proxmark3/client/cmdhflist.c
2018-02-22 20:49:39 +08:00

821 lines
No EOL
28 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Merlok - 2017
// iceman 2018
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Command: hf mf list. It shows data from arm buffer.
//-----------------------------------------------------------------------------
#include "cmdhflist.h"
enum MifareAuthSeq {
masNone,
masNt,
masNrAr,
masAt,
masAuthComplete,
masFirstData,
masData,
masError,
};
static enum MifareAuthSeq MifareAuthState;
static TAuthData AuthData;
void ClearAuthData() {
AuthData.uid = 0;
AuthData.nt = 0;
AuthData.first_auth = true;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
}
/**
* @brief iso14443A_CRC_check Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iso14443A_CRC_check(bool isResponse, uint8_t* d, uint8_t n) {
if (n < 3) return 2;
if (isResponse & (n < 6)) return 2;
return check_crc(CRC_14443_A, d, n);
}
uint8_t mifare_CRC_check(bool isResponse, uint8_t* data, uint8_t len) {
switch(MifareAuthState) {
case masNone:
case masError:
return iso14443A_CRC_check(isResponse, data, len);
default:
return 2;
}
}
/**
* @brief iso14443B_CRC_check Checks CRC
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iso14443B_CRC_check(uint8_t* d, uint8_t n) {
return check_crc(CRC_14443_B, d, n);
}
uint8_t iso15693_CRC_check(uint8_t* d, uint8_t n) {
return check_crc(CRC_15693, d, n);
}
/**
* @brief iclass_CRC_Ok Checks CRC in command or response
* @param isResponse
* @param data
* @param len
* @return 0 : CRC-command, CRC not ok
* 1 : CRC-command, CRC ok
* 2 : Not crc-command
*/
uint8_t iclass_CRC_check(bool isResponse, uint8_t* d, uint8_t n) {
//CRC commands (and responses) are all at least 4 bytes
if (n < 4) return 2;
//Commands to tag
//Don't include the command byte
if (!isResponse) {
/**
These commands should have CRC. Total length leftmost
4 READ
4 READ4
12 UPDATE - unsecured, ends with CRC16
14 UPDATE - secured, ends with signature instead
4 PAGESEL
**/
//Covers three of them
if (n == 4 || n == 12) {
return check_crc( CRC_ICLASS, d+1, n-1);
}
return 2;
}
/**
These tag responses should have CRC. Total length leftmost
10 READ data[8] crc[2]
34 READ4 data[32]crc[2]
10 UPDATE data[8] crc[2]
10 SELECT csn[8] crc[2]
10 IDENTIFY asnb[8] crc[2]
10 PAGESEL block1[8] crc[2]
10 DETECT csn[8] crc[2]
These should not
4 CHECK chip_response[4]
8 READCHECK data[8]
1 ACTALL sof[1]
1 ACT sof[1]
In conclusion, without looking at the command; any response
of length 10 or 34 should have CRC
**/
if (n != 10 && n != 34) return true;
return check_crc( CRC_ICLASS, d, n);
}
int applyIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch ( cmd[0] ){
case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break;
case ISO14443A_CMD_ANTICOLL_OR_SELECT:{
// 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor)
// 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK)
if(cmd[1] == 0x70)
snprintf(exp,size,"SELECT_UID");
else
snprintf(exp,size,"ANTICOLL");
break;
}
case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{
//95 20 = Anticollision of cascade level2
//95 70 = Select of cascade level2
if(cmd[2] == 0x70)
snprintf(exp,size,"SELECT_UID-2");
else
snprintf(exp,size,"ANTICOLL-2");
break;
}
case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break;
case ISO14443A_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break;
case ISO14443A_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break;
case ISO14443A_CMD_HALT:
snprintf(exp,size,"HALT");
MifareAuthState = masNone;
break;
case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break;
case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break;
case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break;
case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break;
case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break;
case MIFARE_AUTH_KEYA:{
if ( cmdsize > 3) {
snprintf(exp,size,"AUTH-A(%d)",cmd[1]);
MifareAuthState = masNt;
} else {
// case MIFARE_ULEV1_VERSION : both 0x60.
snprintf(exp,size,"EV1 VERSION");
}
break;
}
case MIFARE_AUTH_KEYB: {
MifareAuthState = masNt;
snprintf(exp,size,"AUTH-B(%d)",cmd[1]);
break;
}
case MIFARE_MAGICWUPC1: snprintf(exp,size,"MAGIC WUPC1"); break;
case MIFARE_MAGICWUPC2: snprintf(exp,size,"MAGIC WUPC2"); break;
case MIFARE_MAGICWIPEC: snprintf(exp,size,"MAGIC WIPEC"); break;
case MIFARE_ULC_AUTH_1 : snprintf(exp,size,"AUTH "); break;
case MIFARE_ULC_AUTH_2 : snprintf(exp,size,"AUTH_ANSW"); break;
case MIFARE_ULEV1_AUTH :
if ( cmdsize == 7 )
snprintf(exp,size,"PWD-AUTH KEY: 0x%02x%02x%02x%02x", cmd[1], cmd[2], cmd[3], cmd[4] );
else
snprintf(exp,size,"PWD-AUTH");
break;
case MIFARE_ULEV1_FASTREAD : {
if ( cmdsize >=3 && cmd[2] <= 0xE6)
snprintf(exp,size,"READ RANGE (%d-%d)",cmd[1],cmd[2]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULC_WRITE : {
if ( cmd[1] < 0x21 )
snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_READ_CNT :{
if ( cmd[1] < 5 )
snprintf(exp,size,"READ CNT(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_INCR_CNT : {
if ( cmd[1] < 5 )
snprintf(exp,size,"INCR(%d)",cmd[1]);
else
snprintf(exp,size,"?");
break;
}
case MIFARE_ULEV1_READSIG : snprintf(exp,size,"READ_SIG"); break;
case MIFARE_ULEV1_CHECKTEAR : snprintf(exp,size,"CHK_TEARING(%d)",cmd[1]); break;
case MIFARE_ULEV1_VCSL : snprintf(exp,size,"VCSL"); break;
default: return 0;
}
return 1;
}
void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
applyIso14443a(exp, size, cmd, cmdsize);
}
void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch (cmd[0]) {
case ICLASS_CMD_ACTALL: snprintf(exp,size,"ACTALL"); break;
case ICLASS_CMD_READ_OR_IDENTIFY:{
if(cmdsize > 1){
snprintf(exp,size,"READ(%d)",cmd[1]);
}else{
snprintf(exp,size,"IDENTIFY");
}
break;
}
case ICLASS_CMD_SELECT: snprintf(exp,size,"SELECT"); break;
case ICLASS_CMD_PAGESEL: snprintf(exp,size,"PAGESEL(%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KC:snprintf(exp,size,"READCHECK[Kc](%d)", cmd[1]); break;
case ICLASS_CMD_READCHECK_KD:snprintf(exp,size,"READCHECK[Kd](%d)", cmd[1]); break;
case ICLASS_CMD_CHECK: snprintf(exp,size,"CHECK"); break;
case ICLASS_CMD_DETECT: snprintf(exp,size,"DETECT"); break;
case ICLASS_CMD_HALT: snprintf(exp,size,"HALT"); break;
case ICLASS_CMD_UPDATE: snprintf(exp,size,"UPDATE(%d)",cmd[1]); break;
case ICLASS_CMD_ACT: snprintf(exp,size,"ACT"); break;
case ICLASS_CMD_READ4: snprintf(exp,size,"READ4(%d)",cmd[1]); break;
default: snprintf(exp,size,"?"); break;
}
return;
}
void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch(cmd[1]){
case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");return;
case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");return;
case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");return;
case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");return;
case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");return;
case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");return;
case ISO15693_SELECT :snprintf(exp, size, "SELECT");return;
case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");return;
case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");return;
case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");return;
case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");return;
case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");return;
case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");return;
case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");return;
default: break;
}
if ( cmd[1] >= 0x2D && cmd[1] <= 0x9F ) snprintf(exp, size, "Optional RFU");
else if ( cmd[1] >= 0xA0 && cmd[1] <= 0xDF ) snprintf(exp, size, "Cust IC MFG dependent");
else if ( cmd[1] >= 0xE0 && cmd[1] <= 0xFF ) snprintf(exp, size, "Proprietary IC MFG dependent");
else
snprintf(exp, size, "?");
}
void annotateTopaz(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){
switch(cmd[0]) {
case TOPAZ_REQA :snprintf(exp, size, "REQA");break;
case TOPAZ_WUPA :snprintf(exp, size, "WUPA");break;
case TOPAZ_RID :snprintf(exp, size, "RID");break;
case TOPAZ_RALL :snprintf(exp, size, "RALL");break;
case TOPAZ_READ :snprintf(exp, size, "READ");break;
case TOPAZ_WRITE_E :snprintf(exp, size, "WRITE-E");break;
case TOPAZ_WRITE_NE :snprintf(exp, size, "WRITE-NE");break;
case TOPAZ_RSEG :snprintf(exp, size, "RSEG");break;
case TOPAZ_READ8 :snprintf(exp, size, "READ8");break;
case TOPAZ_WRITE_E8 :snprintf(exp, size, "WRITE-E8");break;
case TOPAZ_WRITE_NE8 :snprintf(exp, size, "WRITE-NE8");break;
default :snprintf(exp,size,"?"); break;
}
}
// iso 7816-3
void annotateIso7816(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){
// S-block
if ( (cmd[0] & 0xC0) && (cmdsize == 3) ) {
switch ( (cmd[0] & 0x3f) ) {
case 0x00 : snprintf(exp, size, "S-block RESYNCH req"); break;
case 0x20 : snprintf(exp, size, "S-block RESYNCH resp"); break;
case 0x01 : snprintf(exp, size, "S-block IFS req"); break;
case 0x21 : snprintf(exp, size, "S-block IFS resp"); break;
case 0x02 : snprintf(exp, size, "S-block ABORT req"); break;
case 0x22 : snprintf(exp, size, "S-block ABORT resp"); break;
case 0x03 : snprintf(exp, size, "S-block WTX reqt"); break;
case 0x23 : snprintf(exp, size, "S-block WTX resp"); break;
default : snprintf(exp, size, "S-block"); break;
}
}
// R-block (ack)
else if ( ((cmd[0] & 0xD0) == 0x80) && ( cmdsize > 2) ) {
if ( (cmd[0] & 0x10) == 0 )
snprintf(exp, size, "R-block ACK");
else
snprintf(exp, size, "R-block NACK");
}
// I-block
else {
int pos = (cmd[0] == 2 || cmd[0] == 3) ? 2 : 3;
switch ( cmd[pos] ){
case ISO7816_READ_BINARY :snprintf(exp, size, "READ BIN");break;
case ISO7816_WRITE_BINARY :snprintf(exp, size, "WRITE BIN");break;
case ISO7816_UPDATE_BINARY :snprintf(exp, size, "UPDATE BIN");break;
case ISO7816_ERASE_BINARY :snprintf(exp, size, "ERASE BIN");break;
case ISO7816_READ_RECORDS :snprintf(exp, size, "READ RECORDS");break;
case ISO7816_WRITE_RECORDS :snprintf(exp, size, "WRITE RECORDS");break;
case ISO7816_APPEND_RECORD :snprintf(exp, size, "APPEND RECORD");break;
case ISO7816_UPDATE_RECORD :snprintf(exp, size, "UPDATE RECORD");break;
case ISO7816_GET_DATA :snprintf(exp, size, "GET DATA");break;
case ISO7816_PUT_DATA :snprintf(exp, size, "PUT DATA");break;
case ISO7816_SELECT_FILE :snprintf(exp, size, "SELECT FILE");break;
case ISO7816_VERIFY :snprintf(exp, size, "VERIFY");break;
case ISO7816_INTERNAL_AUTHENTICATION :snprintf(exp, size, "INTERNAL AUTH");break;
case ISO7816_EXTERNAL_AUTHENTICATION :snprintf(exp, size, "EXTERNAL AUTH");break;
case ISO7816_GET_CHALLENGE :snprintf(exp, size, "GET CHALLENGE");break;
case ISO7816_MANAGE_CHANNEL :snprintf(exp, size, "MANAGE CHANNEL");break;
default :snprintf(exp,size,"?"); break;
}
}
}
// MIFARE DESFire
void annotateMfDesfire(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){
// it's basically a ISO14443a tag, so try annotation from there
if (!applyIso14443a(exp, size, cmd, cmdsize)){
// S-block 11xxx010
if ( (cmd[0] & 0xC0) && (cmdsize == 3) ) {
switch ( (cmd[0] & 0x30) ) {
case 0x30 : snprintf(exp, size, "S-block DESELECT"); break;
case 0x00 : snprintf(exp, size, "S-block WTX"); break;
default : snprintf(exp, size, "S-block"); break;
}
}
// R-block (ack) 101xx01x
else if ( ((cmd[0] & 0xB0) == 0xA0) && ( cmdsize > 2) ) {
if ( (cmd[0] & 0x10) == 0 )
snprintf(exp, size, "R-block ACK(%d)", (cmd[0] & 0x01));
else
snprintf(exp, size, "R-block NACK(%d)", (cmd[0] & 0x01));
}
// I-block 000xCN1x
else if ( (cmd[0] & 0xC0) == 0x00){
// PCB [CID] [NAD] [INF] CRC CRC
int pos = 1;
if ( (cmd[0] & 0x08) == 0x08) // cid byte following
pos = pos + 1;
if ( (cmd[0] & 0x04) == 0x04) // nad byte following
pos = pos + 1;
switch ( cmd[pos] ){
case MFDES_CREATE_APPLICATION :snprintf(exp, size, "CREATE APPLICATION");break;
case MFDES_DELETE_APPLICATION :snprintf(exp, size, "DELETE APPLICATION");break;
case MFDES_GET_APPLICATION_IDS :snprintf(exp, size, "GET APPLICATION IDS");break;
case MFDES_SELECT_APPLICATION :snprintf(exp, size, "SELECT APPLICATION");break;
case MFDES_FORMAT_PICC :snprintf(exp, size, "FORMAT PICC");break;
case MFDES_GET_VERSION :snprintf(exp, size, "GET VERSION");break;
case MFDES_READ_DATA :snprintf(exp, size, "READ DATA");break;
case MFDES_WRITE_DATA :snprintf(exp, size, "WRITE DATA");break;
case MFDES_GET_VALUE :snprintf(exp, size, "GET VALUE");break;
case MFDES_CREDIT :snprintf(exp, size, "CREDIT");break;
case MFDES_DEBIT :snprintf(exp, size, "DEBIT");break;
case MFDES_LIMITED_CREDIT :snprintf(exp, size, "LIMITED CREDIT");break;
case MFDES_WRITE_RECORD :snprintf(exp, size, "WRITE RECORD");break;
case MFDES_READ_RECORDS :snprintf(exp, size, "READ RECORDS");break;
case MFDES_CLEAR_RECORD_FILE :snprintf(exp, size, "CLEAR RECORD FILE");break;
case MFDES_COMMIT_TRANSACTION :snprintf(exp, size, "COMMIT TRANSACTION");break;
case MFDES_ABORT_TRANSACTION :snprintf(exp, size, "ABORT TRANSACTION");break;
case MFDES_GET_FREE_MEMORY :snprintf(exp, size, "GET FREE MEMORY");break;
case MFDES_GET_FILE_IDS :snprintf(exp, size, "GET FILE IDS");break;
case MFDES_GET_ISOFILE_IDS :snprintf(exp, size, "GET ISOFILE IDS");break;
case MFDES_GET_FILE_SETTINGS :snprintf(exp, size, "GET FILE SETTINGS");break;
case MFDES_CHANGE_FILE_SETTINGS :snprintf(exp, size, "CHANGE FILE SETTINGS");break;
case MFDES_CREATE_STD_DATA_FILE :snprintf(exp, size, "CREATE STD DATA FILE");break;
case MFDES_CREATE_BACKUP_DATA_FILE :snprintf(exp, size, "CREATE BACKUP DATA FILE");break;
case MFDES_CREATE_VALUE_FILE :snprintf(exp, size, "CREATE VALUE FILE");break;
case MFDES_CREATE_LINEAR_RECORD_FILE :snprintf(exp, size, "CREATE LINEAR RECORD FILE");break;
case MFDES_CREATE_CYCLIC_RECORD_FILE :snprintf(exp, size, "CREATE CYCLIC RECORD FILE");break;
case MFDES_DELETE_FILE :snprintf(exp, size, "DELETE FILE");break;
case MFDES_AUTHENTICATE :snprintf(exp, size, "AUTH NATIVE (keyNo %d)", cmd[pos+1]);break; // AUTHENTICATE_NATIVE
case MFDES_AUTHENTICATE_ISO :snprintf(exp, size, "AUTH ISO (keyNo %d)", cmd[pos+1]);break; // AUTHENTICATE_STANDARD
case MFDES_AUTHENTICATE_AES :snprintf(exp, size, "AUTH AES (keyNo %d)", cmd[pos+1]);break;
case MFDES_CHANGE_KEY_SETTINGS :snprintf(exp, size, "CHANGE KEY SETTINGS");break;
case MFDES_GET_KEY_SETTINGS :snprintf(exp, size, "GET KEY SETTINGS");break;
case MFDES_CHANGE_KEY :snprintf(exp, size, "CHANGE KEY");break;
case MFDES_GET_KEY_VERSION :snprintf(exp, size, "GET KEY VERSION");break;
case MFDES_AUTHENTICATION_FRAME :snprintf(exp, size, "AUTH FRAME / NEXT FRAME");break;
default :break;
}
}else{
// anything else
snprintf(exp,size,"?");
}
}
}
/**
06 00 = INITIATE
0E xx = SELECT ID (xx = Chip-ID)
0B = Get UID
08 yy = Read Block (yy = block number)
09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written)
0C = Reset to Inventory
0F = Completion
0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate)
**/
void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) {
switch(cmd[0]){
case ISO14443B_REQB : {
switch ( cmd[2] & 0x07 ) {
case 0: snprintf(exp, size,"1 slot ");break;
case 1: snprintf(exp, size,"2 slots ");break;
case 2: snprintf(exp, size,"4 slots ");break;
case 3: snprintf(exp, size,"8 slots ");break;
default: snprintf(exp, size,"16 slots ");break;
}
if ( (cmd[2] & 0x8) )
snprintf(exp, size,"WUPB");
else
snprintf(exp, size,"REQB");
break;
}
case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break;
case ISO14443B_HALT : snprintf(exp,size,"HALT");break;
case ISO14443B_INITIATE : snprintf(exp,size,"INITIATE");break;
case ISO14443B_SELECT : snprintf(exp,size,"SELECT(%d)",cmd[1]);break;
case ISO14443B_GET_UID : snprintf(exp,size,"GET UID");break;
case ISO14443B_READ_BLK : snprintf(exp,size,"READ_BLK(%d)", cmd[1]);break;
case ISO14443B_WRITE_BLK : snprintf(exp,size,"WRITE_BLK(%d)",cmd[1]);break;
case ISO14443B_RESET : snprintf(exp,size,"RESET");break;
case ISO14443B_COMPLETION : snprintf(exp,size,"COMPLETION");break;
case ISO14443B_AUTHENTICATE : snprintf(exp,size,"AUTHENTICATE");break;
case ISO14443B_PING : snprintf(exp,size,"PING");break;
case ISO14443B_PONG : snprintf(exp,size,"PONG");break;
default : snprintf(exp,size ,"?");break;
}
}
// LEGIC
// 1 = read
// 0 = write
// Quite simpel tag
void annotateLegic(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){
uint8_t bitsend = cmd[0];
uint8_t cmdBit = (cmd[1] & 1);
switch (bitsend){
case 7:
snprintf(exp, size, "IV 0x%02X", cmd[1]);
break;
case 6: {
switch ( cmd[1] ) {
case LEGIC_MIM_22: snprintf(exp, size, "MIM22"); break;
case LEGIC_MIM_256: snprintf(exp, size, "MIM256"); break;
case LEGIC_MIM_1024: snprintf(exp, size, "MIM1024"); break;
case LEGIC_ACK_22: snprintf(exp, size, "ACK 22"); break;
case LEGIC_ACK_256: snprintf(exp, size, "ACK 256/1024"); break;
}
break;
}
case 9:
case 11: {
uint16_t address = (cmd[2] << 7) | cmd[1] >> 1;
if (cmdBit == LEGIC_READ)
snprintf(exp, size, "READ Byte(%d)", address);
if (cmdBit == LEGIC_WRITE )
snprintf(exp, size, "WRITE Byte(%d)", address);
break;
}
case 21: {
if (cmdBit == LEGIC_WRITE ) {
uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0xFF;
uint8_t val = (cmd[3] & 1 ) << 7 | cmd[2] >> 1;
snprintf(exp, size, "WRITE Byte(%d) %02X", address, val);
}
break;
}
case 23: {
if (cmdBit == LEGIC_WRITE ) {
uint16_t address = ((cmd[2] << 7) | cmd[1] >> 1) & 0x3FF;
uint8_t val = (cmd[3] & 0x7 ) << 5 | cmd[2] >> 3;
snprintf(exp, size, "WRITE Byte(%d) %02X", address, val);
}
break;
}
case 12:
default:
break;
}
}
void annotateFelica(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize){
switch(cmd[0]){
default : snprintf(exp,size ,"?");break;
}
}
void annotateMifare(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize, uint8_t* parity, uint8_t paritysize, bool isResponse) {
if (!isResponse && cmdsize == 1) {
switch(cmd[0]) {
case ISO14443A_CMD_WUPA:
case ISO14443A_CMD_REQA:
MifareAuthState = masNone;
break;
default:
break;
}
}
// get UID
if (MifareAuthState == masNone) {
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_3 && cmd[1] == 0x70) {
ClearAuthData();
AuthData.uid = bytes_to_num(&cmd[2], 4);
}
}
switch(MifareAuthState) {
case masNt:
if (cmdsize == 4 && isResponse) {
snprintf(exp, size, "AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)");
MifareAuthState = masNrAr;
if (AuthData.first_auth) {
AuthData.nt = bytes_to_num(cmd, 4);
} else {
AuthData.nt_enc = bytes_to_num(cmd, 4);
AuthData.nt_enc_par = parity[0];
}
return;
} else {
MifareAuthState = masError;
}
break;
case masNrAr:
if (cmdsize == 8 && !isResponse) {
snprintf(exp, size, "AUTH: nr ar (enc)");
MifareAuthState = masAt;
AuthData.nr_enc = bytes_to_num(cmd, 4);
AuthData.ar_enc = bytes_to_num(&cmd[4], 4);
AuthData.ar_enc_par = parity[0] << 4;
return;
} else {
MifareAuthState = masError;
}
break;
case masAt:
if (cmdsize == 4 && isResponse) {
snprintf(exp, size, "AUTH: at (enc)");
MifareAuthState = masAuthComplete;
AuthData.at_enc = bytes_to_num(cmd, 4);
AuthData.at_enc_par = parity[0];
return;
} else {
MifareAuthState = masError;
}
break;
default:
break;
}
if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError)))
annotateIso14443a(exp, size, cmd, cmdsize);
}
bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) {
static struct Crypto1State *traceCrypto1;
static uint64_t mfLastKey;
*mfDataLen = 0;
if (MifareAuthState == masAuthComplete) {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
MifareAuthState = masFirstData;
return false;
}
if (cmdsize > 32)
return false;
if (MifareAuthState == masFirstData) {
if (AuthData.first_auth) {
AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64);
AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96);
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLogEx(NORMAL, " | | * |%49s %012"PRIx64" prng %s | |",
"key",
mfLastKey,
validate_prng_nonce(AuthData.nt) ? "WEAK": "HARD");
AuthData.first_auth = false;
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
} else {
if (traceCrypto1) {
crypto1_destroy(traceCrypto1);
traceCrypto1 = NULL;
}
// check last used key
if (mfLastKey) {
if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) {
PrintAndLogEx(NORMAL, " | | * |%60s %012"PRIx64"| |", "last used key", mfLastKey);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
};
}
// check default keys
if (!traceCrypto1) {
for (int i = 0; i < MIFARE_DEFAULTKEYS_SIZE; i++){
if (NestedCheckKey(g_mifare_default_keys[i], &AuthData, cmd, cmdsize, parity)) {
PrintAndLogEx(NORMAL, " | | * |%61s %012"PRIx64"| |", "key", g_mifare_default_keys[i]);
mfLastKey = g_mifare_default_keys[i];
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
};
}
}
// nested
if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) {
uint32_t ntx = prng_successor(AuthData.nt, 90);
for (int i = 0; i < 16383; i++) {
ntx = prng_successor(ntx, 1);
if (NTParityChk(&AuthData, ntx)){
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(pcs, mfData, cmdsize, 0);
crypto1_destroy(pcs);
if (CheckCrypto1Parity(cmd, cmdsize, mfData, parity) && check_crc(CRC_14443_A, mfData, cmdsize)) {
AuthData.ks2 = ks2;
AuthData.ks3 = ks3;
AuthData.nt = ntx;
mfLastKey = GetCrypto1ProbableKey(&AuthData);
PrintAndLogEx(NORMAL, " | | * | nested probable key:%012"PRIx64" ks2:%08x ks3:%08x | |",
mfLastKey,
AuthData.ks2,
AuthData.ks3);
traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3);
break;
}
}
}
}
//hardnested
if (!traceCrypto1) {
PrintAndLogEx(NORMAL, "hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc);
MifareAuthState = masError;
/* TOO SLOW( needs to have more strong filter. with this filter - aprox 4 mln tests
uint32_t t = msclock();
uint32_t t1 = t;
int n = 0;
for (uint32_t i = 0; i < 0xFFFFFFFF; i++) {
if (NTParityChk(&AuthData, i)){
uint32_t ks2 = AuthData.ar_enc ^ prng_successor(i, 64);
uint32_t ks3 = AuthData.at_enc ^ prng_successor(i, 96);
struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3);
n++;
if (!(n % 100000)) {
PrintAndLogEx(NORMAL, "delta=%d n=%d ks2=%x ks3=%x \n", msclock() - t1 , n, ks2, ks3);
t1 = msclock();
}
}
}
PrintAndLogEx(NORMAL, "delta=%d n=%d\n", msclock() - t, n);
*/
}
}
MifareAuthState = masData;
}
if (MifareAuthState == masData && traceCrypto1) {
memcpy(mfData, cmd, cmdsize);
mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0);
*mfDataLen = cmdsize;
}
return *mfDataLen > 0;
}
bool NTParityChk(TAuthData *ad, uint32_t ntx) {
if (
(oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) ||
(oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) ||
(oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01))
)
return false;
uint32_t ar = prng_successor(ntx, 64);
if (
(oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) ||
(oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) ||
(oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01))
)
return false;
uint32_t at = prng_successor(ntx, 96);
if (
(oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) ||
(oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) ||
(oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) ||
(oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01))
)
return false;
return true;
}
bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) {
uint8_t buf[32] = {0};
struct Crypto1State *pcs;
AuthData.ks2 = 0;
AuthData.ks3 = 0;
pcs = crypto1_create(key);
uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc;
uint32_t ar = prng_successor(nt1, 64);
uint32_t at = prng_successor(nt1, 96);
crypto1_word(pcs, ad->nr_enc, 1);
// uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr
uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc;
uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc;
if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1)))
return false;
memcpy(buf, cmd, cmdsize);
mf_crypto1_decrypt(pcs, buf, cmdsize, 0);
crypto1_destroy(pcs);
if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity))
return false;
if (!check_crc(CRC_14443_A, buf, cmdsize))
return false;
AuthData.nt = nt1;
AuthData.ks2 = AuthData.ar_enc ^ ar;
AuthData.ks3 = AuthData.at_enc ^ at;
return true;
}
bool CheckCrypto1Parity(uint8_t *cmd_enc, uint8_t cmdsize, uint8_t *cmd, uint8_t *parity_enc) {
for (int i = 0; i < cmdsize - 1; i++) {
if (oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (7 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01))
return false;
}
return true;
}
// Another implementation of mfkey64 attack, more "valid" than "probable"
//
uint64_t GetCrypto1ProbableKey(TAuthData *ad) {
struct Crypto1State *revstate = lfsr_recovery64(ad->ks2, ad->ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, ad->nr_enc, 1);
lfsr_rollback_word(revstate, ad->uid ^ ad->nt, 0);
uint64_t key = 0;
crypto1_get_lfsr(revstate, &key);
crypto1_destroy(revstate);
return key;
}