOSI) |
(1 << GPIO_SPCK);
PIO_PERIPHERAL_B_SEL = (1 << GPIO_NCS2);
//enable the SPI Peripheral clock
PMC_PERIPHERAL_CLK_ENABLE = (1<<PERIPH_SPI);
// Enable SPI
SPI_CONTROL = SPI_CONTROL_ENABLE;
switch (mode) {
case SPI_FPGA_MODE:
SPI_MODE =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
SPI_FOR_CHIPSEL_0 =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 8 << 4) | // Bits per Transfer (16 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
case SPI_LCD_MODE:
SPI_MODE =
( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods)
(11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10)
( 0 << 7) | // Local Loopback Disabled
( 1 << 4) | // Mode Fault Detection disabled
( 0 << 2) | // Chip selects connected directly to peripheral
( 0 << 1) | // Fixed Peripheral Select
( 1 << 0); // Master Mode
SPI_FOR_CHIPSEL_2 =
( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods)
( 1 << 16) | // Delay Before SPCK (1 MCK period)
( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud
( 1 << 4) | // Bits per Transfer (9 bits)
( 0 << 3) | // Chip Select inactive after transfer
( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge
( 0 << 0); // Clock Polarity inactive state is logic 0
break;
default: // Disable SPI
SPI_CONTROL = SPI_CONTROL_DISABLE;
break;
}
}
//-----------------------------------------------------------------------------
// Set up the synchronous serial port, with the one set of options that we
// always use when we are talking to the FPGA. Both RX and TX are enabled.
//-----------------------------------------------------------------------------
void FpgaSetupSsc(void)
{
// First configure the GPIOs, and get ourselves a clock.
PIO_PERIPHERAL_A_SEL = (1 << GPIO_SSC_FRAME) |
(1 << GPIO_SSC_DIN) |
(1 << GPIO_SSC_DOUT) |
(1 << GPIO_SSC_CLK);
PIO_DISABLE = (1 << GPIO_SSC_DOUT);
PMC_PERIPHERAL_CLK_ENABLE = (1 << PERIPH_SSC);
// Now set up the SSC proper, starting from a known state.
SSC_CONTROL = SSC_CONTROL_RESET;
// RX clock comes from TX clock, RX starts when TX starts, data changes
// on RX clock rising edge, sampled on falling edge
SSC_RECEIVE_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
// 8 bits per transfer, no loopback, MSB first, 1 transfer per sync
// pulse, no output sync, start on positive-going edge of sync
SSC_RECEIVE_FRAME_MODE = SSC_FRAME_MODE_BITS_IN_WORD(8) |
SSC_FRAME_MODE_MSB_FIRST | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
// clock comes from TK pin, no clock output, outputs change on falling
// edge of TK, start on rising edge of TF
SSC_TRANSMIT_CLOCK_MODE = SSC_CLOCK_MODE_SELECT(2) |
SSC_CLOCK_MODE_START(5);
// tx framing is the same as the rx framing
SSC_TRANSMIT_FRAME_MODE = SSC_RECEIVE_FRAME_MODE;
SSC_CONTROL = SSC_CONTROL_RX_ENABLE | SSC_CONTROL_TX_ENABLE;
}
//-----------------------------------------------------------------------------
// Set up DMA to receive samples from the FPGA. We will use the PDC, with
// a single buffer as a circular buffer (so that we just chain back to
// ourselves, not to another buffer). The stuff to manipulate those buffers
// is in apps.h, because it should be inlined, for speed.
//-----------------------------------------------------------------------------
void FpgaSetupSscDma(BYTE *buf, int len)
{
PDC_RX_POINTER(SSC_BASE) = (DWORD)buf;
PDC_RX_COUNTER(SSC_BASE) = len;
PDC_RX_NEXT_POINTER(SSC_BASE) = (DWORD)buf;
PDC_RX_NEXT_COUNTER(SSC_BASE) = len;
PDC_CONTROL(SSC_BASE) = PDC_RX_ENABLE;
}
// Download the fpga image starting at FpgaImage and with length FpgaImageLen DWORDs (e.g. 4 bytes)
// If bytereversal is set: reverse the byte order in each 4-byte word
static void DownloadFPGA(const DWORD *FpgaImage, DWORD FpgaImageLen, int bytereversal)
{
int i, j;
PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_ON);
PIO_ENABLE = (1 << GPIO_FPGA_ON);
PIO_OUTPUT_DATA_SET = (1 << GPIO_FPGA_ON);
SpinDelay(50);
LED_D_ON();
HIGH(GPIO_FPGA_NPROGRAM);
LOW(GPIO_FPGA_CCLK);
LOW(GPIO_FPGA_DIN);
PIO_OUTPUT_ENABLE = (1 << GPIO_FPGA_NPROGRAM) |
(1 << GPIO_FPGA_CCLK) |
(1 << GPIO_FPGA_DIN);
SpinDelay(1);
LOW(GPIO_FPGA_NPROGRAM);
SpinDelay(50);
HIGH(GPIO_FPGA_NPROGRAM);
for(i = 0; i < FpgaImageLen; i++) {
DWORD v = FpgaImage[i];
unsigned char w;
for(j = 0; j < 4; j++) {
if(!bytereversal)
w = v >>(j*8);
else
w = v >>((3-j)*8);
#define SEND_BIT(x) { if(w & (1<<x) ) HIGH(GPIO_FPGA_DIN); else LOW(GPIO_FPGA_DIN); HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); }
SEND_BIT(7);
SEND_BIT(6);
SEND_BIT(5);
SEND_BIT(4);
SEND_BIT(3);
SEND_BIT(2);
SEND_BIT(1);
SEND_BIT(0);
}
}
LED_D_OFF();
}
static char *bitparse_headers_start;
static char *bitparse_bitstream_end;
static int bitparse_initialized;
/* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence
* 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01
* After that the format is 1 byte section type (ASCII character), 2 byte length
* (big endian), <length> bytes content. Except for section 'e' which has 4 bytes
* length.
*/
static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01};
static int bitparse_init(void * start_address, void *end_address)
{
bitparse_initialized = 0;
if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) {
return 0; /* Not matched */
} else {
bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header);
bitparse_bitstream_end= (char*)end_address;
bitparse_initialized = 1;
return 1;
}
}
int bitparse_find_section(char section_name, void **section_start, unsigned int *section_length)
{
char *pos = bitparse_headers_start;
int result = 0;
if(!bitparse_initialized) return 0;
while(pos < bitparse_bitstream_end) {
char current_name = *pos++;
unsigned int current_length = 0;
if(current_name < 'a' || current_name > 'e') {
/* Strange section name, abort */
break;
}
current_length = 0;
switch(current_name) {
case 'e':
/* Four byte length field */
current_length += (*pos++) << 24;
current_length += (*pos++) << 16;
default: /* Fall through, two byte length field */
current_length += (*pos++) << 8;
current_length += (*pos++) << 0;
}
if(current_name != 'e' && current_length > 255) {
/* Maybe a parse error */
break;
}
if(current_name == section_name) {
/* Found it */
*section_start = pos;
*section_length = current_length;
result = 1;
break;
}
pos += current_length; /* Skip section */
}
return result;
}
//-----------------------------------------------------------------------------
// Find out which FPGA image format is stored in flash, then call DownloadFPGA
// with the right parameters to download the image
//-----------------------------------------------------------------------------
extern char _binary_fpga_bit_start, _binary_fpga_bit_end;
void FpgaDownloadAndGo(void)
{
/* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start
*/
if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) {
/* Successfully initialized the .bit parser. Find the 'e' section and
* send its contents to the FPGA.
*/
void *bitstream_start;
unsigned int bitstream_length;
if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) {
DownloadFPGA((DWORD *)bitstream_start, bitstream_length/4, 0);
return; /* All done */
}
}
/* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF
* 0xAA995566 at address 0x2000. This is raw bitstream with a size of 336,768 bits
* = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD
* is still to be transmitted in MSBit first order. Set the invert flag to indicate
* that the DownloadFPGA function should invert every 4 byte sequence when doing
* the bytewise download.
*/
if( *(DWORD*)0x2000 == 0xFFFFFFFF && *(DWORD*)0x2004 == 0xAA995566 )
DownloadFPGA((DWORD *)0x2000, 10524, 1);
}
void FpgaGatherVersion(char *dst, int len)
{
char *fpga_info;
unsigned int fpga_info_len;
dst[0] = 0;
if(!bitparse_find_section('e', (void**)&fpga_info, &fpga_info_len)) {
strncat(dst, "FPGA image: legacy image without version information", len-1);
} else {
strncat(dst, "FPGA image built", len-1);
/* USB packets only have 48 bytes data payload, so be terse */
#if 0
if(bitparse_find_section('a', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " from ", len-1);
strncat(dst, fpga_info, len-1);
}
if(bitparse_find_section('b', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " for ", len-1);
strncat(dst, fpga_info, len-1);
}
#endif
if(bitparse_find_section('c', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " on ", len-1);
strncat(dst, fpga_info, len-1);
}
if(bitparse_find_section('d', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) {
strncat(dst, " at ", len-1);
strncat(dst, fpga_info, len-1);
}
}
}
//-----------------------------------------------------------------------------
// Send a 16 bit command/data pair to the FPGA.
// The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
// where C is the 4 bit command and D is the 12 bit data
//-----------------------------------------------------------------------------
void FpgaSendCommand(WORD cmd, WORD v)
{
SetupSpi(SPI_FPGA_MODE);
while ((SPI_STATUS & SPI_STATUS_TX_EMPTY) == 0); // wait for the transfer to complete
SPI_TX_DATA = SPI_CONTROL_LAST_TRANSFER | cmd | v; // send the data
}
//-----------------------------------------------------------------------------
// Write the FPGA setup word (that determines what mode the logic is in, read
// vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to
// avoid changing this function's occurence everywhere in the source code.
//-----------------------------------------------------------------------------
void FpgaWriteConfWord(BYTE v)
{
FpgaSendCommand(FPGA_CMD_SET_CONFREG, v);
}
//-----------------------------------------------------------------------------
// Set up the CMOS switches that mux the ADC: four switches, independently
// closable, but should only close one at a time. Not an FPGA thing, but
// the samples from the ADC always flow through the FPGA.
//-----------------------------------------------------------------------------
void SetAdcMuxFor(int whichGpio)
{
PIO_OUTPUT_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |
(1 << GPIO_MUXSEL_LOPKD) |
(1 << GPIO_MUXSEL_LORAW) |
(1 << GPIO_MUXSEL_HIRAW);
PIO_ENABLE = (1 << GPIO_MUXSEL_HIPKD) |
(1 << GPIO_MUXSEL_LOPKD) |
(1 << GPIO_MUXSEL_LORAW) |
(1 << GPIO_MUXSEL_HIRAW);
LOW(GPIO_MUXSEL_HIPKD);
LOW(GPIO_MUXSEL_HIRAW);
LOW(GPIO_MUXSEL_LORAW);
LOW(GPIO_MUXSEL_LOPKD);
HIGH(whichGpio);
}