proxmark3/client/cmdhf.c
iceman1001 5ee701292f Step 2 - Ultralight / Ultralight-C
With this the Pentura Labs / Midnitsnakes's original ultralight / ultralight-c implementation is enhanced and move to its own file. cmdhfmfu.c
2015-01-20 21:23:04 +01:00

621 lines
19 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include "proxmark3.h"
#include "graph.h"
#include "ui.h"
#include "cmdparser.h"
#include "cmdhf.h"
#include "cmdhf14a.h"
#include "cmdhf14b.h"
#include "cmdhf15.h"
#include "cmdhfepa.h"
#include "cmdhflegic.h"
#include "cmdhficlass.h"
#include "cmdhfmf.h"
#include "cmdhfmfu.h"
static int CmdHelp(const char *Cmd);
int CmdHFTune(const char *Cmd)
{
UsbCommand c={CMD_MEASURE_ANTENNA_TUNING_HF};
SendCommand(&c);
return 0;
}
// for the time being. Need better Bigbuf handling.
#define TRACE_SIZE 3000
//The following data is taken from http://www.proxmark.org/forum/viewtopic.php?pid=13501#p13501
/*
ISO14443A (usually NFC tags)
26 (7bits) = REQA
30 = Read (usage: 30+1byte block number+2bytes ISO14443A-CRC - answer: 16bytes)
A2 = Write (usage: A2+1byte block number+4bytes data+2bytes ISO14443A-CRC - answer: 0A [ACK] or 00 [NAK])
52 (7bits) = WUPA (usage: 52(7bits) - answer: 2bytes ATQA)
93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
95 20 = Anticollision of cascade level2
95 70 = Select of cascade level2
50 00 = Halt (usage: 5000+2bytes ISO14443A-CRC - no answer from card)
Mifare
60 = Authenticate with KeyA
61 = Authenticate with KeyB
40 (7bits) = Used to put Chinese Changeable UID cards in special mode (must be followed by 43 (8bits) - answer: 0A)
C0 = Decrement
C1 = Increment
C2 = Restore
B0 = Transfer
Ultralight C
A0 = Compatibility Write (to accomodate MIFARE commands)
1A = Step1 Authenticate
AF = Step2 Authenticate
ISO14443B
05 = REQB
1D = ATTRIB
50 = HALT
SRIX4K (tag does not respond to 05)
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
ISO15693
MANDATORY COMMANDS (all ISO15693 tags must support those)
01 = Inventory (usage: 260100+2bytes ISO15693-CRC - answer: 12bytes)
02 = Stay Quiet
OPTIONAL COMMANDS (not all tags support them)
20 = Read Block (usage: 0220+1byte block number+2bytes ISO15693-CRC - answer: 4bytes)
21 = Write Block (usage: 0221+1byte block number+4bytes data+2bytes ISO15693-CRC - answer: 4bytes)
22 = Lock Block
23 = Read Multiple Blocks (usage: 0223+1byte 1st block to read+1byte last block to read+2bytes ISO15693-CRC)
25 = Select
26 = Reset to Ready
27 = Write AFI
28 = Lock AFI
29 = Write DSFID
2A = Lock DSFID
2B = Get_System_Info (usage: 022B+2bytes ISO15693-CRC - answer: 14 or more bytes)
2C = Read Multiple Block Security Status (usage: 022C+1byte 1st block security to read+1byte last block security to read+2bytes ISO15693-CRC)
EM Microelectronic CUSTOM COMMANDS
A5 = Active EAS (followed by 1byte IC Manufacturer code+1byte EAS type)
A7 = Write EAS ID (followed by 1byte IC Manufacturer code+2bytes EAS value)
B8 = Get Protection Status for a specific block (followed by 1byte IC Manufacturer code+1byte block number+1byte of how many blocks after the previous is needed the info)
E4 = Login (followed by 1byte IC Manufacturer code+4bytes password)
NXP/Philips CUSTOM COMMANDS
A0 = Inventory Read
A1 = Fast Inventory Read
A2 = Set EAS
A3 = Reset EAS
A4 = Lock EAS
A5 = EAS Alarm
A6 = Password Protect EAS
A7 = Write EAS ID
A8 = Read EPC
B0 = Inventory Page Read
B1 = Fast Inventory Page Read
B2 = Get Random Number
B3 = Set Password
B4 = Write Password
B5 = Lock Password
B6 = Bit Password Protection
B7 = Lock Page Protection Condition
B8 = Get Multiple Block Protection Status
B9 = Destroy SLI
BA = Enable Privacy
BB = 64bit Password Protection
40 = Long Range CMD (Standard ISO/TR7003:1990)
*/
#define ICLASS_CMD_ACTALL 0x0A
#define ICLASS_CMD_READ_OR_IDENTIFY 0x0C
#define ICLASS_CMD_SELECT 0x81
#define ICLASS_CMD_PAGESEL 0x84
#define ICLASS_CMD_READCHECK_KD 0x88
#define ICLASS_CMD_READCHECK_KC 0x18
#define ICLASS_CMD_CHECK 0x05
#define ICLASS_CMD_DETECT 0x0F
#define ICLASS_CMD_HALT 0x00
#define ICLASS_CMD_UPDATE 0x87
#define ICLASS_CMD_ACT 0x8E
#define ICLASS_CMD_READ4 0x06
#define ISO14443A_CMD_REQA 0x26
#define ISO14443A_CMD_READBLOCK 0x30
#define ISO14443A_CMD_WUPA 0x52
#define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93
#define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95
#define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ?
#define ISO14443A_CMD_HALT 0x50
#define ISO14443A_CMD_RATS 0xE0
#define MIFARE_AUTH_KEYA 0x60
#define MIFARE_AUTH_KEYB 0x61
#define MIFARE_MAGICMODE 0x40
#define MIFARE_CMD_INC 0xC0
#define MIFARE_CMD_DEC 0xC1
#define MIFARE_CMD_RESTORE 0xC2
#define MIFARE_CMD_TRANSFER 0xB0
#define MIFARE_ULC_WRITE 0xA0
#define MIFARE_ULC_AUTH_1 0x1A
#define MIFARE_ULC_AUTH_2 0xAF
#define ISO14443B_REQB 0x05
#define ISO14443B_ATTRIB 0x1D
#define ISO14443B_HALT 0x50
//First byte is 26
#define ISO15693_INVENTORY 0x01
#define ISO15693_STAYQUIET 0x02
//First byte is 02
#define ISO15693_READBLOCK 0x20
#define ISO15693_WRITEBLOCK 0x21
#define ISO15693_LOCKBLOCK 0x22
#define ISO15693_READ_MULTI_BLOCK 0x23
#define ISO15693_SELECT 0x25
#define ISO15693_RESET_TO_READY 0x26
#define ISO15693_WRITE_AFI 0x27
#define ISO15693_LOCK_AFI 0x28
#define ISO15693_WRITE_DSFID 0x29
#define ISO15693_LOCK_DSFID 0x2A
#define ISO15693_GET_SYSTEM_INFO 0x2B
#define ISO15693_READ_MULTI_SECSTATUS 0x2C
#define ISO_14443A 0
#define ICLASS 1
#define ISO_14443B 2
void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
switch(cmd[0])
{
case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT:{
// 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
// 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
if(cmd[2] == 0x70)
{
snprintf(exp,size,"SELECT_UID"); break;
}else
{
snprintf(exp,size,"ANTICOLL"); break;
}
}
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{
//95 20 = Anticollision of cascade level2
//95 70 = Select of cascade level2
if(cmd[2] == 0x70)
{
snprintf(exp,size,"SELECT_UID-2"); break;
}else
{
snprintf(exp,size,"ANTICOLL-2"); break;
}
}
case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break;
case ISO14443A_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break;
case ISO14443A_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break;
case ISO14443A_CMD_HALT: snprintf(exp,size,"HALT"); break;
case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break;
case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break;
case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break;
case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break;
case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break;
case MIFARE_AUTH_KEYA: snprintf(exp,size,"AUTH-A"); break;
case MIFARE_AUTH_KEYB: snprintf(exp,size,"AUTH-B"); break;
case MIFARE_MAGICMODE: snprintf(exp,size,"MAGIC"); break;
default: snprintf(exp,size,"?"); break;
}
return;
}
void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
switch(cmd[0])
{
case ICLASS_CMD_ACTALL: snprintf(exp,size,"ACTALL"); break;
case ICLASS_CMD_READ_OR_IDENTIFY:{
if(cmdsize > 1){
snprintf(exp,size,"READ(%d)",cmd[1]);
}else{
snprintf(exp,size,"IDENTIFY");
}
break;
}
case ICLASS_CMD_SELECT: snprintf(exp,size,"SELECT"); break;
case ICLASS_CMD_PAGESEL: snprintf(exp,size,"PAGESEL(%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KC:snprintf(exp,size,"READCHECK[Kc](%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KD:snprintf(exp,size,"READCHECK[Kd](%d)", cmd[1]); break;
case ICLASS_CMD_CHECK: snprintf(exp,size,"CHECK"); break;
case ICLASS_CMD_DETECT: snprintf(exp,size,"DETECT"); break;
case ICLASS_CMD_HALT: snprintf(exp,size,"HALT"); break;
case ICLASS_CMD_UPDATE: snprintf(exp,size,"UPDATE(%d)",cmd[1]); break;
case ICLASS_CMD_ACT: snprintf(exp,size,"ACT"); break;
case ICLASS_CMD_READ4: snprintf(exp,size,"READ4(%d)",cmd[1]); break;
default: snprintf(exp,size,"?"); break;
}
return;
}
void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
if(cmd[0] == 0x26)
{
switch(cmd[1]){
case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");break;
case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");break;
default: snprintf(exp,size,"?"); break;
}
}else if(cmd[0] == 0x02)
{
switch(cmd[1])
{
case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");break;
case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");break;
case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");break;
case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");break;
case ISO15693_SELECT :snprintf(exp, size, "SELECT");break;
case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");break;
case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");break;
case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");break;
case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");break;
case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");break;
case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");break;
case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");break;
default: snprintf(exp,size,"?"); break;
}
}
}
void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize)
{
switch(cmd[0]){
case ISO14443B_REQB : snprintf(exp,size,"REQB");break;
case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break;
case ISO14443B_HALT : snprintf(exp,size,"HALT");break;
default: snprintf(exp,size ,"?");break;
}
}
/**
* @brief iso14443B_CRC_Ok Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iso14443B_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
uint8_t b1,b2;
if(len <= 2) return 2;
ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2);
if(b1 != data[len-2] || b2 != data[len-1]) {
return 0;
}
return 1;
}
/**
* @brief iclass_CRC_Ok Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iclass_CRC_check(bool isResponse, uint8_t* data, uint8_t len)
{
if(len < 4) return 2;//CRC commands (and responses) are all at least 4 bytes
uint8_t b1, b2;
if(!isResponse)//Commands to tag
{
/**
These commands should have CRC. Total length leftmost
4 READ
4 READ4
12 UPDATE - unsecured, ends with CRC16
14 UPDATE - secured, ends with signature instead
4 PAGESEL
**/
if(len == 4 || len == 12)//Covers three of them
{
//Don't include the command byte
ComputeCrc14443(CRC_ICLASS, (data+1), len-3, &b1, &b2);
return b1 == data[len -2] && b2 == data[len-1];
}
return 2;
}else{
/**
These tag responses should have CRC. Total length leftmost
10 READ data[8] crc[2]
34 READ4 data[32]crc[2]
10 UPDATE data[8] crc[2]
10 SELECT csn[8] crc[2]
10 IDENTIFY asnb[8] crc[2]
10 PAGESEL block1[8] crc[2]
10 DETECT csn[8] crc[2]
These should not
4 CHECK chip_response[4]
8 READCHECK data[8]
1 ACTALL sof[1]
1 ACT sof[1]
In conclusion, without looking at the command; any response
of length 10 or 34 should have CRC
**/
if(len != 10 && len != 34) return true;
ComputeCrc14443(CRC_ICLASS, data, len-2, &b1, &b2);
return b1 == data[len -2] && b2 == data[len-1];
}
}
uint16_t printTraceLine(uint16_t tracepos, uint8_t* trace, uint8_t protocol, bool showWaitCycles)
{
bool isResponse;
uint16_t duration, data_len,parity_len;
uint32_t timestamp, first_timestamp, EndOfTransmissionTimestamp;
char explanation[30] = {0};
first_timestamp = *((uint32_t *)(trace));
timestamp = *((uint32_t *)(trace + tracepos));
// Break and stick with current result if buffer was not completely full
if (timestamp == 0x44444444) return TRACE_SIZE;
tracepos += 4;
duration = *((uint16_t *)(trace + tracepos));
tracepos += 2;
data_len = *((uint16_t *)(trace + tracepos));
tracepos += 2;
if (data_len & 0x8000) {
data_len &= 0x7fff;
isResponse = true;
} else {
isResponse = false;
}
parity_len = (data_len-1)/8 + 1;
if (tracepos + data_len + parity_len >= TRACE_SIZE) {
return TRACE_SIZE;
}
uint8_t *frame = trace + tracepos;
tracepos += data_len;
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
//--- Draw the data column
char line[16][110];
for (int j = 0; j < data_len; j++) {
int oddparity = 0x01;
int k;
for (k=0 ; k<8 ; k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]);
} else {
sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]);
}
}
//--- Draw the CRC column
uint8_t crcStatus = 2;
if (data_len > 2) {
uint8_t b1, b2;
if(protocol == ICLASS)
{
crcStatus = iclass_CRC_check(isResponse, frame, data_len);
}else if (protocol == ISO_14443B)
{
crcStatus = iso14443B_CRC_check(isResponse, frame, data_len);
}
else if (protocol == ISO_14443A){//Iso 14443a
ComputeCrc14443(CRC_14443_A, frame, data_len-2, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
if(!(isResponse & (data_len < 6)))
{
crcStatus = 0;
}
}
}
}
//0 CRC-command, CRC not ok
//1 CRC-command, CRC ok
//2 Not crc-command
char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " "));
EndOfTransmissionTimestamp = timestamp + duration;
if(!isResponse)
{
if(protocol == ICLASS)
annotateIclass(explanation,sizeof(explanation),frame,data_len);
else if (protocol == ISO_14443A)
annotateIso14443a(explanation,sizeof(explanation),frame,data_len);
else if(protocol == ISO_14443B)
annotateIso14443b(explanation,sizeof(explanation),frame,data_len);
}
int num_lines = (data_len - 1)/16 + 1;
for (int j = 0; j < num_lines; j++) {
if (j == 0) {
PrintAndLog(" %9d | %9d | %s | %-64s| %s| %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"),
line[j],
(j == num_lines-1) ? crc : " ",
(j == num_lines-1) ? explanation : "");
} else {
PrintAndLog(" | | | %-64s| %s| %s",
line[j],
(j == num_lines-1)?crc:" ",
(j == num_lines-1) ? explanation : "");
}
}
bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000;
if (showWaitCycles && !isResponse && next_isResponse) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
if (next_timestamp != 0x44444444) {
PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
(next_timestamp - first_timestamp),
" ",
(next_timestamp - EndOfTransmissionTimestamp));
}
}
return tracepos;
}
int CmdHFList(const char *Cmd)
{
bool showWaitCycles = false;
char type[40] = {0};
int tlen = param_getstr(Cmd,0,type);
char param = param_getchar(Cmd, 1);
bool errors = false;
uint8_t protocol = 0;
//Validate params
if(tlen == 0)
{
errors = true;
}
if(param == 'h' || (param !=0 && param != 'f'))
{
errors = true;
}
if(!errors)
{
if(strcmp(type, "iclass") == 0)
{
protocol = ICLASS;
}else if(strcmp(type, "14a") == 0)
{
protocol = ISO_14443A;
}
else if(strcmp(type, "14b") == 0)
{
protocol = ISO_14443B;
}else if(strcmp(type,"raw")== 0)
{
protocol = -1;//No crc, no annotations
}else{
errors = true;
}
}
if (errors) {
PrintAndLog("List protocol data in trace buffer.");
PrintAndLog("Usage: hf list [14a|14b|iclass] [f]");
PrintAndLog(" 14a - interpret data as iso14443a communications");
PrintAndLog(" 14b - interpret data as iso14443b communications");
PrintAndLog(" iclass - interpret data as iclass communications");
PrintAndLog(" raw - just show raw data");
PrintAndLog(" f - show frame delay times as well");
PrintAndLog("");
PrintAndLog("example: hf list 14a f");
PrintAndLog("example: hf list iclass");
return 0;
}
if (param == 'f') {
showWaitCycles = true;
}
uint8_t trace[TRACE_SIZE];
uint16_t tracepos = 0;
GetFromBigBuf(trace, TRACE_SIZE, 0);
WaitForResponse(CMD_ACK, NULL);
PrintAndLog("Recorded Activity");
PrintAndLog("");
PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("iClass - Timings are not as accurate");
PrintAndLog("");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC | Annotation |");
PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------|-----|--------------------|");
while(tracepos < TRACE_SIZE)
{
tracepos = printTraceLine(tracepos, trace, protocol, showWaitCycles);
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"14a", CmdHF14A, 1, "{ ISO14443A RFIDs... }"},
{"14b", CmdHF14B, 1, "{ ISO14443B RFIDs... }"},
{"15", CmdHF15, 1, "{ ISO15693 RFIDs... }"},
{"epa", CmdHFEPA, 1, "{ German Identification Card... }"},
{"legic", CmdHFLegic, 0, "{ LEGIC RFIDs... }"},
{"iclass", CmdHFiClass, 1, "{ ICLASS RFIDs... }"},
{"mf", CmdHFMF, 1, "{ MIFARE RFIDs... }"},
{"mfu", CmdHFMFUltra, 1, "{ MIFARE Ultralight RFIDs... }"},
{"tune", CmdHFTune, 0, "Continuously measure HF antenna tuning"},
{"list", CmdHFList, 1, "List protocol data in trace buffer"},
{NULL, NULL, 0, NULL}
};
int CmdHF(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}