proxmark3/client/cmdhfmf.c
2017-02-24 01:14:47 +01:00

2487 lines
74 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2011,2012 Merlok
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// High frequency MIFARE commands
//-----------------------------------------------------------------------------
#include "cmdhfmf.h"
static int CmdHelp(const char *Cmd);
int usage_hf14_mifare(void){
PrintAndLog("Usage: hf mf mifare [h] <block number> <A|B>");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" <block number> (Optional) target other block");
PrintAndLog(" <A|B> (optional) target key type");
PrintAndLog("samples:");
PrintAndLog(" hf mf mifare");
PrintAndLog(" hf mf mifare 16");
PrintAndLog(" hf mf mifare 16 B");
return 0;
}
int usage_hf14_mf1ksim(void){
PrintAndLog("Usage: hf mf sim [h] u <uid> n <numreads> [i] [x] [e] [v]");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" u (Optional) UID 4,7 or 10bytes. If not specified, the UID 4b from emulator memory will be used");
PrintAndLog(" n (Optional) Automatically exit simulation after <numreads> blocks have been read by reader. 0 = infinite");
PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted");
PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a reader");
PrintAndLog(" e (Optional) Fill simulator keys from found keys");
PrintAndLog(" v (Optional) Verbose");
PrintAndLog("samples:");
PrintAndLog(" hf mf sim u 0a0a0a0a");
PrintAndLog(" hf mf sim u 11223344556677");
PrintAndLog(" hf mf sim u 112233445566778899AA");
PrintAndLog(" hf mf sim u 11223344 i x");
return 0;
}
int usage_hf14_dbg(void){
PrintAndLog("Usage: hf mf dbg [h] <debug level>");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" <debug level> (Optional) see list for valid levels");
PrintAndLog(" 0 - no debug messages");
PrintAndLog(" 1 - error messages");
PrintAndLog(" 2 - plus information messages");
PrintAndLog(" 3 - plus debug messages");
PrintAndLog(" 4 - print even debug messages in timing critical functions");
PrintAndLog(" Note: this option therefore may cause malfunction itself");
PrintAndLog("samples:");
PrintAndLog(" hf mf dbg 3");
return 0;
}
int usage_hf14_sniff(void){
PrintAndLog("It continuously gets data from the field and saves it to: log, emulator, emulator file.");
PrintAndLog("Usage: hf mf sniff [h] [l] [d] [f]");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" l save encrypted sequence to logfile `uid.log`");
PrintAndLog(" d decrypt sequence and put it to log file `uid.log`");
// PrintAndLog(" n/a e decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory");
PrintAndLog(" f decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`");
PrintAndLog("sample:");
PrintAndLog(" hf mf sniff l d f");
return 0;
}
int usage_hf14_nested(void){
PrintAndLog("Usage:");
PrintAndLog(" all sectors: hf mf nested <card memory> <block number> <key A/B> <key (12 hex symbols)> [t,d]");
PrintAndLog(" one sector: hf mf nested o <block number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" <target block number> <target key A/B> [t]");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
PrintAndLog(" t transfer keys into emulator memory");
PrintAndLog(" d write keys to binary file");
PrintAndLog(" ");
PrintAndLog("samples:");
PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF ");
PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF t ");
PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF d ");
PrintAndLog(" hf mf nested o 0 A FFFFFFFFFFFF 4 A");
return 0;
}
int usage_hf14_hardnested(void){
PrintAndLog("Usage:");
PrintAndLog(" hf mf hardnested <block number> <key A|B> <key (12 hex symbols)>");
PrintAndLog(" <target block number> <target key A|B> [known target key (12 hex symbols)] [w] [s]");
PrintAndLog(" or hf mf hardnested r [known target key]");
PrintAndLog(" ");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" w acquire nonces and write them to binary file nonces.bin");
PrintAndLog(" s slower acquisition (required by some non standard cards)");
PrintAndLog(" r read nonces.bin and start attack");
PrintAndLog(" t tests?");
PrintAndLog(" ");
PrintAndLog("samples:");
PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A");
PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A w");
PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A w s");
PrintAndLog(" hf mf hardnested r");
PrintAndLog(" hf mf hardnested r a0a1a2a3a4a5");
PrintAndLog(" ");
PrintAndLog("Add the known target key to check if it is present in the remaining key space:");
PrintAndLog(" sample5: hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF");
return 0;
}
int usage_hf14_chk(void){
PrintAndLog("Usage: hf mf chk <block number>|<*card memory> <key type (A/B/?)> [t|d] [<key (12 hex symbols)>] [<dic (*.dic)>]");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" * all sectors based on card memory, other values then below defaults to 1k");
PrintAndLog(" 0 - MINI(320 bytes)");
PrintAndLog(" 1 - 1K");
PrintAndLog(" 2 - 2K");
PrintAndLog(" 4 - 4K");
PrintAndLog(" d write keys to binary file");
PrintAndLog(" t write keys to emulator memory\n");
PrintAndLog(" ");
PrintAndLog("samples:");
PrintAndLog(" hf mf chk 0 A 1234567890ab keys.dic -- target block 0, Key A");
PrintAndLog(" hf mf chk *1 ? t -- target all blocks, all keys, 1K, write to emul");
PrintAndLog(" hf mf chk *1 ? d -- target all blocks, all keys, 1K, write to file");
return 0;
}
int usage_hf14_keybrute(void){
PrintAndLog("J_Run's 2nd phase of multiple sector nested authentication key recovery");
PrintAndLog("You have a known 4 last bytes of a key recovered with mf_nonce_brute tool.");
PrintAndLog("First 2 bytes of key will be bruteforced");
PrintAndLog("");
PrintAndLog("Usage: hf mf keybrute [h] <block number> <A|B> <key>");
PrintAndLog("options:");
PrintAndLog(" h this help");
PrintAndLog(" <block number> target block number");
PrintAndLog(" <A|B> target key type");
PrintAndLog(" <key> candidate key from mf_nonce_brute tool");
PrintAndLog("samples:");
PrintAndLog(" hf mf keybrute 1 A 000011223344");
return 0;
}
int CmdHF14AMifare(const char *Cmd) {
uint32_t uid = 0;
uint32_t nt = 0, nr = 0;
uint64_t par_list = 0, ks_list = 0, r_key = 0;
int16_t isOK = 0;
int tmpchar;
uint8_t blockNo = 0, keytype = MIFARE_AUTH_KEYA;
char cmdp = param_getchar(Cmd, 0);
if ( cmdp == 'H' || cmdp == 'h') return usage_hf14_mifare();
blockNo = param_get8(Cmd, 0);
cmdp = param_getchar(Cmd, 1);
if (cmdp == 'B' || cmdp == 'b')
keytype = MIFARE_AUTH_KEYB;
UsbCommand c = {CMD_READER_MIFARE, {true, blockNo, keytype}};
// message
printf("-------------------------------------------------------------------------\n");
printf("Executing darkside attack. Expected execution time: 25sec on average :-)\n");
printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
printf("-------------------------------------------------------------------------\n");
clock_t t1 = clock();
time_t start, end;
time(&start);
start:
clearCommandBuffer();
SendCommand(&c);
//flush queue
while (ukbhit()) {
tmpchar = getchar();
(void)tmpchar;
}
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
tmpchar = getchar();
(void)tmpchar;
printf("\naborted via keyboard!\n");
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
isOK = resp.arg[0];
printf("\n");
uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
par_list = bytes_to_num(resp.d.asBytes + 8, 8);
ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
nr = bytes_to_num(resp.d.asBytes + 24, 4);
switch (isOK) {
case -1 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -2 : PrintAndLog("Card isn't vulnerable to Darkside attack (doesn't send NACK on authentication requests).\n"); break;
case -3 : PrintAndLog("Card isn't vulnerable to Darkside attack (its random number generator is not predictable).\n"); break;
case -4 : PrintAndLog("Card isn't vulnerable to Darkside attack (its random number generator seems to be based on the wellknown");
PrintAndLog("generating polynomial with 16 effective bits only, but shows unexpected behaviour.\n"); break;
default: ;
}
break;
}
}
printf("\n");
// error
if (isOK != 1) return 1;
if (par_list == 0 && ks_list != 0) {
// this special attack when parities is zero, uses checkkeys. Which now with block/keytype option also needs.
// but it uses 0|1 instead of 0x60|0x61...
if (nonce2key_ex(blockNo, keytype - 0x60 , uid, nt, nr, ks_list, &r_key) ){
PrintAndLog("Trying again with a different reader nonce...");
c.arg[0] = false;
goto start;
} else {
PrintAndLog("Found valid key: %012" PRIx64 " \n", r_key);
goto END;
}
}
// execute original function from util nonce2key
if (nonce2key(uid, nt, nr, par_list, ks_list, &r_key)) {
isOK = 2;
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("Failing is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
c.arg[0] = false;
goto start;
} else {
// nonce2key found a candidate key. Lets verify it.
uint8_t keyblock[] = {0,0,0,0,0,0};
num_to_bytes(r_key, 6, keyblock);
uint64_t key64 = 0;
int res = mfCheckKeys(blockNo, keytype - 0x60 , false, 1, keyblock, &key64);
if ( res > 0 ) {
PrintAndLog("Candidate Key found (%012" PRIx64 ") - Test authentication failed. [%d] Restarting darkside attack", r_key, res);
goto start;
}
PrintAndLog("Found valid key: %012" PRIx64 " \n", r_key);
}
END:
t1 = clock() - t1;
time(&end);
unsigned long elapsed_time = difftime(end, start);
if ( t1 > 0 )
PrintAndLog("Time in darkside: %.0f ticks %u seconds\n", (float)t1, elapsed_time);
return 0;
}
int CmdHF14AMfWrBl(const char *Cmd) {
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf wrbl <block number> <key A/B> <key (12 hex symbols)> <block data (32 hex symbols)>");
PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F");
return 0;
}
blockNo = param_get8(Cmd, 0);
cmdp = param_getchar(Cmd, 1);
if (cmdp == 0x00) {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
if (param_gethex(Cmd, 3, bldata, 32)) {
PrintAndLog("Block data must include 32 HEX symbols");
return 1;
}
PrintAndLog("--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6));
PrintAndLog("--data: %s", sprint_hex(bldata, 16));
UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
memcpy(c.d.asBytes + 10, bldata, 16);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHF14AMfRdBl(const char *Cmd) {
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf rdbl <block number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF ");
return 0;
}
blockNo = param_get8(Cmd, 0);
cmdp = param_getchar(Cmd, 1);
if (cmdp == 0x00) {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
PrintAndLog("--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6));
UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (isOK)
PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16));
else
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHF14AMfRdSc(const char *Cmd) {
int i;
uint8_t sectorNo = 0;
uint8_t keyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t isOK = 0;
uint8_t *data = NULL;
char cmdp = 0x00;
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf rdsc <sector number> <key A/B> <key (12 hex symbols)>");
PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF ");
return 0;
}
sectorNo = param_get8(Cmd, 0);
if (sectorNo > 39) {
PrintAndLog("Sector number must be less than 40");
return 1;
}
cmdp = param_getchar(Cmd, 1);
if (cmdp != 'a' && cmdp != 'A' && cmdp != 'b' && cmdp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (cmdp != 'A' && cmdp != 'a') keyType = 1;
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
PrintAndLog("--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6));
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
PrintAndLog(" ");
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isOK = resp.arg[0] & 0xff;
data = resp.d.asBytes;
PrintAndLog("isOk:%02x", isOK);
if (isOK) {
for (i = 0; i < (sectorNo<32?3:15); i++) {
PrintAndLog("data : %s", sprint_hex(data + i * 16, 16));
}
PrintAndLog("trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16));
}
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
uint8_t FirstBlockOfSector(uint8_t sectorNo) {
if (sectorNo < 32) {
return sectorNo * 4;
} else {
return 32 * 4 + (sectorNo - 32) * 16;
}
}
uint8_t NumBlocksPerSector(uint8_t sectorNo) {
if (sectorNo < 32) {
return 4;
} else {
return 16;
}
}
int CmdHF14AMfDump(const char *Cmd) {
uint8_t sectorNo, blockNo;
uint8_t keyA[40][6];
uint8_t keyB[40][6];
uint8_t rights[40][4];
uint8_t carddata[256][16];
uint8_t numSectors = 16;
FILE *fin;
FILE *fout;
UsbCommand resp;
char cmdp = param_getchar(Cmd, 0);
switch (cmdp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf mf dump [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog("Samples: hf mf dump");
PrintAndLog(" hf mf dump 4");
return 0;
}
if ((fin = fopen("dumpkeys.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpkeys.bin");
return 1;
}
// Read keys A from file
size_t bytes_read;
for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
bytes_read = fread( keyA[sectorNo], 1, 6, fin );
if ( bytes_read != 6) {
PrintAndLog("File reading error.");
fclose(fin);
return 2;
}
}
// Read keys B from file
for (sectorNo=0; sectorNo<numSectors; sectorNo++) {
bytes_read = fread( keyB[sectorNo], 1, 6, fin );
if ( bytes_read != 6) {
PrintAndLog("File reading error.");
fclose(fin);
return 2;
}
}
fclose(fin);
PrintAndLog("|-----------------------------------------|");
PrintAndLog("|------ Reading sector access bits...-----|");
PrintAndLog("|-----------------------------------------|");
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1, 0, 0}};
memcpy(c.d.asBytes, keyA[sectorNo], 6);
clearCommandBuffer();
SendCommand(&c);
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (isOK){
rights[sectorNo][0] = ((data[7] & 0x10)>>2) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>4); // C1C2C3 for data area 0
rights[sectorNo][1] = ((data[7] & 0x20)>>3) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>5); // C1C2C3 for data area 1
rights[sectorNo][2] = ((data[7] & 0x40)>>4) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>6); // C1C2C3 for data area 2
rights[sectorNo][3] = ((data[7] & 0x80)>>5) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>7); // C1C2C3 for sector trailer
} else {
PrintAndLog("Could not get access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
} else {
PrintAndLog("Command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
}
PrintAndLog("|-----------------------------------------|");
PrintAndLog("|----- Dumping all blocks to file... -----|");
PrintAndLog("|-----------------------------------------|");
bool isOK = true;
for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) {
for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
bool received = false;
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A.
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
memcpy(c.d.asBytes, keyA[sectorNo], 6);
clearCommandBuffer();
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
} else { // data block. Check if it can be read with key A or key B
uint8_t data_area = sectorNo<32?blockNo:blockNo/5;
if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}};
memcpy(c.d.asBytes, keyB[sectorNo], 6);
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
} else if (rights[sectorNo][data_area] == 0x07) { // no key would work
isOK = false;
PrintAndLog("Access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo);
} else { // key A would work
UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}};
memcpy(c.d.asBytes, keyA[sectorNo], 6);
clearCommandBuffer();
SendCommand(&c);
received = WaitForResponseTimeout(CMD_ACK,&resp,1500);
}
}
if (received) {
isOK = resp.arg[0] & 0xff;
uint8_t *data = resp.d.asBytes;
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys.
data[0] = (keyA[sectorNo][0]);
data[1] = (keyA[sectorNo][1]);
data[2] = (keyA[sectorNo][2]);
data[3] = (keyA[sectorNo][3]);
data[4] = (keyA[sectorNo][4]);
data[5] = (keyA[sectorNo][5]);
data[10] = (keyB[sectorNo][0]);
data[11] = (keyB[sectorNo][1]);
data[12] = (keyB[sectorNo][2]);
data[13] = (keyB[sectorNo][3]);
data[14] = (keyB[sectorNo][4]);
data[15] = (keyB[sectorNo][5]);
}
if (isOK) {
memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16);
PrintAndLog("Successfully read block %2d of sector %2d.", blockNo, sectorNo);
} else {
PrintAndLog("Could not read block %2d of sector %2d", blockNo, sectorNo);
break;
}
}
else {
isOK = false;
PrintAndLog("Command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo);
break;
}
}
}
if (isOK) {
if ((fout = fopen("dumpdata.bin","wb")) == NULL) {
PrintAndLog("Could not create file name dumpdata.bin");
return 1;
}
uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1);
fwrite(carddata, 1, 16*numblocks, fout);
fclose(fout);
fout = NULL;
PrintAndLog("Dumped %d blocks (%d bytes) to file dumpdata.bin", numblocks, 16*numblocks);
}
return 0;
}
int CmdHF14AMfRestore(const char *Cmd) {
uint8_t sectorNo,blockNo;
uint8_t keyType = 0;
uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF};
uint8_t bldata[16] = {0x00};
uint8_t keyA[40][6];
uint8_t keyB[40][6];
uint8_t numSectors;
FILE *fdump;
FILE *fkeys;
char cmdp = param_getchar(Cmd, 0);
switch (cmdp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: hf mf restore [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog("Samples: hf mf restore");
PrintAndLog(" hf mf restore 4");
return 0;
}
if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpkeys.bin");
return 1;
}
size_t bytes_read;
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread( keyA[sectorNo], 1, 6, fkeys );
if ( bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
return 2;
}
}
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread( keyB[sectorNo], 1, 6, fkeys );
if ( bytes_read != 6) {
PrintAndLog("File reading error (dumpkeys.bin).");
fclose(fkeys);
return 2;
}
}
fclose(fkeys);
if ((fdump = fopen("dumpdata.bin","rb")) == NULL) {
PrintAndLog("Could not find file dumpdata.bin");
return 1;
}
PrintAndLog("Restoring dumpdata.bin to card");
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
for(blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) {
UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
bytes_read = fread(bldata, 1, 16, fdump);
if ( bytes_read != 16) {
PrintAndLog("File reading error (dumpdata.bin).");
fclose(fdump);
fdump = NULL;
return 2;
}
if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer
bldata[0] = (keyA[sectorNo][0]);
bldata[1] = (keyA[sectorNo][1]);
bldata[2] = (keyA[sectorNo][2]);
bldata[3] = (keyA[sectorNo][3]);
bldata[4] = (keyA[sectorNo][4]);
bldata[5] = (keyA[sectorNo][5]);
bldata[10] = (keyB[sectorNo][0]);
bldata[11] = (keyB[sectorNo][1]);
bldata[12] = (keyB[sectorNo][2]);
bldata[13] = (keyB[sectorNo][3]);
bldata[14] = (keyB[sectorNo][4]);
bldata[15] = (keyB[sectorNo][5]);
}
PrintAndLog("Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16));
memcpy(c.d.asBytes + 10, bldata, 16);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
uint8_t isOK = resp.arg[0] & 0xff;
PrintAndLog("isOk:%02x", isOK);
} else {
PrintAndLog("Command execute timeout");
}
}
}
fclose(fdump);
return 0;
}
int CmdHF14AMfNested(const char *Cmd) {
int i, j, res, iterations;
sector *e_sector = NULL;
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t trgBlockNo = 0;
uint8_t trgKeyType = 0;
uint8_t SectorsCnt = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t keyBlock[6*6];
uint64_t key64 = 0;
bool transferToEml = false;
bool createDumpFile = false;
FILE *fkeys;
uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
if (strlen(Cmd)<3) return usage_hf14_nested();
char cmdp, ctmp;
cmdp = param_getchar(Cmd, 0);
blockNo = param_get8(Cmd, 1);
ctmp = param_getchar(Cmd, 2);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a')
keyType = 1;
if (param_gethex(Cmd, 3, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
if (cmdp == 'o' || cmdp == 'O') {
cmdp = 'o';
trgBlockNo = param_get8(Cmd, 4);
ctmp = param_getchar(Cmd, 5);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Target key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a')
trgKeyType = 1;
} else {
switch (cmdp) {
case '0': SectorsCnt = 05; break;
case '1': SectorsCnt = 16; break;
case '2': SectorsCnt = 32; break;
case '4': SectorsCnt = 40; break;
default: SectorsCnt = 16;
}
}
ctmp = param_getchar(Cmd, 4);
if (ctmp == 't' || ctmp == 'T') transferToEml = true;
else if (ctmp == 'd' || ctmp == 'D') createDumpFile = true;
ctmp = param_getchar(Cmd, 6);
transferToEml |= (ctmp == 't' || ctmp == 'T');
transferToEml |= (ctmp == 'd' || ctmp == 'D');
if (cmdp == 'o') {
int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true);
switch (isOK) {
case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case -2 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random number generator is not predictable).\n"); break;
case -4 : PrintAndLog("No valid key found"); break;
case -5 :
key64 = bytes_to_num(keyBlock, 6);
// transfer key to the emulator
if (transferToEml) {
uint8_t sectortrailer;
if (trgBlockNo < 32*4) { // 4 block sector
sectortrailer = (trgBlockNo & 0x03) + 3;
} else { // 16 block sector
sectortrailer = (trgBlockNo & 0x0f) + 15;
}
mfEmlGetMem(keyBlock, sectortrailer, 1);
if (!trgKeyType)
num_to_bytes(key64, 6, keyBlock);
else
num_to_bytes(key64, 6, &keyBlock[10]);
mfEmlSetMem(keyBlock, sectortrailer, 1);
}
return 0;
default : PrintAndLog("Unknown Error.\n");
}
return 2;
}
else { // ------------------------------------ multiple sectors working
clock_t t1 = clock();
unsigned long elapsed_time;
time_t start, end;
time(&start);
e_sector = calloc(SectorsCnt, sizeof(sector));
if (e_sector == NULL) return 1;
//test current key and additional standard keys first
memcpy(keyBlock, key, 6);
num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 1 * 6));
num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 2 * 6));
num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 3 * 6));
num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 4 * 6));
num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 5 * 6));
PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt);
for (i = 0; i < SectorsCnt; i++) {
for (j = 0; j < 2; j++) {
if (e_sector[i].foundKey[j]) continue;
res = mfCheckKeys(FirstBlockOfSector(i), j, true, 6, keyBlock, &key64);
if (!res) {
e_sector[i].Key[j] = key64;
e_sector[i].foundKey[j] = TRUE;
}
}
}
clock_t t2 = clock() - t1;
time(&end);
elapsed_time = difftime(end, start);
if ( t2 > 0 )
PrintAndLog("Time to check 6 known keys: %.0f ticks %u seconds\n", (float)t2 , elapsed_time);
PrintAndLog("enter nested...");
// nested sectors
iterations = 0;
bool calibrate = true;
for (i = 0; i < NESTED_SECTOR_RETRY; i++) {
for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) {
for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) {
if (e_sector[sectorNo].foundKey[trgKeyType]) continue;
int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate);
switch (isOK) {
case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case -2 : PrintAndLog("Button pressed. Aborted.\n"); break;
case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (its random number generator is not predictable).\n"); break;
case -4 : //key not found
calibrate = false;
iterations++;
continue;
case -5 :
calibrate = false;
iterations++;
e_sector[sectorNo].foundKey[trgKeyType] = 1;
e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6);
continue;
default : PrintAndLog("Unknown Error.\n");
}
free(e_sector);
return 2;
}
}
}
t1 = clock() - t1;
time(&end);
elapsed_time = difftime(end, start);
if ( t1 > 0 )
PrintAndLog("Time in nested: %.0f ticks %u seconds\n", (float)t1, elapsed_time);
// 20160116 If Sector A is found, but not Sector B, try just reading it of the tag?
PrintAndLog("trying to read key B...");
for (i = 0; i < SectorsCnt; i++) {
// KEY A but not KEY B
if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) {
uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
PrintAndLog("Reading block %d", sectrail);
UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}};
num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue;
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) continue;
uint8_t *data = resp.d.asBytes;
key64 = bytes_to_num(data+10, 6);
if (key64) {
PrintAndLog("Data:%s", sprint_hex(data+10, 6));
e_sector[i].foundKey[1] = TRUE;
e_sector[i].Key[1] = key64;
}
}
}
//print them
printKeyTable( SectorsCnt, e_sector );
// transfer them to the emulator
if (transferToEml) {
for (i = 0; i < SectorsCnt; i++) {
mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
if (e_sector[i].foundKey[0])
num_to_bytes(e_sector[i].Key[0], 6, keyBlock);
if (e_sector[i].foundKey[1])
num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]);
mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
}
}
// Create dump file
if (createDumpFile) {
if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) {
PrintAndLog("Could not create file dumpkeys.bin");
free(e_sector);
return 1;
}
PrintAndLog("Printing keys to binary file dumpkeys.bin...");
for(i=0; i<SectorsCnt; i++) {
if (e_sector[i].foundKey[0]){
num_to_bytes(e_sector[i].Key[0], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
else{
fwrite ( &standart, 1, 6, fkeys );
}
}
for(i=0; i<SectorsCnt; i++) {
if (e_sector[i].foundKey[1]){
num_to_bytes(e_sector[i].Key[1], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
else{
fwrite ( &standart, 1, 6, fkeys );
}
}
fclose(fkeys);
}
free(e_sector);
}
return 0;
}
int CmdHF14AMfNestedHard(const char *Cmd) {
uint8_t blockNo = 0;
uint8_t keyType = 0;
uint8_t trgBlockNo = 0;
uint8_t trgKeyType = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t trgkey[6] = {0, 0, 0, 0, 0, 0};
char ctmp;
ctmp = param_getchar(Cmd, 0);
if (ctmp == 'H' || ctmp == 'h' ) return usage_hf14_hardnested();
if (ctmp != 'R' && ctmp != 'r' && ctmp != 'T' && ctmp != 't' && strlen(Cmd) < 20) return usage_hf14_hardnested();
bool know_target_key = false;
bool nonce_file_read = false;
bool nonce_file_write = false;
bool slow = false;
int tests = 0;
if (ctmp == 'R' || ctmp == 'r') {
nonce_file_read = true;
if (!param_gethex(Cmd, 1, trgkey, 12)) {
know_target_key = true;
}
} else if (ctmp == 'T' || ctmp == 't') {
tests = param_get32ex(Cmd, 1, 100, 10);
} else {
blockNo = param_get8(Cmd, 0);
ctmp = param_getchar(Cmd, 1);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') {
keyType = 1;
}
if (param_gethex(Cmd, 2, key, 12)) {
PrintAndLog("Key must include 12 HEX symbols");
return 1;
}
trgBlockNo = param_get8(Cmd, 3);
ctmp = param_getchar(Cmd, 4);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Target key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') {
trgKeyType = 1;
}
uint16_t i = 5;
if (!param_gethex(Cmd, 5, trgkey, 12)) {
know_target_key = true;
i++;
}
while ((ctmp = param_getchar(Cmd, i))) {
if (ctmp == 's' || ctmp == 'S') {
slow = true;
} else if (ctmp == 'w' || ctmp == 'W') {
nonce_file_write = true;
} else {
PrintAndLog("Possible options are w and/or s");
return 1;
}
i++;
}
}
PrintAndLog("--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ",
trgBlockNo,
trgKeyType?'B':'A',
trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5],
know_target_key ? "" : " (not set)",
nonce_file_write ? "write": nonce_file_read ? "read" : "none",
slow ? "Yes" : "No",
tests);
uint64_t foundkey = 0;
int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key ? trgkey : NULL, nonce_file_read, nonce_file_write, slow, tests, &foundkey);
if (isOK) {
switch (isOK) {
case 1 : PrintAndLog("Error: No response from Proxmark.\n"); break;
case 2 : PrintAndLog("Button pressed. Aborted.\n"); break;
default : break;
}
return 2;
}
return 0;
}
int CmdHF14AMfChk(const char *Cmd) {
if (strlen(Cmd)<3) return usage_hf14_chk();
FILE * f;
char filename[FILE_PATH_SIZE]={0};
char buf[13];
uint8_t *keyBlock = NULL, *p;
uint8_t stKeyBlock = 20;
sector *e_sector = NULL;
int i, res;
int keycnt = 0;
char ctmp = 0x00;
uint8_t blockNo = 0;
uint8_t SectorsCnt = 1;
uint8_t keyType = 0;
uint64_t key64 = 0;
uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
int transferToEml = 0;
int createDumpFile = 0;
keyBlock = calloc(stKeyBlock, 6);
if (keyBlock == NULL) return 1;
uint64_t defaultKeys[] = {
0xffffffffffff, // Default key (first key used by program if no user defined key)
0x000000000000, // Blank key
0xa0a1a2a3a4a5, // NFCForum MAD key
0xb0b1b2b3b4b5,
0xaabbccddeeff,
0x4d3a99c351dd,
0x1a982c7e459a,
0xd3f7d3f7d3f7,
0x714c5c886e97,
0x587ee5f9350f,
0xa0478cc39091,
0x533cb6c723f6,
0x8fd0a4f256e9
};
int defaultKeysSize = sizeof(defaultKeys) / sizeof(uint64_t);
for (int defaultKeyCounter = 0; defaultKeyCounter < defaultKeysSize; defaultKeyCounter++)
num_to_bytes(defaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6));
if (param_getchar(Cmd, 0)=='*') {
blockNo = 3;
switch(param_getchar(Cmd+1, 0)) {
case '0': SectorsCnt = 5; break;
case '1': SectorsCnt = 16; break;
case '2': SectorsCnt = 32; break;
case '4': SectorsCnt = 40; break;
default: SectorsCnt = 16;
}
} else {
blockNo = param_get8(Cmd, 0);
}
ctmp = param_getchar(Cmd, 1);
switch (ctmp) {
case 'a': case 'A':
keyType = !0;
break;
case 'b': case 'B':
keyType = !1;
break;
case '?':
keyType = 2;
break;
default:
PrintAndLog("Key type must be A , B or ?");
free(keyBlock);
return 1;
};
ctmp = param_getchar(Cmd, 2);
if (ctmp == 't' || ctmp == 'T') transferToEml = 1;
else if (ctmp == 'd' || ctmp == 'D') createDumpFile = 1;
for (i = transferToEml || createDumpFile; param_getchar(Cmd, 2 + i); i++) {
if (!param_gethex(Cmd, 2 + i, keyBlock + 6 * keycnt, 12)) {
if ( stKeyBlock - keycnt < 2) {
p = realloc(keyBlock, 6*(stKeyBlock+=10));
if (!p) {
PrintAndLog("Cannot allocate memory for Keys");
free(keyBlock);
return 2;
}
keyBlock = p;
}
PrintAndLog("key[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
(keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6);
keycnt++;
} else {
// May be a dic file
if ( param_getstr(Cmd, 2 + i,filename) >= FILE_PATH_SIZE ) {
PrintAndLog("File name too long");
free(keyBlock);
return 2;
}
if ( (f = fopen( filename , "r")) ) {
while( fgets(buf, sizeof(buf), f) ){
if (strlen(buf) < 12 || buf[11] == '\n')
continue;
while (fgetc(f) != '\n' && !feof(f)) ; //goto next line
if( buf[0]=='#' ) continue; //The line start with # is comment, skip
if (!isxdigit(buf[0])){
PrintAndLog("File content error. '%s' must include 12 HEX symbols",buf);
continue;
}
buf[12] = 0;
if ( stKeyBlock - keycnt < 2) {
p = realloc(keyBlock, 6*(stKeyBlock+=10));
if (!p) {
PrintAndLog("Cannot allocate memory for defKeys");
free(keyBlock);
fclose(f);
return 2;
}
keyBlock = p;
}
memset(keyBlock + 6 * keycnt, 0, 6);
num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt);
PrintAndLog("check key[%2d] %012" PRIx64, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6));
keycnt++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
} else {
PrintAndLog("File: %s: not found or locked.", filename);
free(keyBlock);
return 1;
}
}
}
if (keycnt == 0) {
PrintAndLog("No key specified, trying default keys");
for (;keycnt < defaultKeysSize; keycnt++)
PrintAndLog("key[%2d] %02x%02x%02x%02x%02x%02x", keycnt,
(keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2],
(keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6);
}
// initialize storage for found keys
e_sector = calloc(SectorsCnt, sizeof(sector));
if (e_sector == NULL) {
free(keyBlock);
return 1;
}
// empty e_sector
for(int i = 0; i < SectorsCnt; ++i){
e_sector[i].Key[0] = 0xffffffffffff;
e_sector[i].Key[1] = 0xffffffffffff;
e_sector[i].foundKey[0] = FALSE;
e_sector[i].foundKey[1] = FALSE;
}
uint8_t trgKeyType = 0;
uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
// time
clock_t t1 = clock();
time_t start, end;
time(&start);
// check keys.
for (trgKeyType = !keyType; trgKeyType < 2; (keyType==2) ? (++trgKeyType) : (trgKeyType=2) ) {
int b = blockNo;
for (int i = 0; i < SectorsCnt; ++i) {
// skip already found keys.
if (e_sector[i].foundKey[trgKeyType]) continue;
for (uint32_t c = 0; c < keycnt; c += max_keys) {
printf(".");
fflush(stdout);
uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c;
res = mfCheckKeys(b, trgKeyType, true, size, &keyBlock[6*c], &key64);
if (!res) {
e_sector[i].Key[trgKeyType] = key64;
e_sector[i].foundKey[trgKeyType] = TRUE;
break;
}
}
b < 127 ? ( b +=4 ) : ( b += 16 );
}
}
t1 = clock() - t1;
time(&end);
unsigned long elapsed_time = difftime(end, start);
if ( t1 > 0 )
PrintAndLog("\nTime in checkkeys: %.0f ticks %u seconds\n", (float)t1, elapsed_time);
// 20160116 If Sector A is found, but not Sector B, try just reading it of the tag?
if ( keyType != 1 ) {
PrintAndLog("testing to read key B...");
for (i = 0; i < SectorsCnt; i++) {
// KEY A but not KEY B
if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) {
uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
PrintAndLog("Reading block %d", sectrail);
UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}};
num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue;
uint8_t isOK = resp.arg[0] & 0xff;
if (!isOK) continue;
uint8_t *data = resp.d.asBytes;
key64 = bytes_to_num(data+10, 6);
if (key64) {
PrintAndLog("Data:%s", sprint_hex(data+10, 6));
e_sector[i].foundKey[1] = 1;
e_sector[i].Key[1] = key64;
}
}
}
}
//print them
printKeyTable( SectorsCnt, e_sector );
if (transferToEml) {
uint8_t block[16] = {0x00};
for (uint8_t i = 0; i < SectorsCnt; ++i ) {
mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
if (e_sector[i].foundKey[0])
num_to_bytes(e_sector[i].Key[0], 6, block);
if (e_sector[i].foundKey[1])
num_to_bytes(e_sector[i].Key[1], 6, block+10);
mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1);
}
PrintAndLog("Found keys have been transferred to the emulator memory");
}
if (createDumpFile) {
FILE *fkeys = fopen("dumpkeys.bin","wb");
if (fkeys == NULL) {
PrintAndLog("Could not create file dumpkeys.bin");
free(keyBlock);
free(e_sector);
return 1;
}
PrintAndLog("Printing keys to binary file dumpkeys.bin...");
for( i=0; i<SectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[0], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
for(i=0; i<SectorsCnt; i++) {
num_to_bytes(e_sector[i].Key[1], 6, tempkey);
fwrite ( tempkey, 1, 6, fkeys );
}
fclose(fkeys);
PrintAndLog("Found keys have been dumped to file dumpkeys.bin. 0xffffffffffff has been inserted for unknown keys.");
}
free(keyBlock);
free(e_sector);
PrintAndLog("");
return 0;
}
sector *k_sector = NULL;
uint8_t k_sectorsCount = 16;
static void emptySectorTable(){
// initialize storage for found keys
if (k_sector == NULL)
k_sector = calloc(k_sectorsCount, sizeof(sector));
if (k_sector == NULL)
return;
// empty e_sector
for(int i = 0; i < k_sectorsCount; ++i){
k_sector[i].Key[0] = 0xffffffffffff;
k_sector[i].Key[1] = 0xffffffffffff;
k_sector[i].foundKey[0] = FALSE;
k_sector[i].foundKey[1] = FALSE;
}
}
void showSectorTable(){
if (k_sector != NULL) {
printKeyTable(k_sectorsCount, k_sector);
free(k_sector);
k_sector = NULL;
}
}
void readerAttack(nonces_t data, bool setEmulatorMem, bool verbose) {
uint64_t key = 0;
bool success = FALSE;
if (k_sector == NULL)
emptySectorTable();
success = tryMfk32_moebius(data, &key, verbose);
if (success) {
uint8_t sector = data.sector;
uint8_t keytype = data.keytype;
PrintAndLog("Reader is trying authenticate with: Key %s, sector %02d: [%012" PRIx64 "]"
, keytype ? "B" : "A"
, sector
, key
);
k_sector[sector].Key[keytype] = key;
k_sector[sector].foundKey[keytype] = TRUE;
//set emulator memory for keys
if (setEmulatorMem) {
uint8_t memBlock[16] = {0,0,0,0,0,0, 0xff, 0x0F, 0x80, 0x69, 0,0,0,0,0,0};
num_to_bytes( k_sector[sector].Key[0], 6, memBlock);
num_to_bytes( k_sector[sector].Key[1], 6, memBlock+10);
//iceman, guessing this will not work so well for 4K tags.
PrintAndLog("Setting Emulator Memory Block %02d: [%s]"
, (sector*4) + 3
, sprint_hex( memBlock, sizeof(memBlock))
);
mfEmlSetMem( memBlock, (sector*4) + 3, 1);
}
}
}
int CmdHF14AMf1kSim(const char *Cmd) {
uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t exitAfterNReads = 0;
uint8_t flags = (FLAG_UID_IN_EMUL | FLAG_4B_UID_IN_DATA);
int uidlen = 0;
uint8_t cmdp = 0;
bool errors = FALSE;
bool verbose = FALSE;
bool setEmulatorMem = FALSE;
nonces_t data[1];
while(param_getchar(Cmd, cmdp) != 0x00) {
switch(param_getchar(Cmd, cmdp)) {
case 'e':
case 'E':
setEmulatorMem = TRUE;
cmdp++;
break;
case 'h':
case 'H':
return usage_hf14_mf1ksim();
case 'i':
case 'I':
flags |= FLAG_INTERACTIVE;
cmdp++;
break;
case 'n':
case 'N':
exitAfterNReads = param_get8(Cmd, cmdp+1);
cmdp += 2;
break;
case 'u':
case 'U':
param_gethex_ex(Cmd, cmdp+1, uid, &uidlen);
switch(uidlen) {
case 20: flags = FLAG_10B_UID_IN_DATA; break;
case 14: flags = FLAG_7B_UID_IN_DATA; break;
case 8: flags = FLAG_4B_UID_IN_DATA; break;
default: return usage_hf14_mf1ksim();
}
cmdp += 2;
break;
case 'v':
case 'V':
verbose = TRUE;
cmdp++;
break;
case 'x':
case 'X':
flags |= FLAG_NR_AR_ATTACK;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = TRUE;
break;
}
if(errors) break;
}
//Validations
if(errors) return usage_hf14_mf1ksim();
PrintAndLog(" uid:%s, numreads:%d, flags:%d (0x%02x) "
, (uidlen == 0 ) ? "N/A" : sprint_hex(uid, uidlen>>1)
, exitAfterNReads
, flags
, flags);
UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, 0}};
memcpy(c.d.asBytes, uid, sizeof(uid));
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if(flags & FLAG_INTERACTIVE) {
PrintAndLog("Press pm3-button or send another cmd to abort simulation");
while( !ukbhit() ){
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue;
if ( !(flags & FLAG_NR_AR_ATTACK) ) break;
if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break;
memcpy(data, resp.d.asBytes, sizeof(data));
readerAttack(data[0], setEmulatorMem, verbose);
}
showSectorTable();
}
return 0;
}
int CmdHF14AMfSniff(const char *Cmd){
bool wantLogToFile = FALSE;
bool wantDecrypt = FALSE;
//bool wantSaveToEml = FALSE; TODO
bool wantSaveToEmlFile = FALSE;
//var
int tmpchar;
int res = 0;
int len = 0;
int blockLen = 0;
int pckNum = 0;
int num = 0;
uint8_t uid[10];
uint8_t uid_len = 0;
uint8_t atqa[2] = {0x00, 0x00};
uint8_t sak = 0;
bool isTag = FALSE;
uint8_t *buf = NULL;
uint16_t bufsize = 0;
uint8_t *bufPtr = NULL;
uint16_t traceLen = 0;
memset(uid, 0x00, sizeof(uid));
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H' ) return usage_hf14_sniff();
for (int i = 0; i < 4; i++) {
ctmp = param_getchar(Cmd, i);
if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true;
if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true;
//if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO
if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true;
}
printf("-------------------------------------------------------------------------\n");
printf("Executing mifare sniffing command. \n");
printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n");
printf("Press the key on pc keyboard to abort the client.\n");
printf("-------------------------------------------------------------------------\n");
UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
tmpchar = getchar();
(void)tmpchar;
printf("\naborted via keyboard!\n");
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
res = resp.arg[0] & 0xff;
traceLen = resp.arg[1];
len = resp.arg[2];
// we are done?
if (res == 0) {
free(buf);
return 0;
}
if (res == 1) { // there is (more) data to be transferred
if (pckNum == 0) { // first packet, (re)allocate necessary buffer
if (traceLen > bufsize || buf == NULL) {
uint8_t *p;
if (buf == NULL) // not yet allocated
p = malloc(traceLen);
else // need more memory
p = realloc(buf, traceLen);
if (p == NULL) {
PrintAndLog("Cannot allocate memory for trace");
free(buf);
return 2;
}
buf = p;
}
bufPtr = buf;
bufsize = traceLen;
memset(buf, 0x00, traceLen);
}
if (bufPtr == NULL) {
PrintAndLog("Cannot allocate memory for trace");
free(buf);
return 2;
}
// what happens if LEN is bigger then TRACELEN --iceman
memcpy(bufPtr, resp.d.asBytes, len);
bufPtr += len;
pckNum++;
}
if (res == 2) { // received all data, start displaying
blockLen = bufPtr - buf;
bufPtr = buf;
printf(">\n");
PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum);
while (bufPtr - buf < blockLen) {
bufPtr += 6; // skip (void) timing information
len = *((uint16_t *)bufPtr);
if(len & 0x8000) {
isTag = true;
len &= 0x7fff;
} else {
isTag = false;
}
bufPtr += 2;
if ((len == 17) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[15] == 0xff) && (bufPtr[16] == 0xff)) {
memcpy(uid, bufPtr + 2, 10);
memcpy(atqa, bufPtr + 2 + 10, 2);
switch (atqa[0] & 0xC0) {
case 0x80: uid_len = 10; break;
case 0x40: uid_len = 7; break;
default: uid_len = 4; break;
}
sak = bufPtr[14];
PrintAndLog("tag select uid| %s atqa:0x%02x%02x sak:0x%02x",
sprint_hex(uid, uid_len),
atqa[1],
atqa[0],
sak);
if (wantLogToFile || wantDecrypt) {
FillFileNameByUID(logHexFileName, uid, ".log", uid_len);
AddLogCurrentDT(logHexFileName);
}
if (wantDecrypt)
mfTraceInit(uid, uid_len, atqa, sak, wantSaveToEmlFile);
} else {
PrintAndLog("%03d| %s |%s", num, isTag ? "TAG" : "RDR", sprint_hex(bufPtr, len));
if (wantLogToFile)
AddLogHex(logHexFileName, isTag ? "TAG| ":"RDR| ", bufPtr, len);
if (wantDecrypt)
mfTraceDecode(bufPtr, len, wantSaveToEmlFile);
num++;
}
bufPtr += len;
bufPtr += ((len-1)/8+1); // ignore parity
}
pckNum = 0;
}
} // resp not NULL
} // while (true)
free(buf);
return 0;
}
int CmdHF14AMfDbg(const char *Cmd) {
char ctmp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_dbg();
uint8_t dbgMode = param_get8ex(Cmd, 0, 0, 10);
if (dbgMode > 4) return usage_hf14_dbg();
UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfKeyBrute(const char *Cmd) {
uint8_t blockNo = 0, keytype = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint64_t foundkey = 0;
char cmdp = param_getchar(Cmd, 0);
if ( cmdp == 'H' || cmdp == 'h') return usage_hf14_keybrute();
// block number
blockNo = param_get8(Cmd, 0);
// keytype
cmdp = param_getchar(Cmd, 1);
if (cmdp == 'B' || cmdp == 'b') keytype = 1;
// key
if (param_gethex(Cmd, 2, key, 12)) return usage_hf14_keybrute();
clock_t t1 = clock();
time_t start, end;
time(&start);
if (mfKeyBrute( blockNo, keytype, key, &foundkey))
PrintAndLog("Found valid key: %012" PRIx64 " \n", foundkey);
else
PrintAndLog("Key not found");
t1 = clock() - t1;
time(&end);
unsigned long elapsed_time = difftime(end, start);
if ( t1 > 0 )
PrintAndLog("\nTime in keybrute: %.0f ticks %u seconds\n", (float)t1, elapsed_time);
return 0;
}
void printKeyTable( uint8_t sectorscnt, sector *e_sector ){
PrintAndLog("|---|----------------|---|----------------|---|");
PrintAndLog("|sec|key A |res|key B |res|");
PrintAndLog("|---|----------------|---|----------------|---|");
for (uint8_t i = 0; i < sectorscnt; ++i) {
PrintAndLog("|%03d| %012" PRIx64 " | %d | %012" PRIx64 " | %d |", i,
e_sector[i].Key[0], e_sector[i].foundKey[0],
e_sector[i].Key[1], e_sector[i].foundKey[1]
);
}
PrintAndLog("|---|----------------|---|----------------|---|");
}
// EMULATOR COMMANDS
int CmdHF14AMfEGet(const char *Cmd)
{
uint8_t blockNo = 0;
uint8_t data[16] = {0x00};
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eget <block number>");
PrintAndLog(" sample: hf mf eget 0 ");
return 0;
}
blockNo = param_get8(Cmd, 0);
PrintAndLog("");
if (!mfEmlGetMem(data, blockNo, 1)) {
PrintAndLog("data[%3d]:%s", blockNo, sprint_hex(data, 16));
} else {
PrintAndLog("Command execute timeout");
}
return 0;
}
int CmdHF14AMfEClear(const char *Cmd)
{
if (param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eclr");
PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n");
return 0;
}
UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfESet(const char *Cmd)
{
uint8_t memBlock[16];
uint8_t blockNo = 0;
memset(memBlock, 0x00, sizeof(memBlock));
if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf eset <block number> <block data (32 hex symbols)>");
PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f ");
return 0;
}
blockNo = param_get8(Cmd, 0);
if (param_gethex(Cmd, 1, memBlock, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return 1;
}
// 1 - blocks count
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNo, 1, 0}};
memcpy(c.d.asBytes, memBlock, 16);
SendCommand(&c);
return 0;
}
int CmdHF14AMfELoad(const char *Cmd)
{
FILE * f;
char filename[FILE_PATH_SIZE];
char *fnameptr = filename;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, len, blockNum, numBlocks;
int nameParamNo = 1;
uint8_t blockWidth = 32;
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H' || ctmp == 0x00) {
PrintAndLog("It loads emul dump from the file `filename.eml`");
PrintAndLog("Usage: hf mf eload [card memory] <file name w/o `.eml`> [numblocks]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K, u = UL");
PrintAndLog("");
PrintAndLog(" sample: hf mf eload filename");
PrintAndLog(" hf mf eload 4 filename");
return 0;
}
switch (ctmp) {
case '0' : numBlocks = 5*4; break;
case '1' :
case '\0': numBlocks = 16*4; break;
case '2' : numBlocks = 32*4; break;
case '4' : numBlocks = 256; break;
case 'U' : // fall through
case 'u' : numBlocks = 255; blockWidth = 8; break;
default: {
numBlocks = 16*4;
nameParamNo = 0;
}
}
uint32_t numblk2 = param_get32ex(Cmd,2,0,10);
if (numblk2 > 0) numBlocks = numblk2;
len = param_getstr(Cmd,nameParamNo,filename);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
fnameptr += len;
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "r");
if (f == NULL) {
PrintAndLog("File %s not found or locked", filename);
return 1;
}
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
if (blockNum >= numBlocks) break;
PrintAndLog("File reading error.");
fclose(f);
return 2;
}
if (strlen(buf) < blockWidth){
if(strlen(buf) && feof(f))
break;
PrintAndLog("File content error. Block data must include %d HEX symbols", blockWidth);
fclose(f);
return 2;
}
for (i = 0; i < blockWidth; i += 2) {
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
}
if (mfEmlSetMem_xt(buf8, blockNum, 1, blockWidth/2)) {
PrintAndLog("Cant set emul block: %3d", blockNum);
fclose(f);
return 3;
}
printf(".");
blockNum++;
if (blockNum >= numBlocks) break;
}
fclose(f);
printf("\n");
if ((blockNum != numBlocks)) {
PrintAndLog("File content error. Got %d must be %d blocks.",blockNum, numBlocks);
return 4;
}
PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename);
return 0;
}
int CmdHF14AMfESave(const char *Cmd)
{
FILE * f;
char filename[FILE_PATH_SIZE];
char * fnameptr = filename;
uint8_t buf[64];
int i, j, len, numBlocks;
int nameParamNo = 1;
memset(filename, 0, sizeof(filename));
memset(buf, 0, sizeof(buf));
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H') {
PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`");
PrintAndLog(" Usage: hf mf esave [card memory] [file name w/o `.eml`]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog(" sample: hf mf esave ");
PrintAndLog(" hf mf esave 4");
PrintAndLog(" hf mf esave 4 filename");
return 0;
}
switch (ctmp) {
case '0' : numBlocks = 5*4; break;
case '1' :
case '\0': numBlocks = 16*4; break;
case '2' : numBlocks = 32*4; break;
case '4' : numBlocks = 256; break;
default: {
numBlocks = 16*4;
nameParamNo = 0;
}
}
len = param_getstr(Cmd,nameParamNo,filename);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
// user supplied filename?
if (len < 1) {
// get filename (UID from memory)
if (mfEmlGetMem(buf, 0, 1)) {
PrintAndLog("Can\'t get UID from block: %d", 0);
len = sprintf(fnameptr, "dump");
fnameptr += len;
}
else {
for (j = 0; j < 7; j++, fnameptr += 2)
sprintf(fnameptr, "%02X", buf[j]);
}
} else {
fnameptr += len;
}
// add file extension
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "w+");
if ( !f ) {
PrintAndLog("Can't open file %s ", filename);
return 1;
}
// put hex
for (i = 0; i < numBlocks; i++) {
if (mfEmlGetMem(buf, i, 1)) {
PrintAndLog("Cant get block: %d", i);
break;
}
for (j = 0; j < 16; j++)
fprintf(f, "%02X", buf[j]);
fprintf(f,"\n");
}
fclose(f);
PrintAndLog("Saved %d blocks to file: %s", numBlocks, filename);
return 0;
}
int CmdHF14AMfECFill(const char *Cmd)
{
uint8_t keyType = 0;
uint8_t numSectors = 16;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf ecfill <key A/B> [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog("samples: hf mf ecfill A");
PrintAndLog(" hf mf ecfill A 4");
PrintAndLog("Read card and transfer its data to emulator memory.");
PrintAndLog("Keys must be laid in the emulator memory. \n");
return 0;
}
char ctmp = param_getchar(Cmd, 0);
if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') {
PrintAndLog("Key type must be A or B");
return 1;
}
if (ctmp != 'A' && ctmp != 'a') keyType = 1;
ctmp = param_getchar(Cmd, 1);
switch (ctmp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
printf("--params: numSectors: %d, keyType:%d", numSectors, keyType);
UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}};
SendCommand(&c);
return 0;
}
int CmdHF14AMfEKeyPrn(const char *Cmd)
{
int i;
uint8_t numSectors;
uint8_t data[16];
uint64_t keyA, keyB;
char cmdp = param_getchar(Cmd, 0);
if ( cmdp == 'h' || cmdp == 'H' ) {
PrintAndLog("It prints the keys loaded in the emulator memory");
PrintAndLog("Usage: hf mf ekeyprn [card memory]");
PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K");
PrintAndLog("");
PrintAndLog(" sample: hf mf ekeyprn 1");
return 0;
}
switch (cmdp) {
case '0' : numSectors = 5; break;
case '1' :
case '\0': numSectors = 16; break;
case '2' : numSectors = 32; break;
case '4' : numSectors = 40; break;
default: numSectors = 16;
}
PrintAndLog("|---|----------------|----------------|");
PrintAndLog("|sec|key A |key B |");
PrintAndLog("|---|----------------|----------------|");
for (i = 0; i < numSectors; i++) {
if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) {
PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1);
break;
}
keyA = bytes_to_num(data, 6);
keyB = bytes_to_num(data + 10, 6);
PrintAndLog("|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB);
}
PrintAndLog("|---|----------------|----------------|");
return 0;
}
// CHINESE MAGIC COMMANDS
int CmdHF14AMfCSetUID(const char *Cmd) {
uint8_t wipeCard = 0;
uint8_t uid[8] = {0x00};
uint8_t oldUid[8] = {0x00};
uint8_t atqa[2] = {0x00};
uint8_t sak[1] = {0x00};
uint8_t atqaPresent = 1;
int res;
char ctmp;
int argi=0;
if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') {
PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)");
PrintAndLog("If you also want to wipe the card then add 'w' at the end of the command line.");
PrintAndLog("");
PrintAndLog("Usage: hf mf csetuid <UID 8 hex symbols> [ATQA 4 hex symbols SAK 2 hex symbols] [w]");
PrintAndLog("");
PrintAndLog("sample: hf mf csetuid 01020304");
PrintAndLog(" hf mf csetuid 01020304 0004 08 w");
return 0;
}
if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8)) {
PrintAndLog("UID must include 8 HEX symbols");
return 1;
}
argi++;
ctmp = param_getchar(Cmd, argi);
if (ctmp == 'w' || ctmp == 'W') {
wipeCard = 1;
atqaPresent = 0;
}
if (atqaPresent) {
if (param_getchar(Cmd, argi)) {
if (param_gethex(Cmd, argi, atqa, 4)) {
PrintAndLog("ATQA must include 4 HEX symbols");
return 1;
}
argi++;
if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) {
PrintAndLog("SAK must include 2 HEX symbols");
return 1;
}
argi++;
} else
atqaPresent = 0;
}
if(!wipeCard) {
ctmp = param_getchar(Cmd, argi);
if (ctmp == 'w' || ctmp == 'W') {
wipeCard = 1;
}
}
PrintAndLog("--wipe card:%s uid:%s", (wipeCard)?"YES":"NO", sprint_hex(uid, 4));
res = mfCSetUID(uid, (atqaPresent) ? atqa : NULL, (atqaPresent) ? sak : NULL, oldUid, wipeCard);
if (res) {
PrintAndLog("Can't set UID. error=%d", res);
return 1;
}
PrintAndLog("old UID:%s", sprint_hex(oldUid, 4));
PrintAndLog("new UID:%s", sprint_hex(uid, 4));
return 0;
}
int CmdHF14AMfCSetBlk(const char *Cmd) {
uint8_t block[16] = {0x00};
uint8_t blockNo = 0;
uint8_t params = MAGIC_SINGLE;
int res;
if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') {
PrintAndLog("Usage: hf mf csetblk <block number> <block data (32 hex symbols)> [w]");
PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516");
PrintAndLog("Set block data for magic Chinese card (only works with such cards)");
PrintAndLog("If you also want wipe the card then add 'w' at the end of the command line");
return 0;
}
blockNo = param_get8(Cmd, 0);
if (param_gethex(Cmd, 1, block, 32)) {
PrintAndLog("block data must include 32 HEX symbols");
return 1;
}
char ctmp = param_getchar(Cmd, 2);
if (ctmp == 'w' || ctmp == 'W')
params |= MAGIC_WIPE;
PrintAndLog("--block number:%2d data:%s", blockNo, sprint_hex(block, 16));
res = mfCSetBlock(blockNo, block, NULL, params);
if (res) {
PrintAndLog("Can't write block. error=%d", res);
return 1;
}
return 0;
}
int CmdHF14AMfCLoad(const char *Cmd) {
FILE * f;
char filename[FILE_PATH_SIZE];
char * fnameptr = filename;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
uint8_t fillFromEmulator = 0;
int i, len, blockNum, flags=0;
memset(filename, 0, sizeof(filename));
char ctmp = param_getchar(Cmd, 0);
if (ctmp == 'h' || ctmp == 'H' || ctmp == 0x00) {
PrintAndLog("It loads magic Chinese card from the file `filename.eml`");
PrintAndLog("or from emulator memory (option `e`)");
PrintAndLog("Usage: hf mf cload <file name w/o `.eml`>");
PrintAndLog(" or: hf mf cload e ");
PrintAndLog(" sample: hf mf cload filename");
return 0;
}
if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1;
if (fillFromEmulator) {
for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) {
if (mfEmlGetMem(buf8, blockNum, 1)) {
PrintAndLog("Cant get block: %d", blockNum);
return 2;
}
if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write
if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Magic Halt and switch off field.
if (mfCSetBlock(blockNum, buf8, NULL, flags)) {
PrintAndLog("Cant set magic card block: %d", blockNum);
return 3;
}
}
return 0;
} else {
len = strlen(Cmd);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
memcpy(filename, Cmd, len);
fnameptr += len;
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "r");
if (f == NULL) {
PrintAndLog("File not found or locked.");
return 1;
}
blockNum = 0;
while(!feof(f)){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
fclose(f);
PrintAndLog("File reading error.");
return 2;
}
if (strlen(buf) < 32) {
if(strlen(buf) && feof(f))
break;
PrintAndLog("File content error. Block data must include 32 HEX symbols");
fclose(f);
return 2;
}
for (i = 0; i < 32; i += 2)
sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]);
if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence
if (blockNum == 1) flags = 0; // just write
if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Switch off field.
if (mfCSetBlock(blockNum, buf8, NULL, flags)) {
PrintAndLog("Can't set magic card block: %d", blockNum);
fclose(f);
return 3;
}
blockNum++;
if (blockNum >= 16 * 4) break; // magic card type - mifare 1K
}
fclose(f);
// 64 or 256blocks.
if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){
PrintAndLog("File content error. There must be 64 blocks");
return 4;
}
PrintAndLog("Loaded from file: %s", filename);
return 0;
}
return 0;
}
int CmdHF14AMfCGetBlk(const char *Cmd) {
uint8_t data[16];
uint8_t blockNo = 0;
int res;
memset(data, 0x00, sizeof(data));
char ctmp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') {
PrintAndLog("Usage: hf mf cgetblk <block number>");
PrintAndLog("sample: hf mf cgetblk 1");
PrintAndLog("Get block data from magic Chinese card (only works with such cards)\n");
return 0;
}
blockNo = param_get8(Cmd, 0);
PrintAndLog("--block number:%2d ", blockNo);
res = mfCGetBlock(blockNo, data, MAGIC_SINGLE);
if (res) {
PrintAndLog("Can't read block. error=%d", res);
return 1;
}
PrintAndLog("data: %s", sprint_hex(data, sizeof(data)));
return 0;
}
int CmdHF14AMfCGetSc(const char *Cmd) {
uint8_t data[16];
uint8_t sectorNo = 0;
int i, res, flags;
memset(data, 0x00, sizeof(data));
char ctmp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') {
PrintAndLog("Usage: hf mf cgetsc <sector number>");
PrintAndLog("sample: hf mf cgetsc 0");
PrintAndLog("Get sector data from magic Chinese card (only works with such cards)\n");
return 0;
}
sectorNo = param_get8(Cmd, 0);
if (sectorNo > 15) {
PrintAndLog("Sector number must be in [0..15] as in MIFARE classic.");
return 1;
}
PrintAndLog("--sector number:%d ", sectorNo);
PrintAndLog("block | data");
flags = MAGIC_INIT + MAGIC_WUPC;
for (i = 0; i < 4; i++) {
if (i == 1) flags = 0;
if (i == 3) flags = MAGIC_HALT + MAGIC_OFF;
res = mfCGetBlock(sectorNo * 4 + i, data, flags);
if (res) {
PrintAndLog("Can't read block. %d error=%d", sectorNo * 4 + i, res);
return 1;
}
PrintAndLog(" %3d | %s", sectorNo * 4 + i, sprint_hex(data, sizeof(data)));
}
return 0;
}
int CmdHF14AMfCSave(const char *Cmd) {
FILE * f;
char filename[FILE_PATH_SIZE];
char * fnameptr = filename;
uint8_t fillFromEmulator = 0;
uint8_t buf[64];
int i, j, len, flags;
memset(filename, 0, sizeof(filename));
memset(buf, 0, sizeof(buf));
char ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'h' || ctmp == 'H' ) {
PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`");
PrintAndLog("or into emulator memory (option `e`)");
PrintAndLog("Usage: hf mf esave [file name w/o `.eml`][e]");
PrintAndLog(" sample: hf mf esave ");
PrintAndLog(" hf mf esave filename");
PrintAndLog(" hf mf esave e \n");
return 0;
}
if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1;
if (fillFromEmulator) {
// put into emulator
flags = MAGIC_INIT + MAGIC_WUPC;
for (i = 0; i < 16 * 4; i++) {
if (i == 1) flags = 0;
if (i == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF;
if (mfCGetBlock(i, buf, flags)) {
PrintAndLog("Cant get block: %d", i);
break;
}
if (mfEmlSetMem(buf, i, 1)) {
PrintAndLog("Cant set emul block: %d", i);
return 3;
}
}
return 0;
} else {
len = strlen(Cmd);
if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5;
// get filename based on UID
if (len < 1) {
if (mfCGetBlock(0, buf, MAGIC_SINGLE)) {
PrintAndLog("Cant get block: %d", 0);
len = sprintf(fnameptr, "dump");
fnameptr += len;
} else {
for (j = 0; j < 7; j++, fnameptr += 2)
sprintf(fnameptr, "%02x", buf[j]);
}
} else {
memcpy(filename, Cmd, len);
fnameptr += len;
}
// add .eml extension
sprintf(fnameptr, ".eml");
// open file
f = fopen(filename, "w+");
if (f == NULL) {
PrintAndLog("File not found or locked.");
return 1;
}
// put hex
flags = MAGIC_INIT + MAGIC_WUPC;
for (i = 0; i < 16 * 4; i++) {
if (i == 1) flags = 0;
if (i == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF;
if (mfCGetBlock(i, buf, flags)) {
PrintAndLog("Cant get block: %d", i);
break;
}
for (j = 0; j < 16; j++)
fprintf(f, "%02x", buf[j]);
fprintf(f,"\n");
}
fflush(f);
fclose(f);
PrintAndLog("Saved to file: %s", filename);
return 0;
}
}
//needs nt, ar, at, Data to decrypt
int CmdHf14MfDecryptBytes(const char *Cmd){
uint8_t data[50];
uint32_t nt = param_get32ex(Cmd,0,0,16);
uint32_t ar_enc = param_get32ex(Cmd,1,0,16);
uint32_t at_enc = param_get32ex(Cmd,2,0,16);
int len = 0;
param_gethex_ex(Cmd, 3, data, &len);
len /= 2;
int limit = sizeof(data) / 2;
if ( len >= limit )
len = limit;
return tryDecryptWord( nt, ar_enc, at_enc, data, len);
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"},
{"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"},
{"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"},
{"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"},
{"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"},
{"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"},
{"chk", CmdHF14AMfChk, 0, "Check keys"},
{"mifare", CmdHF14AMifare, 0, "Darkside attack. read parity error messages."},
{"nested", CmdHF14AMfNested, 0, "Nested attack. Test nested authentication"},
{"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"},
{"keybrute", CmdHF14AMfKeyBrute, 0, "J_Run's 2nd phase of multiple sector nested authentication key recovery"},
{"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"},
{"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"},
{"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"},
{"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"},
{"eset", CmdHF14AMfESet, 0, "Set simulator memory block"},
{"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"},
{"esave", CmdHF14AMfESave, 0, "Save to file emul dump"},
{"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"},
{"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"},
{"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"},
{"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"},
{"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"},
{"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"},
{"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"},
{"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"},
{"decrypt", CmdHf14MfDecryptBytes, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"},
{NULL, NULL, 0, NULL}
};
int CmdHFMF(const char *Cmd) {
clearCommandBuffer();
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}