proxmark3/client/cmdhficlass.c
iceman1001 3bc3598e88 added the changes from PM3 master.
added some code for the AWID26
2014-12-22 15:14:05 +01:00

603 lines
17 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch
// Copyright (C) 2011 Gerhard de Koning Gans
// Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency iClass commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include "iso14443crc.h" // Can also be used for iClass, using 0xE012 as CRC-type
#include "data.h"
#include "proxmark3.h"
#include "ui.h"
#include "cmdparser.h"
#include "cmdhficlass.h"
#include "../include/common.h"
#include "util.h"
#include "cmdmain.h"
#include "loclass/des.h"
#include "loclass/cipherutils.h"
#include "loclass/cipher.h"
#include "loclass/ikeys.h"
#include "loclass/elite_crack.h"
#include "loclass/fileutils.h"
static int CmdHelp(const char *Cmd);
int xorbits_8(uint8_t val)
{
uint8_t res = val ^ (val >> 1); //1st pass
res = res ^ (res >> 1); // 2nd pass
res = res ^ (res >> 2); // 3rd pass
res = res ^ (res >> 4); // 4th pass
return res & 1;
}
int CmdHFiClassList(const char *Cmd)
{
bool ShowWaitCycles = false;
char param = param_getchar(Cmd, 0);
if (param != 0) {
PrintAndLog("List data in trace buffer.");
PrintAndLog("Usage: hf iclass list");
PrintAndLog("h - help");
PrintAndLog("sample: hf iclass list");
return 0;
}
// for the time being. Need better Bigbuf handling.
#define TRACE_SIZE 3000
uint8_t trace[TRACE_SIZE];
GetFromBigBuf(trace, TRACE_SIZE, 0);
WaitForResponse(CMD_ACK,NULL);
PrintAndLog("Recorded Activity");
PrintAndLog("");
PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer");
PrintAndLog("All times are in carrier periods (1/13.56Mhz)");
PrintAndLog("");
PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC ");
PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------------");
uint16_t tracepos = 0;
uint16_t duration;
uint16_t data_len;
uint16_t parity_len;
bool isResponse;
uint32_t timestamp;
uint32_t first_timestamp;
uint32_t EndOfTransmissionTimestamp;
for (;;) {
if(tracepos >= TRACE_SIZE) {
break;
}
timestamp = *((uint32_t *)(trace + tracepos));
if(tracepos == 0) {
first_timestamp = timestamp;
}
// Break and stick with current result if buffer was not completely full
if (timestamp == 0x44444444) break;
tracepos += 4;
duration = *((uint16_t *)(trace + tracepos));
tracepos += 2;
data_len = *((uint16_t *)(trace + tracepos));
tracepos += 2;
if (data_len & 0x8000) {
data_len &= 0x7fff;
isResponse = true;
} else {
isResponse = false;
}
parity_len = (data_len-1)/8 + 1;
if (tracepos + data_len + parity_len >= TRACE_SIZE) {
break;
}
uint8_t *frame = trace + tracepos;
tracepos += data_len;
uint8_t *parityBytes = trace + tracepos;
tracepos += parity_len;
char line[16][110];
for (int j = 0; j < data_len; j++) {
int oddparity = 0x01;
int k;
for (k=0;k<8;k++) {
oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01);
}
uint8_t parityBits = parityBytes[j>>3];
if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) {
sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]);
} else {
sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]);
}
}
char *crc = "";
if (data_len > 2) {
uint8_t b1, b2;
if(!isResponse && data_len == 4 ) {
// Rough guess that this is a command from the reader
// For iClass the command byte is not part of the CRC
ComputeCrc14443(CRC_ICLASS, &frame[1], data_len-3, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
crc = "!crc";
}
}
else {
// For other data.. CRC might not be applicable (UPDATE commands etc.)
ComputeCrc14443(CRC_ICLASS, frame, data_len-2, &b1, &b2);
if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) {
crc = "!crc";
}
}
}
EndOfTransmissionTimestamp = timestamp + duration;
int num_lines = (data_len - 1)/16 + 1;
for (int j = 0; j < num_lines; j++) {
if (j == 0) {
PrintAndLog(" %9d | %9d | %s | %-64s| %s",
(timestamp - first_timestamp),
(EndOfTransmissionTimestamp - first_timestamp),
(isResponse ? "Tag" : "Rdr"),
line[j],
(j == num_lines-1)?crc:"");
} else {
PrintAndLog(" | | | %-64s| %s",
line[j],
(j == num_lines-1)?crc:"");
}
}
bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000;
if (ShowWaitCycles && !isResponse && next_isResponse) {
uint32_t next_timestamp = *((uint32_t *)(trace + tracepos));
if (next_timestamp != 0x44444444) {
PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d",
(EndOfTransmissionTimestamp - first_timestamp),
(next_timestamp - first_timestamp),
" ",
(next_timestamp - EndOfTransmissionTimestamp));
}
}
}
return 0;
}
int CmdHFiClassSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ICLASS};
SendCommand(&c);
return 0;
}
#define NUM_CSNS 15
int CmdHFiClassSim(const char *Cmd)
{
uint8_t simType = 0;
uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0};
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass sim [0 <CSN>] | x");
PrintAndLog(" options");
PrintAndLog(" 0 <CSN> simulate the given CSN");
PrintAndLog(" 1 simulate default CSN");
PrintAndLog(" 2 iterate CSNs, gather MACs");
PrintAndLog(" sample: hf iclass sim 0 031FEC8AF7FF12E0");
PrintAndLog(" sample: hf iclass sim 2");
return 0;
}
simType = param_get8(Cmd, 0);
if(simType == 0)
{
if (param_gethex(Cmd, 1, CSN, 16)) {
PrintAndLog("A CSN should consist of 16 HEX symbols");
return 1;
}
PrintAndLog("--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8));
}
if(simType > 2)
{
PrintAndLog("Undefined simptype %d", simType);
return 1;
}
uint8_t numberOfCSNs=0;
if(simType == 2)
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,NUM_CSNS}};
UsbCommand resp = {0};
/*uint8_t csns[8 * NUM_CSNS] = {
0x00,0x0B,0x0F,0xFF,0xF7,0xFF,0x12,0xE0 ,
0x00,0x13,0x94,0x7e,0x76,0xff,0x12,0xe0 ,
0x2a,0x99,0xac,0x79,0xec,0xff,0x12,0xe0 ,
0x17,0x12,0x01,0xfd,0xf7,0xff,0x12,0xe0 ,
0xcd,0x56,0x01,0x7c,0x6f,0xff,0x12,0xe0 ,
0x4b,0x5e,0x0b,0x72,0xef,0xff,0x12,0xe0 ,
0x00,0x73,0xd8,0x75,0x58,0xff,0x12,0xe0 ,
0x0c,0x90,0x32,0xf3,0x5d,0xff,0x12,0xe0 };
*/
uint8_t csns[8*NUM_CSNS] = {
0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0,
0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 };
memcpy(c.d.asBytes, csns, 8*NUM_CSNS);
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, -1)) {
PrintAndLog("Command timed out");
return 0;
}
uint8_t num_mac_responses = resp.arg[1];
PrintAndLog("Mac responses: %d MACs obtained (should be %d)", num_mac_responses, NUM_CSNS);
size_t datalen = NUM_CSNS*24;
/*
* Now, time to dump to file. We'll use this format:
* <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>....
* So, it should wind up as
* 8 * 24 bytes.
*
* The returndata from the pm3 is on the following format
* <4 byte NR><4 byte MAC>
* CC are all zeroes, CSN is the same as was sent in
**/
void* dump = malloc(datalen);
memset(dump,0,datalen);//<-- Need zeroes for the CC-field
uint8_t i = 0;
for(i = 0 ; i < NUM_CSNS ; i++)
{
memcpy(dump+i*24, csns+i*8,8); //CSN
//8 zero bytes here...
//Then comes NR_MAC (eight bytes from the response)
memcpy(dump+i*24+16,resp.d.asBytes+i*8,8);
}
/** Now, save to dumpfile **/
saveFile("iclass_mac_attack", "bin", dump,datalen);
free(dump);
}else
{
UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType,numberOfCSNs}};
memcpy(c.d.asBytes, CSN, 8);
SendCommand(&c);
}
return 0;
}
int CmdHFiClassReader(const char *Cmd)
{
UsbCommand c = {CMD_READER_ICLASS, {0}};
SendCommand(&c);
UsbCommand resp;
while(!ukbhit()){
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
PrintAndLog("isOk:%02x", isOK);
if(isOK > 0)
{
PrintAndLog("CSN: %s",sprint_hex(data,8));
}
if(isOK >= 1)
{
PrintAndLog("CC: %s",sprint_hex(data+8,8));
}else{
PrintAndLog("No CC obtained");
}
} else {
PrintAndLog("Command execute timeout");
}
}
return 0;
}
int CmdHFiClassReader_Replay(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00, 0x00, 0x00, 0x00};
if (strlen(Cmd)<1) {
PrintAndLog("Usage: hf iclass replay <MAC>");
PrintAndLog(" sample: hf iclass replay 00112233");
return 0;
}
if (param_gethex(Cmd, 0, MAC, 8)) {
PrintAndLog("MAC must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(c.d.asBytes, MAC, 4);
SendCommand(&c);
return 0;
}
int CmdHFiClassReader_Dump(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
//uint8_t CC_temp[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t keytable[128] = {0};
int elite = 0;
uint8_t *used_key;
int i;
if (strlen(Cmd)<1)
{
PrintAndLog("Usage: hf iclass dump <Key> [e]");
PrintAndLog(" Key - A 16 byte master key");
PrintAndLog(" e - If 'e' is specified, the key is interpreted as the 16 byte");
PrintAndLog(" Custom Key (KCus), which can be obtained via reader-attack");
PrintAndLog(" See 'hf iclass sim 2'. This key should be on iclass-format");
PrintAndLog(" sample: hf iclass dump 0011223344556677");
return 0;
}
if (param_gethex(Cmd, 0, KEY, 16))
{
PrintAndLog("KEY must include 16 HEX symbols");
return 1;
}
if (param_getchar(Cmd, 1) == 'e')
{
PrintAndLog("Elite switch on");
elite = 1;
//calc h2
hash2(KEY, keytable);
printarr_human_readable("keytable", keytable, 128);
}
UsbCommand resp;
uint8_t key_sel[8] = {0};
uint8_t key_sel_p[8] = { 0 };
//HACK -- Below is for testing without access to a tag
uint8_t fake_dummy_test = false;
if(fake_dummy_test)
{
uint8_t xdata[16] = {0x01,0x02,0x03,0x04,0xF7,0xFF,0x12,0xE0, //CSN from http://www.proxmark.org/forum/viewtopic.php?pid=11230#p11230
0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; // Just a random CC. Would be good to add a real testcase here
memcpy(resp.d.asBytes,xdata, 16);
resp.arg[0] = 2;
}
//End hack
UsbCommand c = {CMD_READER_ICLASS, {0}};
c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE;
if(!fake_dummy_test)
SendCommand(&c);
if (fake_dummy_test || WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
memcpy(CSN,data,8);
memcpy(CCNR,data+8,8);
PrintAndLog("isOk:%02x", isOK);
if(isOK > 0)
{
PrintAndLog("CSN: %s",sprint_hex(CSN,8));
}
if(isOK > 1)
{
if(elite)
{
//Get the key index (hash1)
uint8_t key_index[8] = {0};
hash1(CSN, key_index);
printvar("hash1", key_index,8);
for(i = 0; i < 8 ; i++)
key_sel[i] = keytable[key_index[i]] & 0xFF;
PrintAndLog("Pre-fortified 'permuted' HS key that would be needed by an iclass reader to talk to above CSN:");
printvar("k_sel", key_sel,8);
//Permute from iclass format to standard format
permutekey_rev(key_sel,key_sel_p);
used_key = key_sel_p;
}else{
//Perhaps this should also be permuted to std format?
// Something like the code below? I have no std system
// to test this with /Martin
//uint8_t key_sel_p[8] = { 0 };
//permutekey_rev(KEY,key_sel_p);
//used_key = key_sel_p;
used_key = KEY;
}
PrintAndLog("Pre-fortified key that would be needed by the OmniKey reader to talk to above CSN:");
printvar("Used key",used_key,8);
diversifyKey(CSN,used_key, div_key);
PrintAndLog("Hash0, a.k.a diversified key, that is computed using Ksel and stored in the card (Block 3):");
printvar("Div key", div_key, 8);
printvar("CC_NR:",CCNR,12);
doMAC(CCNR,12,div_key, MAC);
printvar("MAC", MAC, 4);
UsbCommand d = {CMD_READER_ICLASS_REPLAY, {readerType}};
memcpy(d.d.asBytes, MAC, 4);
if(!fake_dummy_test) SendCommand(&d);
}else{
PrintAndLog("Failed to obtain CC! Aborting");
}
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHFiClass_iso14443A_write(const char *Cmd)
{
uint8_t readerType = 0;
uint8_t MAC[4]={0x00,0x00,0x00,0x00};
uint8_t KEY[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CSN[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t CCNR[12]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t div_key[8]={0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint8_t blockNo=0;
uint8_t bldata[8]={0};
if (strlen(Cmd)<3)
{
PrintAndLog("Usage: hf iclass write <Key> <Block> <Data>");
PrintAndLog(" sample: hf iclass write 0011223344556677 10 AAAAAAAAAAAAAAAA");
return 0;
}
if (param_gethex(Cmd, 0, KEY, 16))
{
PrintAndLog("KEY must include 16 HEX symbols");
return 1;
}
blockNo = param_get8(Cmd, 1);
if (blockNo>32)
{
PrintAndLog("Error: Maximum number of blocks is 32 for iClass 2K Cards!");
return 1;
}
if (param_gethex(Cmd, 2, bldata, 8))
{
PrintAndLog("Block data must include 8 HEX symbols");
return 1;
}
UsbCommand c = {CMD_ICLASS_ISO14443A_WRITE, {0}};
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,4500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
memcpy(CSN,data,8);
memcpy(CCNR,data+8,8);
PrintAndLog("DEBUG: %s",sprint_hex(CSN,8));
PrintAndLog("DEBUG: %s",sprint_hex(CCNR,8));
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
diversifyKey(CSN,KEY, div_key);
PrintAndLog("Div Key: %s",sprint_hex(div_key,8));
doMAC(CCNR, 12,div_key, MAC);
UsbCommand c2 = {CMD_ICLASS_ISO14443A_WRITE, {readerType,blockNo}};
memcpy(c2.d.asBytes, bldata, 8);
memcpy(c2.d.asBytes+8, MAC, 4);
SendCommand(&c2);
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t * data = resp.d.asBytes;
if (isOK)
PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 4));
else
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"list", CmdHFiClassList, 0, "List iClass history"},
{"snoop", CmdHFiClassSnoop, 0, "Eavesdrop iClass communication"},
{"sim", CmdHFiClassSim, 0, "Simulate iClass tag"},
{"reader",CmdHFiClassReader, 0, "Read an iClass tag"},
{"replay",CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
{"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"},
{"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"},
{"replay", CmdHFiClassReader_Replay, 0, "Read an iClass tag via Reply Attack"},
{"dump", CmdHFiClassReader_Dump, 0, "Authenticate and Dump iClass tag"},
{"write", CmdHFiClass_iso14443A_write, 0, "Authenticate and Write iClass block"},
{NULL, NULL, 0, NULL}
};
int CmdHFiClass(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}