proxmark3/client/cmdhf14b.c

850 lines
23 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency ISO14443B commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <stdint.h>
#include "iso14443crc.h"
#include "proxmark3.h"
#include "data.h"
#include "graph.h"
#include "util.h"
#include "ui.h"
#include "cmdparser.h"
#include "cmdhf14b.h"
#include "cmdmain.h"
#include "cmdhf14a.h"
#include "tea.h"
#include "cmdhf.h"
#include "prng.h"
#include "sha1.h"
static int CmdHelp(const char *Cmd);
int CmdHF14BList(const char *Cmd) {
CmdHFList("14b");
return 0;
}
int CmdHF14BSim(const char *Cmd)
{
UsbCommand c = {CMD_SIMULATE_TAG_ISO_14443B};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdHF14BSnoop(const char *Cmd)
{
UsbCommand c = {CMD_SNOOP_ISO_14443B};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
/* New command to read the contents of a SRI512 tag
* SRI512 tags are ISO14443-B modulated memory tags,
* this command just dumps the contents of the memory
*/
int CmdSri512Read(const char *Cmd)
{
UsbCommand c = {CMD_READ_SRI512_TAG, {strtol(Cmd, NULL, 0), 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
/* New command to read the contents of a SRIX4K tag
* SRIX4K tags are ISO14443-B modulated memory tags,
* this command just dumps the contents of the memory/
*/
int CmdSrix4kRead(const char *Cmd) {
UsbCommand c = {CMD_READ_SRIX4K_TAG, {strtol(Cmd, NULL, 0), 0, 0}};
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int rawClose(void){
UsbCommand resp;
UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK,&resp,1000)) {
PrintAndLog("Command time-out");
return 1;
}
return 0;
}
int HF14BCmdRaw(bool reply, bool *crc, bool power, uint8_t *data, uint8_t *datalen, bool verbose){
if(*crc) {
ComputeCrc14443(CRC_14443_B, data, *datalen, data+*datalen, data+*datalen+1);
*datalen += 2;
}
UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; // len,recv,power
c.arg[0] = *datalen;
c.arg[1] = reply;
c.arg[2] = power;
memcpy(c.d.asBytes, data, *datalen);
clearCommandBuffer();
SendCommand(&c);
if (!reply) return 1;
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
if (verbose) PrintAndLog("timeout while waiting for reply.");
return 0;
}
*datalen = resp.arg[0];
if (verbose) PrintAndLog("received %u octets", *datalen);
if(*datalen<3) return 0;
memcpy(data, resp.d.asBytes, *datalen);
uint8_t first = 0, second = 0;
ComputeCrc14443(CRC_14443_B, data, *datalen-2, &first, &second);
*crc = ( data[*datalen-2] == first && data[*datalen-1] == second);
if (verbose)
PrintAndLog("[LEN %u] %s[%02X %02X] %s",
*datalen,
sprint_hex(data, *datalen-2),
data[*datalen-2],
data[*datalen-1],
(*crc)?"OK":"FAIL"
);
return 1;
}
int CmdHF14BCmdRaw (const char *Cmd) {
bool reply = true;
bool crc = false;
bool power = false;
bool select = false;
bool SRx = false;
char buf[5]="";
uint8_t data[USB_CMD_DATA_SIZE] = {0x00};
uint8_t datalen = 0;
unsigned int temp;
int i = 0;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf 14b raw [-r] [-c] [-p] [-s || -ss] <0A 0B 0C ... hex>");
PrintAndLog(" -r do not read response");
PrintAndLog(" -c calculate and append CRC");
PrintAndLog(" -p leave the field on after receive");
PrintAndLog(" -s active signal field ON with select");
PrintAndLog(" -ss active signal field ON with select for SRx ST Microelectronics tags");
return 0;
}
// strip
while (*Cmd==' ' || *Cmd=='\t') Cmd++;
while (Cmd[i]!='\0') {
if (Cmd[i]==' ' || Cmd[i]=='\t') { i++; continue; }
if (Cmd[i]=='-') {
switch (Cmd[i+1]) {
case 'r':
case 'R':
reply = false;
break;
case 'c':
case 'C':
crc = true;
break;
case 'p':
case 'P':
power = true;
break;
case 's':
case 'S':
select = true;
if (Cmd[i+2]=='s' || Cmd[i+2]=='S') {
SRx = true;
i++;
}
break;
default:
PrintAndLog("Invalid option");
return 0;
}
i+=2;
continue;
}
if ((Cmd[i]>='0' && Cmd[i]<='9') ||
(Cmd[i]>='a' && Cmd[i]<='f') ||
(Cmd[i]>='A' && Cmd[i]<='F') ) {
buf[strlen(buf)+1]=0;
buf[strlen(buf)]=Cmd[i];
i++;
if (strlen(buf)>=2) {
sscanf(buf,"%x",&temp);
data[datalen++]=(uint8_t)(temp & 0xff);
*buf=0;
memset(buf, 0x00, sizeof(buf));
}
continue;
}
PrintAndLog("Invalid char on input");
return 0;
}
if (datalen == 0)
{
PrintAndLog("Missing data input");
return 0;
}
if (select){ //auto select 14b tag
uint8_t cmd2[16];
bool crc2 = true;
uint8_t cmdLen;
if (SRx) {
// REQ SRx
cmdLen = 2;
cmd2[0] = 0x06;
cmd2[1] = 0x00;
} else {
// REQB
cmdLen = 3;
cmd2[0] = 0x05;
cmd2[1] = 0x00;
cmd2[2] = 0x08;
}
// REQB
if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose();
PrintAndLog("REQB : %s", sprint_hex(cmd2, cmdLen));
if ( SRx && (cmdLen != 3 || !crc2) ) return rawClose();
else if (cmd2[0] != 0x50 || cmdLen != 14 || !crc2) return rawClose();
uint8_t chipID = 0;
if (SRx) {
// select
chipID = cmd2[0];
cmd2[0] = 0x0E;
cmd2[1] = chipID;
cmdLen = 2;
} else {
// attrib
cmd2[0] = 0x1D;
// UID from cmd2[1 - 4]
cmd2[5] = 0x00;
cmd2[6] = 0x08;
cmd2[7] = 0x01;
cmd2[8] = 0x00;
cmdLen = 9;
}
// wait
// attrib
if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose();
PrintAndLog("ATTRIB : %s", sprint_hex(cmd2, cmdLen));
if (cmdLen != 3 || !crc2) return rawClose();
if (SRx && cmd2[0] != chipID) return rawClose();
}
return HF14BCmdRaw(reply, &crc, power, data, &datalen, true);
}
// print full atqb info
static void print_atqb_resp(uint8_t *data){
//PrintAndLog (" UID: %s", sprint_hex(data+1,4));
PrintAndLog (" App Data: %s", sprint_hex(data+5,4));
PrintAndLog (" Protocol: %s", sprint_hex(data+9,3));
uint8_t BitRate = data[9];
if (!BitRate) PrintAndLog (" Bit Rate: 106 kbit/s only PICC <-> PCD");
if (BitRate & 0x10) PrintAndLog (" Bit Rate: 212 kbit/s PICC -> PCD supported");
if (BitRate & 0x20) PrintAndLog (" Bit Rate: 424 kbit/s PICC -> PCD supported");
if (BitRate & 0x40) PrintAndLog (" Bit Rate: 847 kbit/s PICC -> PCD supported");
if (BitRate & 0x01) PrintAndLog (" Bit Rate: 212 kbit/s PICC <- PCD supported");
if (BitRate & 0x02) PrintAndLog (" Bit Rate: 424 kbit/s PICC <- PCD supported");
if (BitRate & 0x04) PrintAndLog (" Bit Rate: 847 kbit/s PICC <- PCD supported");
if (BitRate & 0x80) PrintAndLog (" Same bit rate <-> required");
uint16_t maxFrame = data[10]>>4;
if (maxFrame < 5) maxFrame = 8 * maxFrame + 16;
else if (maxFrame == 5) maxFrame = 64;
else if (maxFrame == 6) maxFrame = 96;
else if (maxFrame == 7) maxFrame = 128;
else if (maxFrame == 8) maxFrame = 256;
else maxFrame = 257;
PrintAndLog ("Max Frame Size: %u%s",maxFrame, (maxFrame == 257) ? "+ RFU" : "");
uint8_t protocolT = data[10] & 0xF;
PrintAndLog (" Protocol Type: Protocol is %scompliant with ISO/IEC 14443-4",(protocolT) ? "" : "not " );
PrintAndLog ("Frame Wait Int: %u", data[11]>>4);
PrintAndLog (" App Data Code: Application is %s",(data[11]&4) ? "Standard" : "Proprietary");
PrintAndLog (" Frame Options: NAD is %ssupported",(data[11]&2) ? "" : "not ");
PrintAndLog (" Frame Options: CID is %ssupported",(data[11]&1) ? "" : "not ");
PrintAndLog ("Max Buf Length: %u (MBLI) %s",data[14]>>4, (data[14] & 0xF0) ? "" : "not supported");
return;
}
// get SRx chip model (from UID) // from ST Microelectronics
char *get_ST_Chip_Model(uint8_t data){
static char model[20];
char *retStr = model;
memset(model,0, sizeof(model));
switch (data) {
case 0x0: sprintf(retStr, "SRIX4K (Special)"); break;
case 0x2: sprintf(retStr, "SR176"); break;
case 0x3: sprintf(retStr, "SRIX4K"); break;
case 0x4: sprintf(retStr, "SRIX512"); break;
case 0x6: sprintf(retStr, "SRI512"); break;
case 0x7: sprintf(retStr, "SRI4K"); break;
case 0xC: sprintf(retStr, "SRT512"); break;
default : sprintf(retStr, "Unknown"); break;
}
return retStr;
}
int print_ST_Lock_info(uint8_t model){
//assume connection open and tag selected...
uint8_t data[16] = {0x00};
uint8_t datalen = 2;
bool crc = true;
uint8_t resplen;
uint8_t blk1;
data[0] = 0x08;
if (model == 0x2) { //SR176 has special command:
data[1] = 0xf;
resplen = 4;
} else {
data[1] = 0xff;
resplen = 6;
}
//std read cmd
if (HF14BCmdRaw(true, &crc, true, data, &datalen, false)==0) return rawClose();
if (datalen != resplen || !crc) return rawClose();
PrintAndLog("Chip Write Protection Bits:");
// now interpret the data
switch (model){
case 0x0: //fall through (SRIX4K special)
case 0x3: //fall through (SRIx4K)
case 0x7: // (SRI4K)
//only need data[3]
blk1 = 9;
PrintAndLog(" raw: %s", sprint_bin(data+3, 1));
PrintAndLog(" 07/08:%slocked", (data[3] & 1) ? " not " : " " );
for (uint8_t i = 1; i<8; i++){
PrintAndLog(" %02u:%slocked", blk1, (data[3] & (1 << i)) ? " not " : " " );
blk1++;
}
break;
case 0x4: //fall through (SRIX512)
case 0x6: //fall through (SRI512)
case 0xC: // (SRT512)
//need data[2] and data[3]
blk1 = 0;
PrintAndLog(" raw: %s", sprint_bin(data+2, 2));
for (uint8_t b=2; b<4; b++){
for (uint8_t i=0; i<8; i++){
PrintAndLog(" %02u:%slocked", blk1, (data[b] & (1 << i)) ? " not " : " " );
blk1++;
}
}
break;
case 0x2: // (SR176)
//need data[2]
blk1 = 0;
PrintAndLog(" raw: %s", sprint_bin(data+2, 1));
for (uint8_t i = 0; i<8; i++){
PrintAndLog(" %02u/%02u:%slocked", blk1, blk1+1, (data[2] & (1 << i)) ? " " : " not " );
blk1+=2;
}
break;
default:
return rawClose();
}
return 1;
}
// print UID info from SRx chips (ST Microelectronics)
static void print_st_general_info(uint8_t *data){
//uid = first 8 bytes in data
PrintAndLog(" UID: %s", sprint_hex(SwapEndian64(data,8,8),8));
PrintAndLog(" MFG: %02X, %s", data[6], getTagInfo(data[6]));
PrintAndLog("Chip: %02X, %s", data[5]>>2, get_ST_Chip_Model(data[5]>>2));
return;
}
// 14b get and print UID only (general info)
int HF14BStdReader(uint8_t *data, uint8_t *datalen){
//05 00 00 = find one tag in field
//1d xx xx xx xx 00 08 01 00 = attrib xx=UID (resp 10 [f9 e0])
//a3 = ? (resp 03 [e2 c2])
//02 = ? (resp 02 [6a d3])
// 022b (resp 02 67 00 [29 5b])
// 0200a40400 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480300 (resp 02 67 00 [29 5b])
// 0200a4040c07a0000002480200 (resp 02 67 00 [29 5b])
// 0200a4040006a0000000010100 (resp 02 6a 82 [4b 4c])
// 0200a4040c09d27600002545500200 (resp 02 67 00 [29 5b])
// 0200a404000cd2760001354b414e4d30310000 (resp 02 6a 82 [4b 4c])
// 0200a404000ca000000063504b43532d313500 (resp 02 6a 82 [4b 4c])
// 0200a4040010a000000018300301000000000000000000 (resp 02 6a 82 [4b 4c])
//03 = ? (resp 03 [e3 c2])
//c2 = ? (resp c2 [66 15])
//b2 = ? (resp a3 [e9 67])
//a2 = ? (resp 02 [6a d3])
bool crc = true;
*datalen = 3;
//std read cmd
data[0] = 0x05;
data[1] = 0x00;
data[2] = 0x08;
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose();
if (data[0] != 0x50 || *datalen != 14 || !crc) return rawClose();
PrintAndLog ("\n14443-3b tag found:");
PrintAndLog (" UID: %s", sprint_hex(data+1,4));
uint8_t cmd2[16];
uint8_t cmdLen = 3;
bool crc2 = true;
cmd2[0] = 0x1D;
// UID from data[1 - 4]
cmd2[1] = data[1];
cmd2[2] = data[2];
cmd2[3] = data[3];
cmd2[4] = data[4];
cmd2[5] = 0x00;
cmd2[6] = 0x08;
cmd2[7] = 0x01;
cmd2[8] = 0x00;
cmdLen = 9;
// attrib
if (HF14BCmdRaw(true, &crc2, true, cmd2, &cmdLen, false)==0) return rawClose();
if (cmdLen != 3 || !crc2) return rawClose();
// add attrib responce to data
data[14] = cmd2[0];
rawClose();
return 1;
}
// 14b get and print Full Info (as much as we know)
int HF14BStdInfo(uint8_t *data, uint8_t *datalen){
if (!HF14BStdReader(data,datalen)) return 0;
//add more info here
print_atqb_resp(data);
return 1;
}
// SRx get and print general info about SRx chip from UID
int HF14B_ST_Reader(uint8_t *data, uint8_t *datalen, bool closeCon){
bool crc = true;
*datalen = 2;
//wake cmd
data[0] = 0x06;
data[1] = 0x00;
//leave power on
// verbose on for now for testing - turn off when functional
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose();
if (*datalen != 3 || !crc) return rawClose();
uint8_t chipID = data[0];
// select
data[0] = 0x0E;
data[1] = chipID;
*datalen = 2;
//leave power on
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose();
if (*datalen != 3 || !crc || data[0] != chipID) return rawClose();
// get uid
data[0] = 0x0B;
*datalen = 1;
//leave power on
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)==0) return rawClose();
if (*datalen != 10 || !crc) return rawClose();
//power off ?
if (closeCon) rawClose();
PrintAndLog("\n14443-3b ST tag found:");
print_st_general_info(data);
return 1;
}
// SRx get and print full info (needs more info...)
int HF14B_ST_Info(uint8_t *data, uint8_t *datalen){
if (!HF14B_ST_Reader(data, datalen, false)) return 0;
//add locking bit information here.
if (print_ST_Lock_info(data[5]>>2))
rawClose();
return 1;
}
// test for other 14b type tags (mimic another reader - don't have tags to identify)
int HF14B_Other_Reader(uint8_t *data, uint8_t *datalen){
bool crc = true;
*datalen = 4;
//std read cmd
data[0] = 0x00;
data[1] = 0x0b;
data[2] = 0x3f;
data[3] = 0x80;
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) {
if (*datalen > 2 || !crc) {
PrintAndLog ("\n14443-3b tag found:");
PrintAndLog ("Unknown tag type answered to a 0x000b3f80 command ans:");
PrintAndLog ("%s",sprint_hex(data,*datalen));
rawClose();
return 1;
}
}
crc = false;
*datalen = 1;
data[0] = 0x0a;
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) {
if (*datalen > 0) {
PrintAndLog ("\n14443-3b tag found:");
PrintAndLog ("Unknown tag type answered to a 0x0A command ans:");
PrintAndLog ("%s",sprint_hex(data,*datalen));
rawClose();
return 1;
}
}
crc = false;
*datalen = 1;
data[0] = 0x0c;
if (HF14BCmdRaw(true, &crc, true, data, datalen, false)!=0) {
if (*datalen > 0) {
PrintAndLog ("\n14443-3b tag found:");
PrintAndLog ("Unknown tag type answered to a 0x0C command ans:");
PrintAndLog ("%s",sprint_hex(data,*datalen));
rawClose();
return 1;
}
}
rawClose();
return 0;
}
// get and print all info known about any known 14b tag
int HF14BInfo(bool verbose){
uint8_t data[USB_CMD_DATA_SIZE];
uint8_t datalen = 5;
// try std 14b (atqb)
if (HF14BStdInfo(data, &datalen)) return 1;
// try st 14b
if (HF14B_ST_Info(data, &datalen)) return 1;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (HF14B_Other_Reader(data, &datalen)) return 1;
if (verbose) PrintAndLog("no 14443B tag found");
return 0;
}
// menu command to get and print all info known about any known 14b tag
int CmdHF14Binfo(const char *Cmd){
return HF14BInfo(true);
}
// get and print general info about all known 14b chips
int HF14BReader(bool verbose){
uint8_t data[USB_CMD_DATA_SIZE];
uint8_t datalen = 5;
// try std 14b (atqb)
if (HF14BStdReader(data, &datalen)) return 1;
// try st 14b
if (HF14B_ST_Reader(data, &datalen, true)) return 1;
// try unknown 14b read commands (to be identified later)
// could be read of calypso, CEPAS, moneo, or pico pass.
if (HF14B_Other_Reader(data, &datalen)) return 1;
if (verbose) PrintAndLog("no 14443B tag found");
return 0;
}
// menu command to get and print general info about all known 14b chips
int CmdHF14BReader(const char *Cmd){
return HF14BReader(true);
}
int CmdSriWrite( const char *Cmd){
/*
* For SRIX4K blocks 00 - 7F
* hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata
*
* For SR512 blocks 00 - 0F
* hf 14b raw -c -p 09 $sr512wblock $sr512wdata
*
* Special block FF = otp_lock_reg block.
* Data len 4 bytes-
*/
char cmdp = param_getchar(Cmd, 0);
uint8_t blockno = -1;
uint8_t data[4] = {0x00};
bool isSrix4k = true;
char str[20];
if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf 14b write <1|2> <BLOCK> <DATA>");
PrintAndLog(" [1 = SRIX4K]");
PrintAndLog(" [2 = SRI512]");
PrintAndLog(" [BLOCK number depends on tag, special block == FF]");
PrintAndLog(" sample: hf 14b write 1 7F 11223344");
PrintAndLog(" : hf 14b write 1 FF 11223344");
PrintAndLog(" : hf 14b write 2 15 11223344");
PrintAndLog(" : hf 14b write 2 FF 11223344");
return 0;
}
if ( cmdp == '2' )
isSrix4k = false;
//blockno = param_get8(Cmd, 1);
if ( param_gethex(Cmd,1, &blockno, 2) ) {
PrintAndLog("Block number must include 2 HEX symbols");
return 0;
}
if ( isSrix4k ){
if ( blockno > 0x7f && blockno != 0xff ){
PrintAndLog("Block number out of range");
return 0;
}
} else {
if ( blockno > 0x0f && blockno != 0xff ){
PrintAndLog("Block number out of range");
return 0;
}
}
if (param_gethex(Cmd, 2, data, 8)) {
PrintAndLog("Data must include 8 HEX symbols");
return 0;
}
if ( blockno == 0xff)
PrintAndLog("[%s] Write special block %02X [ %s ]", (isSrix4k)?"SRIX4K":"SRI512" , blockno, sprint_hex(data,4) );
else
PrintAndLog("[%s] Write block %02X [ %s ]", (isSrix4k)?"SRIX4K":"SRI512", blockno, sprint_hex(data,4) );
sprintf(str, "-c 09 %02x %02x%02x%02x%02x", blockno, data[0], data[1], data[2], data[3]);
CmdHF14BCmdRaw(str);
return 0;
}
uint32_t srix4kEncode(uint32_t value) {
/*
// vv = value
// pp = position
// vv vv vv pp
4 bytes : 00 1A 20 01
*/
#define NibbleHigh(b) ( (b & 0xF0) >> 4 )
#define NibbleLow(b) ( b & 0x0F )
#define Crumb(b,p) (((b & (0x3 << p) ) >> p ) & 0xF)
// only the lower crumbs.
uint8_t block = (value & 0xFF);
uint8_t i = 0;
uint8_t valuebytes[] = {0,0,0};
num_to_bytes(value, 3, valuebytes);
// Scrambled part
// Crumb swapping of value.
uint8_t temp[] = {0,0};
temp[0] = (Crumb(value, 22) << 4 | Crumb(value, 14 ) << 2 | Crumb(value, 6)) << 4;
temp[0] |= Crumb(value, 20) << 4 | Crumb(value, 12 ) << 2 | Crumb(value, 4);
temp[1] = (Crumb(value, 18) << 4 | Crumb(value, 10 ) << 2 | Crumb(value, 2)) << 4;
temp[1] |= Crumb(value, 16) << 4 | Crumb(value, 8 ) << 2 | Crumb(value, 0);
// chksum part
uint32_t chksum = 0xFF - block;
// chksum is reduced by each nibbles of value.
for (i = 0; i < 3; ++i){
chksum -= NibbleHigh(valuebytes[i]);
chksum -= NibbleLow(valuebytes[i]);
}
// base4 conversion and left shift twice
i = 3;
uint8_t base4[] = {0,0,0,0};
while( chksum !=0 ){
base4[i--] = (chksum % 4 << 2);
chksum /= 4;
}
// merge scambled and chksum parts
uint32_t encvalue =
( NibbleLow ( base4[0]) << 28 ) |
( NibbleHigh( temp[0]) << 24 ) |
( NibbleLow ( base4[1]) << 20 ) |
( NibbleLow ( temp[0]) << 16 ) |
( NibbleLow ( base4[2]) << 12 ) |
( NibbleHigh( temp[1]) << 8 ) |
( NibbleLow ( base4[3]) << 4 ) |
NibbleLow ( temp[1] );
PrintAndLog("ICE encoded | %08X -> %08X", value, encvalue);
return encvalue;
}
uint32_t srix4kDecode(uint32_t value) {
switch(value) {
case 0xC04F42C5: return 0x003139;
case 0xC1484807: return 0x002943;
case 0xC0C60848: return 0x001A20;
}
return 0;
}
uint32_t srix4kDecodeCounter(uint32_t num) {
uint32_t value = ~num;
++value;
return value;
}
uint32_t srix4kGetMagicbytes( uint64_t uid, uint32_t block6, uint32_t block18, uint32_t block19 ){
#define MASK 0xFFFFFFFF;
uint32_t uid32 = uid & MASK;
uint32_t counter = srix4kDecodeCounter(block6);
uint32_t decodedBlock18 = srix4kDecode(block18);
uint32_t decodedBlock19 = srix4kDecode(block19);
uint32_t doubleBlock = (decodedBlock18 << 16 | decodedBlock19) + 1;
uint32_t result = (uid32 * doubleBlock * counter) & MASK;
PrintAndLog("Magic bytes | %08X", result);
return result;
}
int srix4kValid(const char *Cmd){
uint64_t uid = 0xD00202501A4532F9;
uint32_t block6 = 0xFFFFFFFF;
uint32_t block18 = 0xC04F42C5;
uint32_t block19 = 0xC1484807;
uint32_t block21 = 0xD1BCABA4;
uint32_t test_b18 = 0x00313918;
uint32_t test_b18_enc = srix4kEncode(test_b18);
//uint32_t test_b18_dec = srix4kDecode(test_b18_enc);
PrintAndLog("ENCODE & CHECKSUM | %08X -> %08X (%s)", test_b18, test_b18_enc , "");
uint32_t magic = srix4kGetMagicbytes(uid, block6, block18, block19);
PrintAndLog("BLOCK 21 | %08X -> %08X (no XOR)", block21, magic ^ block21);
return 0;
}
int CmdteaSelfTest(const char *Cmd){
uint8_t v[8], v_le[8];
memset(v, 0x00, sizeof(v));
memset(v_le, 0x00, sizeof(v_le));
uint8_t* v_ptr = v_le;
uint8_t cmdlen = strlen(Cmd);
cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen;
if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){
PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen);
return 1;
}
SwapEndian64ex(v , 8, 4, v_ptr);
// ENCRYPTION KEY:
uint8_t key[16] = {0x00};
uint8_t keyle[16];
uint8_t* key_ptr = keyle;
SwapEndian64ex(key , sizeof(key), 4, key_ptr);
PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8));
tea_decrypt(v_ptr, key_ptr);
PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8));
tea_encrypt(v_ptr, key_ptr);
tea_encrypt(v_ptr, key_ptr);
PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8));
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"info", CmdHF14Binfo, 0, "Find and print details about a 14443B tag"},
{"list", CmdHF14BList, 0, "[Deprecated] List ISO 14443B history"},
{"reader", CmdHF14BReader, 0, "Act as a 14443B reader to identify a tag"},
{"sim", CmdHF14BSim, 0, "Fake ISO 14443B tag"},
{"snoop", CmdHF14BSnoop, 0, "Eavesdrop ISO 14443B"},
{"sri512read", CmdSri512Read, 0, "Read contents of a SRI512 tag"},
{"srix4kread", CmdSrix4kRead, 0, "Read contents of a SRIX4K tag"},
{"sriwrite", CmdSriWrite, 0, "Write data to a SRI512 | SRIX4K tag"},
{"raw", CmdHF14BCmdRaw, 0, "Send raw hex data to tag"},
//{"valid", srix4kValid, 1, "srix4k checksum test"},
{"valid", CmdteaSelfTest, 1, "tea test"},
{NULL, NULL, 0, NULL}
};
int CmdHF14B(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}