mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2024-11-14 13:44:49 +08:00
148 lines
4.7 KiB
Verilog
148 lines
4.7 KiB
Verilog
//-----------------------------------------------------------------------------
|
|
// Pretend to be an ISO 14443 tag. We will do this by alternately short-
|
|
// circuiting and open-circuiting the antenna coil, with the tri-state
|
|
// pins.
|
|
//
|
|
// We communicate over the SSP, as a bitstream (i.e., might as well be
|
|
// unframed, though we still generate the word sync signal). The output
|
|
// (ARM -> FPGA) tells us whether to modulate or not. The input (FPGA
|
|
// -> ARM) is us using the A/D as a fancy comparator; this is with
|
|
// (software-added) hysteresis, to undo the high-pass filter.
|
|
//
|
|
// At this point only Type A is implemented. This means that we are using a
|
|
// bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
|
|
// things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
|
|
//
|
|
// Jonathan Westhues, October 2006
|
|
//-----------------------------------------------------------------------------
|
|
|
|
module hi_simulate(
|
|
ck_1356meg,
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
adc_d, adc_clk,
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
dbg,
|
|
mod_type
|
|
);
|
|
input ck_1356meg;
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
input [7:0] adc_d;
|
|
output adc_clk;
|
|
input ssp_dout;
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
output dbg;
|
|
input [3:0] mod_type;
|
|
|
|
// Power amp goes between LOW and tri-state, so pwr_hi (and pwr_lo) can
|
|
// always be low.
|
|
assign pwr_hi = 1'b0; // HF antenna connected to GND
|
|
assign pwr_lo = 1'b0; // LF antenna connected to GND
|
|
|
|
// This one is all LF, so doesn't matter
|
|
assign pwr_oe2 = 1'b0;
|
|
|
|
assign adc_clk = ck_1356meg;
|
|
assign dbg = ssp_frame;
|
|
|
|
// The comparator with hysteresis on the output from the peak detector.
|
|
reg after_hysteresis;
|
|
reg [11:0] has_been_low_for;
|
|
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if (& adc_d[7:5]) after_hysteresis <= 1'b1; // if (adc_d >= 224)
|
|
else if (~(| adc_d[7:5])) after_hysteresis <= 1'b0; // if (adc_d <= 31)
|
|
|
|
if (adc_d >= 224)
|
|
begin
|
|
has_been_low_for <= 12'd0;
|
|
end
|
|
else
|
|
begin
|
|
if (has_been_low_for == 12'd4095)
|
|
begin
|
|
has_been_low_for <= 12'd0;
|
|
after_hysteresis <= 1'b1;
|
|
end
|
|
else
|
|
begin
|
|
has_been_low_for <= has_been_low_for + 1;
|
|
end
|
|
end
|
|
end
|
|
|
|
|
|
// Divide 13.56 MHz to produce various frequencies for SSP_CLK
|
|
// and modulation.
|
|
reg [8:0] ssp_clk_divider;
|
|
|
|
always @(negedge adc_clk)
|
|
ssp_clk_divider <= (ssp_clk_divider + 1);
|
|
|
|
reg ssp_clk;
|
|
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT)
|
|
// Get bit every at 53KHz (every 8th carrier bit of 424kHz)
|
|
ssp_clk <= ~ssp_clk_divider[7];
|
|
else if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
|
|
// Get next bit at 212kHz
|
|
ssp_clk <= ~ssp_clk_divider[5];
|
|
else
|
|
// Get next bit at 424kHz
|
|
ssp_clk <= ~ssp_clk_divider[4];
|
|
end
|
|
|
|
|
|
// Produce the byte framing signal; the phase of this signal
|
|
// is arbitrary, because it's just a bit stream in this module.
|
|
reg ssp_frame;
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if (mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
|
|
begin
|
|
if (ssp_clk_divider[8:5] == 4'd1)
|
|
ssp_frame <= 1'b1;
|
|
if (ssp_clk_divider[8:5] == 4'd5)
|
|
ssp_frame <= 1'b0;
|
|
end
|
|
else
|
|
begin
|
|
if (ssp_clk_divider[7:4] == 4'd1)
|
|
ssp_frame <= 1'b1;
|
|
if (ssp_clk_divider[7:4] == 4'd5)
|
|
ssp_frame <= 1'b0;
|
|
end
|
|
end
|
|
|
|
|
|
// Synchronize up the after-hysteresis signal, to produce DIN.
|
|
reg ssp_din;
|
|
always @(posedge ssp_clk)
|
|
ssp_din = after_hysteresis;
|
|
|
|
// Modulating carrier frequency is fc/64 (212kHz) to fc/16 (848kHz). Reuse ssp_clk divider for that.
|
|
reg modulating_carrier;
|
|
always @(*)
|
|
if(mod_type == `FPGA_HF_SIMULATOR_NO_MODULATION)
|
|
modulating_carrier <= 1'b0; // no modulation
|
|
else if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_BPSK)
|
|
modulating_carrier <= ssp_dout ^ ssp_clk_divider[3]; // XOR means BPSK
|
|
else if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_212K)
|
|
modulating_carrier <= ssp_dout & ssp_clk_divider[5]; // switch 212kHz subcarrier on/off
|
|
else if(mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K || mod_type == `FPGA_HF_SIMULATOR_MODULATE_424K_8BIT)
|
|
modulating_carrier <= ssp_dout & ssp_clk_divider[4]; // switch 424kHz modulation on/off
|
|
else
|
|
modulating_carrier <= 1'b0; // yet unused
|
|
|
|
|
|
|
|
// Load modulation. Toggle only one of these, since we are already producing much deeper
|
|
// modulation than a real tag would.
|
|
assign pwr_oe1 = 1'b0; // 33 Ohms Load
|
|
assign pwr_oe4 = modulating_carrier; // 33 Ohms Load
|
|
// This one is always on, so that we can watch the carrier.
|
|
assign pwr_oe3 = 1'b0; // 10k Load
|
|
|
|
endmodule
|