proxmark3/armsrc/epa.c

561 lines
19 KiB
C
Raw Normal View History

//-----------------------------------------------------------------------------
// Frederik Möllers - August 2012
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support the German electronic "Personalausweis" (ID card)
// Note that the functions which do not implement USB commands do NOT initialize
// the card (with iso14443a_select_card etc.). If You want to use these
// functions, You need to do the setup before calling them!
//-----------------------------------------------------------------------------
#include "epa.h"
#include "cmd.h"
#include "fpgaloader.h"
#include "iso14443a.h"
#include "iso14443b.h"
#include "string.h"
#include "util.h"
#include "dbprint.h"
#include "commonutil.h"
#include "ticks.h"
// Protocol and Parameter Selection Request for ISO 14443 type A cards
// use regular (1x) speed in both directions
// CRC is already included
static const uint8_t pps[] = {0xD0, 0x11, 0x00, 0x52, 0xA6};
// APDUs for communication with German Identification Card
// General Authenticate (request encrypted nonce) WITHOUT the Le at the end
static const uint8_t apdu_general_authenticate_pace_get_nonce[] = {
2019-03-10 03:34:41 +08:00
0x10, // CLA
0x86, // INS
0x00, // P1
0x00, // P2
0x02, // Lc
0x7C, // Type: Dynamic Authentication Data
0x00, // Length: 0 bytes
};
// MSE: Set AT (only CLA, INS, P1 and P2)
static const uint8_t apdu_mse_set_at_start[] = {
2019-03-10 03:34:41 +08:00
0x00, // CLA
0x22, // INS
0xC1, // P1
0xA4, // P2
};
// SELECT BINARY with the ID for EF.CardAccess
static const uint8_t apdu_select_binary_cardaccess[] = {
2019-03-10 03:34:41 +08:00
0x00, // CLA
0xA4, // INS
0x02, // P1
0x0C, // P2
0x02, // Lc
0x01, // ID
0x1C // ID
};
// READ BINARY
static const uint8_t apdu_read_binary[] = {
2019-03-10 03:34:41 +08:00
0x00, // CLA
0xB0, // INS
0x00, // P1
0x00, // P2
0x38 // Le
};
// the leading bytes of a PACE OID
static const uint8_t oid_pace_start[] = {
0x04, // itu-t, identified-organization
0x00, // etsi
0x7F, // reserved
0x00, // etsi-identified-organization
0x07, // bsi-de
0x02, // protocols
0x02, // smartcard
0x04 // id-PACE
};
// APDUs for replaying:
// MSE: Set AT (initiate PACE)
static uint8_t apdu_replay_mse_set_at_pace[41];
// General Authenticate (Get Nonce)
static uint8_t apdu_replay_general_authenticate_pace_get_nonce[8];
// General Authenticate (Map Nonce)
static uint8_t apdu_replay_general_authenticate_pace_map_nonce[75];
// General Authenticate (Mutual Authenticate)
static uint8_t apdu_replay_general_authenticate_pace_mutual_authenticate[75];
// General Authenticate (Perform Key Agreement)
static uint8_t apdu_replay_general_authenticate_pace_perform_key_agreement[18];
// pointers to the APDUs (for iterations)
static struct {
2019-03-10 03:34:41 +08:00
uint8_t len;
uint8_t *data;
} const apdus_replay[] = {
2019-03-10 03:34:41 +08:00
{sizeof(apdu_replay_mse_set_at_pace), apdu_replay_mse_set_at_pace},
{sizeof(apdu_replay_general_authenticate_pace_get_nonce), apdu_replay_general_authenticate_pace_get_nonce},
{sizeof(apdu_replay_general_authenticate_pace_map_nonce), apdu_replay_general_authenticate_pace_map_nonce},
{sizeof(apdu_replay_general_authenticate_pace_mutual_authenticate), apdu_replay_general_authenticate_pace_mutual_authenticate},
{sizeof(apdu_replay_general_authenticate_pace_perform_key_agreement), apdu_replay_general_authenticate_pace_perform_key_agreement}
};
// lengths of the replay APDUs
static uint8_t apdu_lengths_replay[5];
// type of card (ISO 14443 A or B)
2017-07-07 18:52:51 +08:00
static char iso_type = 0;
//-----------------------------------------------------------------------------
// Wrapper for sending APDUs to type A and B cards
//-----------------------------------------------------------------------------
2020-08-17 03:13:10 +08:00
static int EPA_APDU(uint8_t *apdu, size_t length, uint8_t *response, uint16_t respmaxlen) {
2019-03-10 07:00:59 +08:00
switch (iso_type) {
2019-03-10 03:34:41 +08:00
case 'a':
return iso14_apdu(apdu, (uint16_t) length, false, response, NULL);
case 'b':
2020-10-04 01:08:27 +08:00
return iso14443b_apdu(apdu, length, false, response, respmaxlen, NULL);
2019-03-10 03:34:41 +08:00
default:
return 0;
}
}
//-----------------------------------------------------------------------------
// Closes the communication channel and turns off the field
//-----------------------------------------------------------------------------
2020-05-10 22:59:38 +08:00
void EPA_Finish(void) {
2019-03-10 03:34:41 +08:00
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
iso_type = 0;
}
//-----------------------------------------------------------------------------
// Parses DER encoded data, e.g. from EF.CardAccess and fills out the given
// structs. If a pointer is 0, it is ignored.
// The function returns 0 on success and if an error occurred, it returns the
// offset where it occurred.
//
// TODO: This function can access memory outside of the given data if the DER
// encoding is broken
// TODO: Support skipping elements with a length > 0x7F
// TODO: Support OIDs with a length > 7F
// TODO: Support elements with long tags (tag is longer than 1 byte)
// TODO: Support proprietary PACE domain parameters
//-----------------------------------------------------------------------------
2020-08-18 04:06:54 +08:00
size_t EPA_Parse_CardAccess(uint8_t *data, size_t length, pace_version_info_t *pace_info) {
2019-03-10 03:34:41 +08:00
size_t index = 0;
while (index <= length - 2) {
// determine type of element
// SET or SEQUENCE
if (data[index] == 0x31 || data[index] == 0x30) {
// enter the set (skip tag + length)
index += 2;
// check for extended length
if ((data[index - 1] & 0x80) != 0) {
2019-03-10 07:00:59 +08:00
index += (data[index - 1] & 0x7F);
2019-03-10 03:34:41 +08:00
}
}
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// OID
else if (data[index] == 0x06) {
// is this a PACE OID?
if (data[index + 1] == 0x0A // length matches
2020-08-18 04:06:54 +08:00
&& memcmp(data + index + 2, oid_pace_start, sizeof(oid_pace_start)) == 0 // content matches
&& pace_info != NULL) {
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// first, clear the pace_info struct
memset(pace_info, 0, sizeof(pace_version_info_t));
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
memcpy(pace_info->oid, data + index + 2, sizeof(pace_info->oid));
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// a PACE OID is followed by the version
index += data[index + 1] + 2;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
if (data[index] == 02 && data[index + 1] == 01) {
pace_info->version = data[index + 2];
index += 3;
2019-03-10 07:00:59 +08:00
} else {
2019-03-10 03:34:41 +08:00
return index;
}
// after that there might(!) be the parameter ID
if (data[index] == 02 && data[index + 1] == 01) {
pace_info->parameter_id = data[index + 2];
index += 3;
}
2020-08-18 04:06:54 +08:00
2019-03-10 07:00:59 +08:00
} else {
2019-03-10 03:34:41 +08:00
// skip this OID
index += 2 + data[index + 1];
}
}
// if the length is 0, something is wrong
// TODO: This needs to be extended to support long tags
else if (data[index + 1] == 0) {
return index;
2019-03-10 07:00:59 +08:00
} else {
2019-03-10 03:34:41 +08:00
// skip this part
// TODO: This needs to be extended to support long tags
// TODO: This needs to be extended to support unknown elements with
// a size > 0x7F
index += 2 + data[index + 1];
}
}
// TODO: We should check whether we reached the end in error, but for that
// we need a better parser (e.g. with states like IN_SET or IN_PACE_INFO)
return 0;
}
//-----------------------------------------------------------------------------
// Read the file EF.CardAccess and save it into a buffer (at most max_length bytes)
// Returns -1 on failure or the length of the data on success
// TODO: for the moment this sends only 1 APDU regardless of the requested length
//-----------------------------------------------------------------------------
int EPA_Read_CardAccess(uint8_t *buffer, size_t max_length) {
2019-03-10 03:34:41 +08:00
// the response APDU of the card
// since the card doesn't always care for the expected length we send it,
// we reserve 262 bytes here just to be safe (256-byte APDU + SW + ISO frame)
uint8_t response_apdu[262];
// select the file EF.CardAccess
2020-09-28 14:23:49 +08:00
int rapdu_length = EPA_APDU((uint8_t *)apdu_select_binary_cardaccess,
2020-09-30 20:27:19 +08:00
sizeof(apdu_select_binary_cardaccess),
response_apdu,
sizeof(response_apdu)
);
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
if (rapdu_length < 6
|| response_apdu[rapdu_length - 4] != 0x90
|| response_apdu[rapdu_length - 3] != 0x00) {
2019-03-10 03:34:41 +08:00
DbpString("Failed to select EF.CardAccess!");
return -1;
}
// read the file
rapdu_length = EPA_APDU((uint8_t *)apdu_read_binary,
2019-03-10 07:00:59 +08:00
sizeof(apdu_read_binary),
2020-08-17 03:13:10 +08:00
response_apdu,
sizeof(response_apdu)
2020-09-07 16:35:09 +08:00
);
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
if (rapdu_length <= 6
|| response_apdu[rapdu_length - 4] != 0x90
|| response_apdu[rapdu_length - 3] != 0x00) {
2019-03-10 03:34:41 +08:00
Dbprintf("Failed to read EF.CardAccess!");
return -1;
}
// copy the content into the buffer
// length of data available: apdu_length - 4 (ISO frame) - 2 (SW)
2020-08-18 04:06:54 +08:00
size_t len = rapdu_length - 6;
len = len < max_length ? len : max_length;
memcpy(buffer, response_apdu + 2, len);
return len;
}
//-----------------------------------------------------------------------------
// Abort helper function for EPA_PACE_Collect_Nonce
// sets relevant data in ack, sends the response
//-----------------------------------------------------------------------------
2020-08-18 04:06:54 +08:00
static void EPA_PACE_Collect_Nonce_Abort(uint32_t cmd, uint8_t step, int func_return) {
2019-03-10 03:34:41 +08:00
// power down the field
EPA_Finish();
2019-03-10 03:34:41 +08:00
// send the USB packet
2020-08-18 04:06:54 +08:00
reply_mix(cmd, step, func_return, 0, 0, 0);
}
//-----------------------------------------------------------------------------
// Acquire one encrypted PACE nonce
//-----------------------------------------------------------------------------
2019-04-18 18:43:35 +08:00
void EPA_PACE_Collect_Nonce(PacketCommandNG *c) {
2019-03-10 03:34:41 +08:00
/*
* ack layout:
* arg:
* 1. element
* step where the error occurred or 0 if no error occurred
* 2. element
* return code of the last executed function
2019-03-10 03:34:41 +08:00
* d:
* Encrypted nonce
*/
// set up communication
2020-04-08 11:14:19 +08:00
int func_return = EPA_Setup();
2019-03-10 03:34:41 +08:00
if (func_return != 0) {
2020-08-18 04:06:54 +08:00
EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 1, func_return);
2019-03-10 03:34:41 +08:00
return;
}
// read the CardAccess file
// this array will hold the CardAccess file
uint8_t card_access[256] = {0};
2020-08-18 04:06:54 +08:00
int cardlen = EPA_Read_CardAccess(card_access, 256);
2019-03-10 03:34:41 +08:00
// the response has to be at least this big to hold the OID
2020-08-18 04:06:54 +08:00
if (cardlen < 18) {
EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 2, cardlen);
2019-03-10 03:34:41 +08:00
return;
}
// this will hold the PACE info of the card
pace_version_info_t pace_version_info;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// search for the PACE OID
2020-08-18 04:06:54 +08:00
func_return = EPA_Parse_CardAccess(card_access, cardlen, &pace_version_info);
2019-03-10 03:34:41 +08:00
if (func_return != 0 || pace_version_info.version == 0) {
2020-08-18 04:06:54 +08:00
EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 3, func_return);
2019-03-10 03:34:41 +08:00
return;
}
// initiate the PACE protocol
// use the CAN for the password since that doesn't change
func_return = EPA_PACE_MSE_Set_AT(pace_version_info, 2);
// check if the command succeeded
if (func_return != 0) {
2020-08-18 04:06:54 +08:00
EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 4, func_return);
return;
}
2019-03-10 03:34:41 +08:00
// now get the nonce
uint8_t nonce[256] = {0};
2020-09-07 16:35:09 +08:00
2020-08-18 04:06:54 +08:00
struct p {
uint32_t m;
} PACKED;
2020-09-07 16:35:09 +08:00
struct p *packet = (struct p *)c->data.asBytes;
2020-08-18 04:06:54 +08:00
func_return = EPA_PACE_Get_Nonce(packet->m, nonce);
2019-03-10 03:34:41 +08:00
// check if the command succeeded
2019-03-10 07:00:59 +08:00
if (func_return < 0) {
2020-08-18 04:06:54 +08:00
EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 5, func_return);
2019-03-10 03:34:41 +08:00
return;
}
EPA_Finish();
// save received information
2020-08-18 04:06:54 +08:00
reply_mix(CMD_HF_EPA_COLLECT_NONCE, 0, func_return, 0, nonce, func_return);
}
//-----------------------------------------------------------------------------
// Performs the "Get Nonce" step of the PACE protocol and saves the returned
// nonce. The caller is responsible for allocating enough memory to store the
// nonce. Note that the returned size might be less or than or greater than the
// requested size!
// Returns the actual size of the nonce on success or a less-than-zero error
// code on failure.
//-----------------------------------------------------------------------------
int EPA_PACE_Get_Nonce(uint8_t requested_length, uint8_t *nonce) {
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// build the APDU
uint8_t apdu[sizeof(apdu_general_authenticate_pace_get_nonce) + 1];
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// copy the constant part
2020-08-18 04:06:54 +08:00
memcpy(apdu, apdu_general_authenticate_pace_get_nonce, sizeof(apdu_general_authenticate_pace_get_nonce));
2020-09-07 16:35:09 +08:00
2019-03-10 03:34:41 +08:00
// append Le (requested length + 2 due to tag/length taking 2 bytes) in RAPDU
apdu[sizeof(apdu_general_authenticate_pace_get_nonce)] = requested_length + 4;
uint8_t response_apdu[262];
2020-08-18 04:06:54 +08:00
int send_return = EPA_APDU(apdu, sizeof(apdu), response_apdu, sizeof(response_apdu));
2019-03-10 03:34:41 +08:00
if (send_return < 6
|| response_apdu[send_return - 4] != 0x90
|| response_apdu[send_return - 3] != 0x00) {
2019-03-10 03:34:41 +08:00
return -1;
}
// if there is no nonce in the RAPDU, return here
2019-03-10 07:00:59 +08:00
if (send_return < 10) {
2019-03-10 03:34:41 +08:00
// no error
return 0;
}
// get the actual length of the nonce
uint8_t nonce_length = response_apdu[5];
2019-03-10 07:00:59 +08:00
if (nonce_length > send_return - 10) {
2019-03-10 03:34:41 +08:00
nonce_length = send_return - 10;
}
// copy the nonce
memcpy(nonce, response_apdu + 6, nonce_length);
return nonce_length;
}
//-----------------------------------------------------------------------------
// Initializes the PACE protocol by performing the "MSE: Set AT" step
// Returns 0 on success or a non-zero error code on failure
//-----------------------------------------------------------------------------
int EPA_PACE_MSE_Set_AT(pace_version_info_t pace_version_info, uint8_t password) {
2019-03-10 03:34:41 +08:00
// create the MSE: Set AT APDU
uint8_t apdu[23];
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// the minimum length (will be increased as more data is added)
size_t apdu_length = 20;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// copy the constant part
2020-08-18 04:06:54 +08:00
memcpy(apdu, apdu_mse_set_at_start, sizeof(apdu_mse_set_at_start));
2019-03-10 03:34:41 +08:00
// type: OID
apdu[5] = 0x80;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// length of the OID
apdu[6] = sizeof(pace_version_info.oid);
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// copy the OID
2020-08-18 04:06:54 +08:00
memcpy(apdu + 7, pace_version_info.oid, sizeof(pace_version_info.oid));
2019-03-10 03:34:41 +08:00
// type: password
apdu[17] = 0x83;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// length: 1
apdu[18] = 1;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// password
apdu[19] = password;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// if standardized domain parameters are used, copy the ID
if (pace_version_info.parameter_id != 0) {
apdu_length += 3;
// type: domain parameter
apdu[20] = 0x84;
// length: 1
apdu[21] = 1;
// copy the parameter ID
apdu[22] = pace_version_info.parameter_id;
}
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// now set Lc to the actual length
apdu[4] = apdu_length - 5;
2020-08-18 04:06:54 +08:00
2019-03-10 03:34:41 +08:00
// send it
uint8_t response_apdu[6];
2020-08-18 04:06:54 +08:00
int send_return = EPA_APDU(apdu, apdu_length, response_apdu, sizeof(response_apdu));
Dbprintf("send ret %d bytes", send_return);
// Dbhexdump(send_return, response_apdu, false);
2019-03-10 03:34:41 +08:00
// check if the command succeeded
2020-08-18 04:06:54 +08:00
if (send_return != 6)
// && response_apdu[send_return - 4] != 0x90
2020-09-07 16:35:09 +08:00
// || response_apdu[send_return - 3] != 0x00)
{
2019-03-10 03:34:41 +08:00
return 1;
}
return 0;
}
//-----------------------------------------------------------------------------
// Perform the PACE protocol by replaying given APDUs
//-----------------------------------------------------------------------------
2019-04-18 18:43:35 +08:00
void EPA_PACE_Replay(PacketCommandNG *c) {
2019-05-14 18:51:45 +08:00
uint32_t timings[ARRAYLEN(apdu_lengths_replay)] = {0};
2019-03-10 03:34:41 +08:00
// if an APDU has been passed, save it
2019-04-18 06:12:52 +08:00
if (c->oldarg[0] != 0) {
2019-03-10 03:34:41 +08:00
// make sure it's not too big
2019-04-18 06:12:52 +08:00
if (c->oldarg[2] > apdus_replay[c->oldarg[0] - 1].len) {
2020-04-08 11:14:19 +08:00
reply_mix(CMD_ACK, 1, 0, 0, NULL, 0);
2019-03-10 03:34:41 +08:00
}
2019-04-18 06:12:52 +08:00
memcpy(apdus_replay[c->oldarg[0] - 1].data + c->oldarg[1],
c->data.asBytes,
c->oldarg[2]);
2019-03-10 03:34:41 +08:00
// save/update APDU length
2019-04-18 06:12:52 +08:00
if (c->oldarg[1] == 0) {
apdu_lengths_replay[c->oldarg[0] - 1] = c->oldarg[2];
2019-03-10 03:34:41 +08:00
} else {
2019-04-18 06:12:52 +08:00
apdu_lengths_replay[c->oldarg[0] - 1] += c->oldarg[2];
2019-03-10 03:34:41 +08:00
}
2020-04-08 11:14:19 +08:00
reply_mix(CMD_ACK, 0, 0, 0, NULL, 0);
2019-03-10 03:34:41 +08:00
return;
}
// return value of a function
int func_return;
// set up communication
func_return = EPA_Setup();
if (func_return != 0) {
EPA_Finish();
2020-04-08 11:14:19 +08:00
reply_mix(CMD_ACK, 2, func_return, 0, NULL, 0);
2019-03-10 03:34:41 +08:00
return;
}
// increase the timeout (at least some cards really do need this!)/////////////
// iso14a_set_timeout(0x0003FFFF);
// response APDU
uint8_t response_apdu[300] = {0};
// now replay the data and measure the timings
2019-08-01 06:14:09 +08:00
for (int i = 0; i < ARRAYLEN(apdu_lengths_replay); i++) {
2019-03-10 03:34:41 +08:00
StartCountUS();
func_return = EPA_APDU(apdus_replay[i].data,
2019-03-10 07:00:59 +08:00
apdu_lengths_replay[i],
2020-08-17 03:13:10 +08:00
response_apdu,
sizeof(response_apdu)
2020-09-07 16:35:09 +08:00
);
2019-03-10 03:34:41 +08:00
timings[i] = GetCountUS();
// every step but the last one should succeed
2019-08-01 06:14:09 +08:00
if (i < ARRAYLEN(apdu_lengths_replay) - 1
&& (func_return < 6
|| response_apdu[func_return - 4] != 0x90
|| response_apdu[func_return - 3] != 0x00)) {
2019-03-10 03:34:41 +08:00
EPA_Finish();
2020-04-08 11:14:19 +08:00
reply_mix(CMD_ACK, 3 + i, func_return, 0, timings, 20);
2019-03-10 03:34:41 +08:00
return;
}
}
EPA_Finish();
2020-04-08 11:14:19 +08:00
reply_mix(CMD_ACK, 0, 0, 0, timings, 20);
2019-03-10 03:34:41 +08:00
return;
}
//-----------------------------------------------------------------------------
// Set up a communication channel (Card Select, PPS)
// Returns 0 on success or a non-zero error code on failure
//-----------------------------------------------------------------------------
2020-05-10 22:59:38 +08:00
int EPA_Setup(void) {
2019-03-10 03:34:41 +08:00
// first, look for type A cards
// power up the field
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
2020-04-08 11:14:19 +08:00
iso14a_card_select_t card_a_info;
int return_code = iso14443a_select_card(NULL, &card_a_info, NULL, true, 0, false);
2019-03-10 03:34:41 +08:00
if (return_code == 1) {
2019-06-08 00:41:39 +08:00
uint8_t pps_response[3];
uint8_t pps_response_par[1];
2019-03-10 03:34:41 +08:00
// send the PPS request
ReaderTransmit((uint8_t *)pps, sizeof(pps), NULL);
return_code = ReaderReceive(pps_response, pps_response_par);
if (return_code != 3 || pps_response[0] != 0xD0) {
return return_code == 0 ? 2 : return_code;
}
Dbprintf("ISO 14443 Type A");
iso_type = 'a';
return 0;
}
2020-04-08 11:14:19 +08:00
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2020-04-16 15:01:14 +08:00
2019-03-10 03:34:41 +08:00
// if we're here, there is no type A card, so we look for type B
// power up the field
iso14443b_setup();
2019-06-08 00:41:39 +08:00
iso14b_card_select_t card_b_info;
2019-03-10 07:00:59 +08:00
return_code = iso14443b_select_card(&card_b_info);
2020-04-08 11:14:19 +08:00
2019-03-10 03:34:41 +08:00
if (return_code == 0) {
Dbprintf("ISO 14443 Type B");
iso_type = 'b';
return 0;
}
2020-08-18 04:06:54 +08:00
Dbprintf("No card found");
2019-03-10 03:34:41 +08:00
return 1;
}